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The relative attitude is studied between two charge controlled spacecraft being
held at a fixed separation distance. While one body has a spherical shape, the 2nd
body is assumed to be non-spherical and tumbling. The attitude control goal is to
arrest the rotation of the 2nd body. While prior work has identified the existence
of torques between charged bodies, this is the first analytical study on a charged
feedback attitude control. Using the recently developed multi-sphere method to
provide a simplified electrostatic force and torque model between non-spherical
shapes, Lyapunov theory is used to develop a stabilizing attitude control using
spacecraft potential as the control variable. Zero and non-zero equilibrium poten-
tials are considered, with the later suitable for the electrostatic tug concept. With
a pulling configuration, the cylinder will come to rest with the long axis aligned
with the inter-vehicle axis in a stable configuration. For a pusher, the cylinder
will settle 90 degrees rotated from this axis. Numerical simulations illustrate the
control performance.

INTRODUCTION

Electrostatic actuation in space has been proposed as early as 1966 by Cover et. al. in Refer-
ence 1. Active charging is proposed to actuate a membrane attached to a solid outer structure of
a geostationary satellite. The Geosynchronous Orbit (GEO) region is identified as an orbit regime
where the local space plasma conditions are favorable for electrostatic actuation in that very low cur-
rent emission, yielding Watt-levels of power requirements, is needed to maintain a non-equilibrium
potential on a space object. The required mass emission for this Coulomb actuation is so low, this
mode of actuation is often referred to as essentially propellantless. Later in 2003 Reference 2 reit-
erates the virtues of Coulomb actuation at GEO, and studies the prospects to use Coulomb forces to
control the relative motion of free-flying spacecraft dozens of meters apart. Novel charged astrody-
namics equilibria are identified illustrating the new types of close proximity flying missions that are
enabled through this low-propellant relative motion control method.

However, the fuel-efficiency comes at a cost of complex, strongly-coupled nonlinear relative
differential equations of motion, yielding a non-affine control problem for the general N -cluster
scenario. Coulomb formation flying (CFF) dynamics and control has been studied in numerous
publications, but much work remains to be done to fully understand the complex relative motion
behaviors, and identity promising mission scenarios. Analytical solutions for fixed formation shape
charged equilibriums are discussed in References 3–5, while feedback control on 2- and 3-craft
formations are discussed in References 6–8. Hybrid relative motion control employing both inertial

⇤Associate Professor, Department of Aerospace Engineering Sciences, University of Colorado, 431 UCB, Colorado Center
for Astrodynamics Research, Boulder, CO 80309-0431.

†Graduate Research Assistant, Aerospace Engineering Sciences, University of Colorado..

1



thrusters and electrostatic actuation allows for more general relative motion control where the elec-
trostatics don’t provide full controllability.9–13 Other charged astrodynamics research has focused
on charging spacecraft to large potentials to exploit the interaction with the planet’s magnetic and
generate Lorentz-Augments Orbits (LAO).13–15

Most prior studies have focused on the electrostatic forces, and studying the relative translational
motion that results. Flying two charged spacecraft dozens of meters apart can yield electrostatic
torques, as well as forces. Reference 16 using the NASCAP software to model the expect force
and torque level for a range of spacecraft potentials at GEO conditions. The torques are identified
as a significant influence if the craft are flying very close, on the order of 1-3 craft radii, but no
dynamic analysis is performed. The prospects of using electrostatic torques for attitude control is
mentioned in Reference 17, but no attitude dynamics are simulated. A reason for the lack of charged
relative attitude dynamics studies is the complexity in modeling the electrostatic torques. Because
the torques are only significant at very close separation distance of a few craft radii, common sim-
plifying assumptions, such as the vehicle capacitance being evaluated using isolated body models,
are no longer valid. The presence of another charged body impacts the capacitance of each vehicle,
as has been experimentally demonstrated.18, 19 While it is possible to use numerical finite element
solvers to determine the electrostatic fields about a cluster of general shapes, it can take minutes
and longer to evaluate a single force solution. This is not suitable for numerical simulations of the
attitude dynamics a single test run can required 10’000’s of force evaluations.

A recently proposed electrostatic force modeling technique, called the Multi-Sphere Method
(MSM) is able to provide a reduced order model suitable for faster-than-realtime dynamic simu-
lations.20, 21 Both bodies are assumed to have a conducting outer surface, such that constant surface
potential is maintained with active charge emission. The general shape is discretized through a
series of spheres, all held at the same potential of the spacecraft. Using the position dependent ca-
pacitance model of a series of spheres,,22, 23 the electrostatic force evaluation is reduced to a linear
algebra problem that can be solved in a fraction of a second.

The MSM is used in this study to investigate potential feedback control strategies to arrest the
motion of a tumbling object. This is the first study where the charged relative motion dynamics
are consider and simulated. One motivation of this work is a recently introduced electrostatic tug
concept where charge transfer is employed to create an electrostatic force with a space tug to move
large geostationary space debris.24 Here active inertial control is implied to maintain a fixed sepa-
ration distance while engaging the electrostatic tractor.25 If the debris momentum could be arrested
without physical contact, it would make any docking mission with space debris much simpler. Other
applications include performing general CFF orbit correction where a sub-set of the cluster nodes
have inertial thrusting, and the remaining objects are electrostatically tugged.25 The scope of this
work considers only one-dimensional rotational motion, and assumes the non-tumbling vehicle (i.e.
tug) is spherical in shape. This initial study considers the non-spherical, tumbling space body to be
cylindrical. For GEO space debris reorbiting to a disposal region, the cylinder shape is of interest
as many old dual-spinner configurations and rocket bodies need to be moved outside the GEO zone.
The only control used are the spacecraft potentials which are assumed to be of equal magnitude
for each body. This assumption is the preferred potential arrangement for an electrostatic tug, and
thus has great practical relevance. Of interest is can the tumbling body be brought to rest, and are
repulsive and attractive forces required? Further, if the nominal spacecraft potential is non-zero, as
in the electrostatic tug scenario, to what attitudes will the tumbling body converge.

The paper is organized as follows. First, the multi-sphere method is reviewed, and a particular
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Figure 1. 3 sphere MSM for cylinder-sphere configuration

solution is provided for a cylindrical prototype spacecraft body. A simplified electrostatic torque
model is considered suitable for the feedback control development. The charged relative attitude
orientations for a slender cylinder are discussed along with their stability. Finally, nonlinear con-
trol strategies are considered to detumble the second object while maintaining a fixed separation
distance. Numerical simulations illustrate the closed loop performance.

MULTI-SPHERE METHOD

In order to develop the stability arguments for the remote attitude control of spacecraft by charge
transfer, the relative motion dynamics must be modeled. There is no simple analytic solution for
the electrostatic interaction between charged conductors with generic geometries. Several options
exist for the numerical modeling of spacecraft charging and interactions, including finite element
methods, finite difference methods, boundary element methods, and Monte Carlo methods.26, 27

Each of these approaches, however, are too computationally expensive to allow for faster than real
time simulations of the electrostatically induced relative motion dynamics.

Simpler methods such as the point charge approximation and finite sphere model that have been
used for Coulomb charge control analysis in the past19, 25, 28 are limited to line-of-site forces and not
capable of predicting electrostatic torques. The recently developed Multi Sphere Model (MSM)20

uses a set of conductive spheres throughout the geometry of a spacecraft to capture the 3D elec-
trostatic effects. Specifically, this reference provides detailed analysis of the interaction between a
charged cylinder and a sphere, and this system will be used to study the de-spin control concepts
that are the basis of this manuscript. While it is possible to capture the induced charge effects that
occur with very close proximity scenarios with a larger set of spheres distributed on the surface
of the objects,21 the 3D effects that result in torques exerted on the cylinder at larger separations
distances are sufficiently captured when three spheres are used in the cylinder model.

Figure 1 shows the cylinder-sphere system using a three sphere MSM to represent the cylinder.
The defining system parameters are the separation angle d, the cylinder orientation angle ✓, and the
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controlled voltages �1 and �2. The spheres in the cylinder are separated by l while the remaining
relative distances are:

ra =

p
l

2
+ d

2
+ 2ld cos ✓ (1)

rb =d (2)

rc =

p
l

2
+ d

2 � 2ld cos ✓ (3)

The electrostatic forces are determined by the charges residing on each sphere. These result from
the prescribed electric potentials, according to the self and mutual capacitance relationships in Eq. 4,
where kc = 8.99 ⇥ 10

9 Nm2/C2 is Coulomb’s constant.19, 22, 23, 29

�i = kc
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+
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(4)

These relations can be combined for each sphere to obtain the matrix equation
2

664

�1

�2

�2

�2

3

775 = kc

2

664

1/R1 1/ra 1/rb 1/rc

1/ra 1/R2,a 1/l 1/2l

1/rb 1/l 1/R2,b 1/l

1/rc 1/2l 1/l 1/R2,c

3

775

| {z }
[CM ]�1

2

664

q1

qa

qb

qc

3

775 (5)

By inverting [CM ]

�1, the charge on each sphere is determined at any instance of time. The charge
redistribution and interaction with the space environment is assumed to be orders of magnitude
faster than the spacecraft motion. As an example, with charge control the response time is on the
order of milliseconds in GEO.30, 31 The total electrostatic force and torque through the center of the
cylinder are then given by the summations

F2 =kcq1

cX

i=a

qi

ri
3
ri (6)

L2 =kcq1

cX

i=a

qi

ri
3
r2,i ⇥ ri (7)

In Eq. 7, only the outer two spheres contribute to the total torque on the spacecraft, while the MSM
center sphere cannot produce a torque, only a force. By considering the effective moment arms at
each sphere, this summation can be simplified to torque magnitude expression:

L2 = kcq1(d, ✓)ld sin ✓

✓
qc(d, ✓)

r

3
c (d, ✓)

� qa(d, ✓)

r

3
a(d, ✓)

◆
(8)

This expression is still rather complex with the implicitly dependency of the charges on the relative
position states d and ✓. The following section thus seeks simplified analytical expression about
nominal relative position states.

A free body diagram of the system is shown in Figure 2. Note that, because the individual forces
on sphere 1 are equal and opposite to those on the spheres in the cylinder,

F1 = �F2 (9)
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Body 1 does not experience a torque, but together with the force and torque on the cylinder, the
translational and rotational momentum due to electrostatic interactions is conserved. Assuming
the cylinder experiences no active translational control, a thrusting force on body 1 is necessary to
maintain a constant relative position within the system:

Fthrust = �F1(1 +

m1

m2
) (10)

This thrusting force provides the energy necessary to adjust the attitude of the cylinder. Though the
system continually moves in space, the craft are fixed relative to each other and can be assumed
stationary for the control development.

Fa

Fc

Fb

F2

F1

L2

Fthrust

m1

m2

Figure 2. Free body diagram for MSM cylinder-sphere system

For this manuscript’s simulations, system parameters are chosen as in Table 1. As in Refer-
ence 20, the cylinder is 3m long by 1m in diameter, while R1 = 0.5m. A nonlinear fit is performed
to determine the optimal sphere parameters that match a set of accepted numerically determined
force and torque values at various orientations and separation distances.

Table 1. Parameters for cylinder de-spin system

Parameter Value Units Description

d 15 m Object center-to-center separation
l 1.1569 m MSM Parameters
Ra, Rc 0.5909 m MSM Parameters
Rb 0.6512 m MSM Parameters

ANALYTIC TORQUE REPRESENTATION

Unfortunately, Eq. (7) does not produce a simple analytic expression for the cylinder torque in
terms of the voltages and cylinder attitude, because of the 4⇥4 matrix inversion necessary to find
the charge on each sphere. By a combination of analytic software manipulation of the equations as
in Appendix A, and numerical fitting schemes, several simplifications can be made.

Assume first that both bodies have the same potential magnitude �2 = |�1|. Body 1 has a
potential � = �1 which can have either sign. The tumbling body 2 is assumed to have �2 � 0
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without loss of generality. If this condition is satisfied, the expression for the torque L = L2 can be
separated into dependencies on the control voltage � and cylinder rotation angle ✓:

L = �f(�)g(✓) (11)

If this separation of potential � and orientation ✓ can not be done, extracting the required control
potential from the charged attitude feedback is significantly complicated. For the cylinder shape,
this separation is justified by restricting the potentials to �2 = |�1| and assuming the cylinder is
symmetric.

Figure 3 shows the torque solution L as developed in Eq. (7) in terms of the independent control
voltages � and cylinder rotation angle ✓. The separation distance is shown for d = 5m and d = 15m.
The voltage dependency function is set to:

f(�) = �|�| (12)

The orientation angle dependency shows some complicated trends for close proximity craft (Fig-
ure 3(a)), due to a complicated angle dependency and voltage dependency due to induced charge
effects. For the desired separation distance d = 15m, however, it can be fit very well to the function

g(✓) = sin 2✓ (13)

as shown in Figure 3(b). In this setup, the slender symmetry cylinder axis is assumed to be aligned
with the inter-spacecraft center of mass axis when ✓ = 0o. The optimized coefficient � is found to
be � = 2.234 ⇥ 10

�14, a positive value for this zero ✓ angle reference assumption, and resulting in
a very accurate fit with R

2
= 0.9998. Note that if the cylinder were oblate, rather than prolate, the

sign of � could switch.
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Figure 3. Torques on cylinder by MSM at two different separation distances with an
analytic fit for d = 15 m

CONSTANT POTENTIAL EQUILIBRIUM ATTITUDES

For the following developments, the function f in Eq. (11) must be invertible and posses the prop-
erty f(�)� � 0. These requirements are satisfied by the relation in Eq. 12. The one-dimensional
rotational equation of motion is given by

I

¨

✓ � �f(�1)g(✓) = 0 (14)
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Figure 4. Departure Angle Illustration with Respect to In-Line and Cross-Track Equilibriums.

The relative position vectors are held fixed in this study. An inertial control solution is assumed to
be present on body 1 which maintains a constant separation distance while controlling the tumble
rate of body 2. This is a good assumption for the electrostatic tug case where inertial thrusters on
the tug craft are used to maintain a fixed relative position.

To evaluate the equilibrium orientations, and study the associate local stability, let ✓e,i be the set
of orientation angles such that g(✓e,i) = 0. Note that the zero reference orientation is chosen such
that ✓e,1 = 0

o. The constant � can be either positive or negative, depending on the three-dimensional
shape of the tumbling object. Let a small departure angle �✓ be defined as

�✓ = ✓ � ✓e,i (15)

then the linearized rotational equation of motion about an equilibrium orientation ✓e,i is given by

I�

¨

✓ + k�✓ = 0 (16)

where the local stiffness k is defined as:

k = ��f(�1)
@g

@✓

���
✓=✓e,i

(17)

Assume that f(�) and g(✓) are given by the fit outlined in Eqs. (12) and (13) for the 3m by 1m
cylinder body. For this formulation, ✓ = 0

o corresponds to the long-axis of the cylinder being lined
up with the line-of-sight axis. This scenario leads to � > 0 with the chosen cylinder dimensions.
The sensitivity of g with respect to ✓ is

@g

@✓

= 2 cos(2✓) (18)

To study the local stability of departure motions about equilibria orientations, the sign of k is
investigated for different scenarios illustrated in Figure 4. The in-line equilibrium scenario shown
in Figure 4(a) has the cylinder long-axis nominally lined up with the line-of-sight axis.
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Case 1: Consider a repulsive scenario with �1 > 0. The MSM results show that in this setup the
constant � > 0. The g sensitivity in this case is

@g

@✓

���
✓=0o

= 2 cos(0

o
) = 2 (19)

Assuming a repulsive force setup with f(�1) > 0, the local stiffness k for this case is

k = �2�f(�1) < 0 (20)

indicating an unstable equilibrium. Studying Figure 4(a), this instability can be understood because
the near-end of the cylinder experiences a stronger repulsion force than the far end, and thus the
resulting electrostatic torque will cause a destabilizing effect.

Case 2: Keeping the nominal orientation shown in Figure 4(a), next assumes that the sphere
potential is negative with �1 < 0, and an attractive electrostatic force is present. Because f(�1) < 0

now, the local stiffness is

k = �2�f(�1) > 0 (21)

indicating a locally stable equilibrium. Due to symmetry of the tall cylinder, considering ✓e,i = 180

o

yields the same result.

Case 3: Next, consider the equilibria shown in Figure 4(b) where the cylinder tall axis is orthog-
onal to the line-of-sight axis. Here the g sensitivity is

@g

@✓

���
✓=±90o

= 2 cos(±180

o
) = �2 (22)

Assuming a repulsive force configuration with f(�1) > 0, the local stiffness is

k = 2�f(�1) > 0 (23)

Thus, if bodies 1 and 2 are electrostatically pushing on each other, then ✓e,i = ±90

o are locally
stable orientations.

Case 4: Finally, assuming the Cross-Track scenario in Figure 4(b) and a pulling configuration
with f(�1) < 0, the local stiffness is

k = 2�f(�1) < 0 (24)

indicating that such an orientation is locally unstable.

RATE CONTROL WITH ZERO NOMINAL POTENTIAL

Feedback Control Development

The following feedback control developments all have the common goal to arrest the tumbling of
body 2. In all cases the relative position between the two bodies is held fixed. This is assumed to be
achieved with an inertial thruster control strategy on body 1, as is described in Reference 25. First,
the scenario is investigated where the nominal spacecraft potential is zero. Thus, when the tumbling
motion has been arrested, no electrostatic pulling or tugging should be present. The inertial thrust
to maintain a fixed separation distance will also go to zero as the tumbling ceases.
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The potentials �1 and �2 are controlled in a coordinated manner assuming the potential magni-
tudes are always equal. This allows for the electrostatic torque model of the form given in Eq. (11).
Further, for the electrostatic tug application this equal potential condition will result in the largest
electrostatic tractor force. The control development assumes that the tumbling angle ✓ and rate ˙

✓

are measured, and that the spacecraft 1 potential �1 is the control variable.

Let ↵ > 0 be a constant rate feedback gain. The function h is chosen such that

h(x)x > 0 if x 6= 0 (25)

forms a positive definite expression. Then, the following tumble rate feedback control f(�1) is
proposed:

f(�1) = �sgn(g(✓))

�

h(↵

˙

✓) (26)

Because the function f is invertible, Eq. (26) can be inverted to yield the required potential �1 of
body 1. The potential �2 of body 2 is then controlled to be �2 = |�1|. Note that if the approximate
electrostatic torque did not have the separation of potential and relative orientation, as formulated
in Eq. (11), then the potential feedback control develop becomes significantly more complex. In
particular, due to the coupling between orientation and potential, it may not be possible to extract
the control potential �1 analytically, in which case numerical solvers are required to determine the
control. As is, the potential control development only requires f and g to satisfy some simple
conditions to guarantee stability. In particular, the g(✓) function approximation could be further
refined, without having to develop a new rate feedback control strategy.

The function h is introduced to yield a general feedback control whose performance can be mod-
ified. For example, the simple linear function h(↵

˙

✓) = ↵

˙

✓ can be used. However, the resulting
control potentials will grow large if large initial tumble rates ˙

✓ are considered. If the available
potentials are bounded to be less than �max, then the following h function will smoothly limit or
saturate the control without impacting the following stability discussion:

h(↵

˙

✓) = f(�max)�
arctan(↵

˙

✓)

⇡/2

(27)

As the tumble rate ˙

✓ ! 1, then arctan(↵

˙

✓) ! ⇡/2, and

lim

✓̇!1
h(↵

˙

✓) = f(�max)� (28)

Thus, the control effort for large rates ˙

✓ is smoothly limited with this h function in Eq. (27) by

lim

✓̇!1
f(�1) =

(
f(�max) if g(✓) 6= 0

0 if g(✓) = 0

(29)

Stability Analysis

To investigate the stability of this potential feedback control law in Eq. (26), the rotational kinetic
energy is used as a globally positive definite Lyapunov candidate function V .

V (

˙

✓) =

I

2

˙

✓

2 (30)
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The presented control only aims to arrest the spin rate, and does not seek to achieve a particular
relative orientation angle ✓. Taking the time derivative of V , and substituting the equations of
motion in Eq. (14) leads to

˙

V = L

˙

✓ = �f(�1)g(✓)

˙

✓ (31)

Substituting in the control expression in Eq. (26) and simplifying leads to

˙

V = �|g(✓)|h(↵

˙

✓)

˙

✓  0 (32)

This ˙

V expression is globally negative semi-definite as h(↵

˙

✓)

˙

✓ is a positive definite expression.
Note that ˙

V can become zero at the equilibrium orientations ✓ei where g(✓e,i) = 0. Thus, Eq. (32)
guarantees globally stable tumbling rate closed loop dynamics.

To study convergence, LaSalle’s invariance principle is employed.32 The Lyapunov rate ˙

V is
zero either the rate ˙

✓ is zero and the control goal is achieved, or if g(✓) = 0. The later condition
forces ˙

V to zero regardless if ˙

✓ is zero. Assuming there are orientations such that g(✓) 6= 0 (i.e.
the second body is not a sphere) it is not possible for the condition g(✓) = 0 to remain true unless
˙

✓ = 0 as well. Thus, the largest invariant set where ˙

V vanishes is (✓,

˙

✓) = { ˙

✓ = 0}. As a result,
this potential feedback control is achieves global convergence in driving the rates to zero. The final
orientation, however, is arbitrary with this control. This is in contrast to the control presented next
where nominal tugging or pushing is present.

Control with Only Positive or Negative Potentials

The potential control in Eq. (26) assumes that both positive and negative potentials can be created
on body 1. This could be implemented by having both vehicles use their own charge emission
devices to control their potentials. However, if the one of the bodies is charged using touchless
charge transfer, i.e. charge beaming, then it is simpler to implement only attractive electrostatic
forces. For example, if vehicle 1 is charged negatively using an ion emitter, and the ion emission
is aimed at the second vehicle, the latter will charge positively and create an attractive electrostatic
force. Such indirect charging is of great interest to electrostatic geostationary debris removal.24, 25, 33

The following simple modification of the potential control in Eq. (26) provides the ability to only
use attractive or repulsive electrostatic forces to control the spin rate.

To allow for mono-polarity charges on the control vehicle 1, the control gains ↵ are set to zero
if the potential control in Eq. (26) requires an undesired sign. For example, if only non-positive
potentials �1 are desired, the control is chosen through the logic:

�1 =

(
f

�1 if f  0

0 if f > 0

(33)

This simple modification doesn’t change the global stability argument as ˙

V remains negative semi-
definite. Similarly, the largest invariant set where ˙

V vanishes is the set where ˙

✓ is zero, because ˙

✓

remains constant and non-zero as body 2 rotates through the region where the control is inactive,
and thus it cannot remain there. Thus, convergence is unchanged as well. While this modification
doesn’t impact the earlier stability arguments, naturally, it will impact the performance and cause
the control to take longer to despin the second body.
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RATE CONTROL WITH NOMINAL ELECTROSTATIC TUGGING OR PUSHING

Electrostatic forces have been proposed to reorbit large geosynchronous debris objects to dis-
posal orbits.24, 25, 33 Because the large, bus-sized GEO debris can be tumbling at 10s of degrees per
second, not having to mechanically touch the debris is a significant advantage. While the pulling
configuration with a nominal attractive electrostatic force is the preferred configuration,34 pushing
configurations are also feasible. The following earlier rate-control is modified such that the nominal
potential � is non-zero, allowing for continuous pulling (�1�2 < 0) or pushing (�1�2 > 0).

Feedback Control Development

To investigate detumbling a rigid body while also electrostatically pulling or pushing this object,
the following Lyapunov candidate function is considered:

V (✓,

˙

✓) =

I

2

˙

✓

2
+ �

Z ✓

0
g(x)dx (34)

where � > 0 is a feedforward constant of the resulting control. The integral term of this V expres-
sion is locally positive definite if a reference orientation ✓ = 0 is chosen such that

@g(✓)

@✓

���
✓=0

> 0 (35)

This condition has an impact on the final convergence of the rate control. Note that this Lyapunov
function depends both on the rate and orientation variables, as the pushing/pulling condition will
have an impact on the final orientation of the second body.

Taking the time derivative of Eq. (34), and substituting Eqs. (11) and (14), yields the following
Lyapunov rate expression:

˙

V (✓,

˙

✓) =

�
�f(�1)g(✓) + �g(✓)

�
˙

✓ (36)

Let the new potential control expression be:

f(�1) = ��

�|{z}
f0

�sgn(g(✓))

�

h(↵

˙

✓) (37)

where f0 represents the feedforward component of the potential control. Given a nominal potential
�nom, the positive feedforward gain � is chosen to be

� = �f(�nom)� (38)

such that the appropriate f0 results. Note that � > 0 requires that �nom and � have the opposite
sign.

Substituting Eq. (37) into Eq. (36) yields the reduced Lyapunov rate expression:

˙

V =

✓
��

�

�

g(✓) � �

sgn(g(✓))

�

h(↵

˙

✓)g(✓) + �g(✓)

◆
˙

✓ (39)

= �|g(✓)|h(↵

˙

✓)

˙

✓  0 (40)
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Figure 5. Illustration of Pulling and Pushing Configurations.

Note that the integral term in the Lyapunov expression causes a cancellation with the feedforward
potential term, resulting in a negative semi-definite ˙

V expression. The feedforward/feedback control
in Eq. (37) is thus at least locally stable. This is interesting considering V depends on both ✓ and ˙

✓,
as it implies that the orientation is also stable about the reference orientation.

From the earlier linear stability discussion with constant potentials, the two stable configurations
while either pulling (Case 2) or pushing (Case 3) are illustrated in Figure 5. For the pulling config-
uration � > 0, which leads to a feedforward term of

f0 = ��

�

< 0 (41)

indicating that the nominal spacecraft potential must be negative, creating an attractive force, for
this orientation to be stable. In contrast, if ✓ is measured from the 90o cross-axis as indicated in
Figure 5(b), then � < 0 and the feedforward control component must be

f0 = ��

�

> 0 (42)

This indicates the nominal potential �1 must be positive, creating a repulsive force.

Next, the convergence of this feedback/feedforward control is investigated. As before, ˙

V vanished
if either ˙

✓ = or g(✓) = 0. The earlier control resulted in ˙

✓ ! 0 in all cases, but the final orientation
was arbitrary depending on the initial conditions. With the feedforward component of the control
the attitude will converge to discrete orientations. The closed loop dynamics using the control in
Eq. (37) is

I

¨

✓ + �g(✓) + |g(✓)|h(↵

˙

✓) = 0 (43)

Again, it is not possible for g(✓) = 0 to remain true if ˙

✓ 6= 0. However, can g(✓) remain non-zero
if ˙

✓ is zero? Setting the rate to zero in Eq. (43) yields

I

¨

✓ = ��g(✓) (44)
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This indicates that ¨

✓ cannot remain zero unless both ˙

✓ = 0 and g(✓) = 0. Thus, the largest
invariant set where ˙

V vanishes is ✓ = ✓e,i and ˙

✓ = 0. In contrast to the rate-only feedback, this
feedforward/feedback control has the rate converge to zero, and the orientation converge to a torque
equilibrium orientation. For the torque shape function g(✓) = sin(2✓) two of these equilibria were
unstable, and two were stable. If small perturbations are considered, the second body would not be
able to remain at an unstable equilibrium, but will eventually converge to a stable equilibrium.
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Figure 6. Illustration of Lyapunov Function and Level Sets for Unit inertia I and Gain �

To study this stability behavior, consider the Lyapunov surface illustration in Figure 6 where the
function g(✓) = sin(2✓) is used with unit inertia and unit feedforward gain. The largest Lyapunov
level about the origin is highlighted for convenience. For initial conditions outside this level set,
it is possible for the second body to stabilize about the stable equilibrium ✓e = 180

o. This illus-
trates that the control in Eq. (37) is indeed only locally stable. However, if the control objective is
changed to arrest the rate, and align the body with either ✓ = 0

o or 180

o, then the control is globally
asymptotically stabilizing. However, no control is present to chose which of these two orientations
the body will converge to.

The contour plot in Figure 7(a) illustrates the closed loop trajectories if the control in Eq. (37)
is active. Depending on the initial conditions, the trajectories can either converge to the stable
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Figure 7. State Space Flow Illustration In Relation to Lyapunov Level Sets.
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equilibria at 0 or 180 degrees, or approach the ±90 degree unstable equilibria. If it is important that
the tumbling body settle with a particular end (either ✓ = 0

o or 180o), then the following strategy
can be employed. Figure 7(b) illustrates the state trajectories if no control is present, and the second
body continues to tumble at a constant rate. The horizontal flow lines can be exploited to move
the states of the tumbling body into a preferred zone where convergence to a particular equilibrium
orientation is guaranteed. This process is highlighted in red in Figure 7(a). The rate control is first
employed until the rates are small enough to guarantee convergence to an equilibrium. If this is not
the desired equilibrium, turning off the potential control will allow the body to tumble onward. As
the state trajectory enters the local area of convergence of the desire equilibrium orientation, the
feedback control is re-engaged to arrest the final rates, and drive ✓ ! ✓e.

NUMERICAL SIMULATION

A numerical simulation is performed to verify the control laws presented above. Specifically, rate
control with a nominal electrostatic tug is implemented, in which case a rotating cylinder in deep
space is de-spun while it is tugged along by the neighboring spherical craft. The voltage on both
objects is affected by voltage control devices on the spherical craft. The simulation is run with full
six degrees of freedom, and a PID thruster control is implemented on the spherical craft to ensure
the desired separation is maintained. Table 1 shows the MSM cylinder parameters and nominal
separation distance, whileTable 2 provides the remaining necessary system and control parameters.
The pulling sphere (i.e. tug) is of rather small size of R1 = 0.5 meters. Figure 8 displays the
simulation results. Even this small tug size can already excerpt a significant electrostatic torque.

The potential control expression f(�1) in Eq. (37) is used, while Eq. (27) defines the function
h. Because Eq. (37) contains a nominal and de-spin term, the true voltage limits during the de-spin
procedure are:

�lower = �
q

�nom
2
+ �max

2 (45)

�upper = +

q
��nom

2
+ �max

2 (46)

Once the cylinder stops making full rotations, the nominal control voltage is indeed �nom and this
behavior is clearly visible in Figure 8(c).

From Figure 8(a) and 8(b) it is clear that the cylinder stops spinning after roughly 275 hours
or just over 11 days, during which time 2798 full rotations have been completed. Although 2

deg/sec is not an especially fast initial spin rate, a de-spin by electrostatic actuation in this time
is impressive considering the momentum of the cylinder and separation distance between the craft.
Figure 8(d) shows that the system has been displaced by more than 200 km during, which represents
a considerable electrostatic tug.

CONCLUSION

The relative attitude control using spacecraft potential control is investigated for a one-dimensional
rotation scenario. If the vehicles are within 3-4 craft radii, the electrostatic torques can have a sig-
nificant impact on the rotational motion. For example, it is envisioned that electrostatic torques
could be used to detumble a large geostationary debris object. Using the multi-sphere method, a
simplified electrostatic torque model is employed to numerical study the charged relative attitude
motion. For a cylinder-sphere scenario, a reduced order torque expression is developed suitable for
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Table 2. Parameters for cylinder tug/de-spin simulation

Parameter Value Units Description

⇢ 100 kg/m2 Object densities
m1 52.4 kg Sphere mass
m2 235.6 kg Cylinder mass
I1 191.4 kg·m2 Cylinder transverse moment of inertia
!0 2 deg/sec Initial cylinder rotation rate
↵ 5⇥10

4 – Gain in h function
�nom -15 kV Nominal voltage in f function
�max 20 kV Max voltage in h function
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Figure 8. Cylinder tug and de-spin simulation using Coulomb charge control
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a feedback control development. The potential control is analytically proven to bring the tumbling
objects attitude rate to zero, but the final orientation is arbitrary and uncontrolled. If the nominal
spacecraft potential is nonzero, then a potential feedback control is shown to arrest the tumbling,
and will cause the object to settle at a stable torque equilibrium orientation. Future work will inves-
tigate the torques between more complex shapes, as well as expand the control to impact general
three-dimensional rotational motion.
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