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Locally Power-Optimal Spacecraft Attitude Control for
Redundant Reaction Wheel Cluster

Hanspeter Schaub∗

The attitude control problem of a rigid spacecraft containing a redundant set
of reaction wheels is investigated. The classical solution path determines a control
solution which requires the smallest set of motor torques. With small micro spacecraft
the available power or the energy consumption are critical factors. A locally optimal
attitude control strategy is developed which minimizes the instantaneous electrical
power requirements. Degenerate conditions with several fly wheel speeds being zero
are also investigated. The new control is able to reduce the amount of power and
energy required by about 10%, while only marginally increasing the average required
torque.

I. Introduction

TO change and control the orientation or attitude of a spacecraft the actuation methods typically fall into the
categories of fuel consuming thrusters,1, 2, 3 internal momentum exchange devices requiring electrical power,4, 5 or

external environmental torques due to the gravity gradient, atmospheric, or magnetic torques.6, 7, 8 The attitude control
of spacecraft continues to be a rich area of research with many new issues being investigated. While some papers focus
on developing robust adaptive attitude control strategies using thrusters,9 this paper focuses on the spacecraft attitude
control using momentum exchange devices. These include the momentum or Reaction Wheels (RWs), the Control-
Momentum Gyroscopes (CMGs), or the more recent Variable-Speed Control Moment Gyroscopes (VSCMGs). The
RWs exert a torque onto the craft by spinning up or down the fly wheel.10 These mechanically simple devices are often
limited in the amount of torque they can produce, and have limits to which the fly wheel can be spun up to. CMG
devices are essentially gimbaled RWs whose spin rate is held constant through the use of a local spin motor. The
attitude control is produce by rotating or gimbaling the RW spin axis. The larger the spin rate is the larger the resulting
gyroscopic torque will be. While mechanically more complex than RW clusters, CMG clusters can typically produce
larger control torques. They are often used as the attitude control device for larger spacecraft such as the space-station,
or when very rapid reorientations are required. The control laws of single-axis CMGs are also more complex and
have geometric singularities which must be accounted for.11, 12, 13 More recently the concept of a VSCMG has been
proposed.14, 15 Here the momentum device can produce a control torque by both changing the RW spin speed, as well
as gimbaling the RW spin axis. A properly configured VSCMG cluster will never encounter a geometric singularity
where the required control torque cannot be produced. However, this is achieved at the increased power cost of having
to use the RW to muscle through the singularity. Reference 16 discusses a method where the VSCMG null motion
is exploited to keep the VSCMG cluster away from a traditional CMG singularity, and thus the VSCMG devices can
operate in the more efficient CMG mode. The RW mode is only minimally used to nudge the gimbal angles into a
desired geometry. A cluster of 4 VSCMG devices thus forms a highly redundant set of attitude control devices whose
control could also be set to track alternate goals. For example, Reference 17 discusses how the VSCMG control could
be used to track a required electrical power profile by slowly de-spinning the VSCMGs and harvesting the resulting
electrical energy while the craft cannot operate the solar panels. This concept leads to a joint attitude and energy
storage device.

The attitude control of small satellites contains its own set of challenges. The small craft often are very limited in
the amount of on-board propellant, and thus cannot afford to use this fuel to perform the attitude control.18, 19 Instead
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the use of momentum wheels is considered as a more energy efficient attitude control method.20, 21 However, note that
the RW and CMG devices of a small satellite typically will operate at a much higher spin rate than those of a more
typically sized spacecraft. Further, the amount of electrical power that a small satellite can produce is very limited.
Due to the small size, there is little surface to vent the excess heat. The focus of this paper is the attitude control of a
spacecraft which is limited in its available power and energy. In particular, it is assumed that the craft has a redundant
set (more than 3) of RWs to control its attitude. Such redundant RW setups are common in that they provide additional
robustness to individual RW failures. When determining the RW motor control torques, there are now an infinity of
solutions available. The standard solution is to chose a simple minimum norm inverse and obtain the smallest RW
motor torque vector. This solution is very practical if the RW torque capability are a strong performance limiting
factor. However, considering the application of small spacecraft, this paper investigates alternate RW motor torque
solutions where the local electrical power consumption is minimized instead of the motor torques. Not that the power
consumption is not being optimized across a given maneuver. Instead, and an instantaneous power-optimal feedback
control solution is investigated.

The design and control of optimal RW clusters has been discussed in previous publications, but not yielding a lo-
cally power-optimal feedback control law. For example, Reference 22 discusses the optimal RW alignment to produce
optimal RW torque or power solutions. Vadali in Reference 23 discusses optimal control solutions which minimize
various performance aspects across a maneuver. Being an optimal control solution, such control torque calculations
required knowledge of both the initial and final attitude states. In contrast, the feedback control discussed in this paper
only requires the instantaneous attitude states. It will not lead to maneuver optimal solutions, but does provide simpler
to implement feedback control strategies. The power optimal RW spacecraft attitude control is discussed by Skaar
and Kraige in References 24 and 25. However, here too the end solutions are optimal control strategies which require
initial state information to be solved apriori to the maneuver being performed.

The paper is setup as follows. First the equations of motion of a rigid spacecraft containing N reaction wheels
is developed and the notation used is explained. Next, the standard minimum motor torque attitude feedback control
solution is developed and discussed. Finally the analytical closed-form solution of the locally power-optimal redun-
dant RW control is developed. Degenerate conditions where some of the RW have zero spin rates are investigated.
Numerical simulations illustrate and compare the new locally power-optimal feedback control to the traditional torque-
optimal solution. Of interest is how much the instantaneous power and total energy expenditure is reduced by using
this alternate RW motor torque strategy.
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Figure 1: Illustration of a Reaction Wheel Coordinate Frame

Problem Statement
The spacecraft is assumed to be composed of a rigid body B containing N variable-speed reaction wheels. The

spacecraft body fixed coordinate frame is given by B : {b̂1, b̂2, b̂3}. The orientation of each Reaction Wheel (RW) is
defined through the body fixed wheel frames Gi : {ĝsi

, ĝti
, ĝgi
} illustrated in Figure 1. If this attitude control device

were a single-gimbal control moment gyroscope (CMG) device, then the spinning disk would be allowed to rotate
about the ĝgi axis. For the RW case the disk is spinning with a speed Ωi about the spin axis ĝsi .
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Reference 10 develops the attitude equations of motion for such a system. The differential equations of motion are
given by

[I]ω̇ = −[ω̃][I]ω − [ω̃][Gs]hs − [Gs]us +L (1)

where L is an external torque vector, and [ω̃] is defined as matrix equivalent of a vector cross product using

[ω̃] =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2)

To express the body angular velocity vector in spacecraft body frame B or wheel frame G〉 vector components, the
following notation is used:

ω = ωsi
ĝsi

+ ωti
ĝti

+ ωgi
ĝgi

= ω1b̂1 + ω2b̂2 + ω3b̂3 (3)

The 3× 3 matrix [I] is the constant inertia system matrix defined as

[I] = [Is] +
N∑

i=1

(
Jti ĝti ĝ

T
ti

+ Jti ĝgi ĝ
T
gi

)
(4)

where [Is] is the inertia matrix of the rigid spacecraft itself. Due to symmetry the wheel principal inertias are given by
(Jsi

, Jti
, Jti

). The wheel frames Gi are assumed be principal coordinate frames for the RW disks such that the wheel
inertias are defined through

[IWi ] = Jsi ĝsĝ
T
s + Jti ĝtĝ

T
t + Jti

ĝgĝ
T
g (5)

Please note that this [I] inertia matrix definition includes the inertia of the spacecraft, the ĝti
and ĝgi

components of
the wheel inertia, as well as the inertia terms due to the RW center of masses being offset from the spacecraft body
center of mass. The RW inertias Jsi about the spin axis are factored out of this inertia matrix expression.

The N -dimensional torque vector us is the RW torque control vector and is defined as

us =


...
usi

...

 (6)

where usi
are the ith RW motor torques defined through

usi = Jsi

(
Ω̇i + ĝT

si
ω̇
)

(7)

The N -dimensional momentum vector hs is defined as

hs =


...

Jsi (ωsi + Ωi)
...

 (8)

Finally, the 3×N projection matrix [Gs] is given by

[Gs] = [ĝs1 · · · ĝsN
] (9)

Note that to numerically evaluate Eq. (1) it is assumed that all vector and matrix components have been taken with
respect to the same coordinate frame before performing matrix algebra.

The rotational kinetic energy T of a rigid spacecraft with N RWs is given by10

T =
1
2
ωT [Is]ω +

1
2

N∑
i=1

Jsi (Ωi + ωsi)
2 + Jtiω

2
ti

+ Jtiω
2
gi

(10)
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The kinetic energy rate, also known as the work rate or power equation, is found after differentiating Eq. (10), or
simply by applying the Work-Energy-Rate principle,26 to be

Ṫ = ωTL+
N∑

i=1

Ωiusi
(11)

Therefore, in the absence of an external torque vector L, the power Pi required by each RW motor is given by

Pi = Ωiusi
(12)

II. Minimum Torque Redundant Reaction Wheel Control Law
To control the spacecraft attitude, a feedback control lawus is required to stabilize the craft to a desired orientation.

The following development will not depend on the specific type of attitude feedback control law that is chosen. The
difference arise in how this desired control torque is mapped into the commanded RW motor torques usi .

To setup the redundant RW control problem, let σ be a set of Modified Rodrigues Parameters (MRPs)27, 28, 29, 30, 10

which define the orientation of the body frame B with respect to a reference frameR. The vectorω is the body angular
velocity of the spacecraft body, while ωr is the desired reference angular velocity vector. The angular velocity error
vector δω be defined as

δω = ω − ωr (13)

To develop a stabilizing feedback control law for this attitude trajectory tracking problem, the following positive
definite Lyapunov function V can be used:10, 29, 1

V (σ, δω) =
1
2
δωT [I]δω + 2K ln

(
1 + σTσ

)
(14)

After setting the time derivative of V equal to the negative semi-definite function

V̇ = −δω[P ]δω (15)

and substituting the equations of motion in Eq. (1), the required RW motor torque vector is defined through the
constraint:

[Gs]us = Kσ + [P ]δω − [ω̃] ([I]ω + [Gs]hs − ωr)− [I] (ω̇r − ω × ωr) +L = Lr (16)

The left hand side of Eq. (16) contains a projection matrix [Gs] which maps the actual RW motor torques in the actual
torque exerted onto the vehicle. The right hand side of Eq. (16) is the reference control torque Lr that is required by
the chosen feedback control strategy.

[Gs]us = Lr (17)

Note that while there are an infinity of us choices which will produce the required torque, all control solutions will
yield the same attitude closed loop dynamics with the same σ and δω time histories. However, the RW spin rates Ωi

will be different for different choices the RW torques.
If the matrix [Gs] is full rank then the RW cluster can produce the required control torque Lr exactly. If this

projection matrix is not full rank, then Lr can only be partially produced. This latter situation is a common singular
configuration with single-gimbal CMG devices where at particular gimbal angles no set of gimbal angle rates will
produce the required control torque. With RW clusters the geometry of the spin axis is general chosen such that the
ĝsi

vectors span the three-dimensional space, and thus [Gs] is full rank. Further, for the RW cluster control problem
[Gs] is a constant matrix. If more than 3 RWs are employed, then the [Gs] matrix will contain a non-empty nullspace,
resulting in an infinity of usi

combination which produce the required control torque Lr.
Please note that all RW cluster control formulations can be written in the compact form shown in Eq. (17). If a

different control strategy compared to the solution based on the Lyapunov function in Eq. (14) is chosen, then only the
required torque Lr definition will change. For redundant RW setups, the typical RW motor torque strategy employed

4 OF 11
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS



seeks for the minimum norm solution u∗s which requires the smallest absolute motor torques. This solution is given
by

u∗s = [Gs]T
(
[Gs][Gs]T

)−1
Lr (18)

This solution is convenient when the RW motor torque limits are of concern. This is often the case when the RW
cluster is controlling the attitude of a large and massive spacecraft. While RW devices are not encumber with singular
orientations such as are found with CMG clusters, they are limited by maximum spin speed Ωi and the torque they can
produce.

Of interest is exploring an alternate method of mapping the required control torque Lr into the RW motor torque
vector us. Instead of minimizing the instantaneous torque requirement, the RW motor power requirements will be
investigated instead.

III. Power-Optimal Control Formulation
Small satellite concepts are typically very limited in the amount of electrical power that they can produce, or the

amount of energy that they can store. For example, see the SNAP-I nanosatellite discussed in Reference 31. Such
craft concepts are limited in how much electrical power they can provide while radiating out excess thermal energy.
Reference 20 discusses experimental results of a cluster of miniature CMG devices to control the small spacecraft
orientation. A key concern here is the peak power requirements, and the total energy consumed for a maneuver.

The typical RW cluster control law solution in Eq. (18) which minimizes the instantaneous torque may not be the
ideal solution for a small satellite with strong power and energy consumption limitations. This section investigates
an alternate method of mapping the required control torque Lr to the RW control torques us in Eq. (17). Note that
either control strategy uses the same Lyapunov function in Eq. (14) and have the same required torque Lr expression,
they only differ in resulting motor torque computation. Let R be the rank of the 3 ×N projection matrix [Gs], while
M = N − R is the degree of redundancy in the RW cluster. The minimum RW motor torque solution u∗ is only one
of an infinity of solutions. Let the general motor torque vector be expressed as

us = u∗ + [N ]t (19)

where [N ] is the N ×M the null-space matrix of [Gs] satisfying

[Gs][N ] = [03×M ] (20)

The vector t contains the M null-space scaling parameters through

t =
(
t1 · · · tM

)T
(21)

For a given RW cluster the goal is to find the null-space scaling parameters ti such that the instantaneous power
consumption is minimized. The total instantaneous mechanical power P required is given by

P =
N∑

i=1

Ωiusi
=

N∑
i=1

Pi (22)

However, note that the Pi components can be positive or negative. A positive power Pi means that the ith RW device
requires a power input to achieve the maneuver. A negative power implies that the RW could return mechanical energy
to the cluster. For example, consider the case where the spin wheel must be decelerated. Instead of applying brakes
which would convert the mechanical spin energy into heat, it could be possible to use a dynamo device which could
decelerate the wheel and convert its mechanical energy into stored electrical energy. This energy could then be used to
accelerate other wheels. In this case it would make sense to try to minimize the total instantaneous mechanical power
usage in Eq. (22). However, such energy capture mechanisms are not typically employed with RW devices. Instead a
different cost function must be used to account for both acceleration and deceleration contributing to the total electrical
power requirement.

Let P =
(
P1 · · · PN

)T
be a vector containing the RW powers Pi. Using Eq. (12), the power vector can also

be expressed as

P = [Ω]us (23)
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where the diagonal matrix [Ω] is defined as

[Ω] = diag(Ωi) (24)

Let the positive cost function J be defined in terms of the L2 norm of P :

J =
1
2

(|P |2)2 =
1
2

N∑
i=1

P 2
i =

1
2
P TP (25)

This cost functions takes into account that both acceleration and deceleration of RWs requires electrical power. Next
the torque vector us must be found which will minimize this cost function. Using Eq. (19) and (23) the cost function
J is rewritten as

J =
1
2

(
[Ω](u∗s + [N ]t)

)T(
[Ω](u∗s + [N ]t)

)
(26)

A necessary condition for a minimum of J with respect to the null-space scaling parameter is

∂J

∂t
=
(

[Ω](u∗s + [N ]t)
)T

[Ω][N ] = 0 (27)

Carrying out the matrix algebra leads to

[N ]T [Ω]2[N ]︸ ︷︷ ︸
[A]

t = −[N ]T [Ω]2u∗s (28)

Before solving for t the invertibility of [A] must be investigated. The null-space matrix [N ] is expressed using the
M -dimensional vectors ni as

[N ] =

n
T
1
...
nT

N

 (29)

Note that none of the ni vectors are a zero vector. The M ×M matrix [A] is then written as

[A] =
N∑

i=1

Ω2
inin

T
i (30)

Because [N ] has rank M through its definition as the null-space matrix of [Gs], the rank of [A] is also M if the RW
spin rates are non-zero with Ω2

i > 0. In fact, the matrix [A] has rank M and is invertible if at least M RWs have a
non-zero spin rate. For example, if there are 4 RWs on the spacecraft, then the null-space [N ] of [Gs] is a 4× 1 matrix
with M = 1. Because [N ] cannot contain columns or rows of zeros, all components of [N ] are non-zero in this case.
Here [A] is invertible as long as at least one RW has a non-zero speed. If the craft has 5 RWs, then then at least 2
RWs will have to have non-zero spin rates. If [A] is invertible, then the optimal null-space scaling parameter vector t̂
is given by

t̂ = −([N ]T [Ω]2[N ])−1[N ]T [Ω]2u∗s (31)

Setting ∂J/∂t = 0 is only a necessary condition for the power-optimal solution. To guarantee a minimum power
solution ∂J2/∂t2 > 0 must be a positive definite matrix. Differentiating Eq. (27) with respect to t yields

∂J2

∂t2
= [N ]T [Ω]2[N ] (32)

Using the [N ] definition in Eq. (29) this is rewritten as

∂J2

∂t2
=

N∑
i=1

Ω2
inin

T
i (33)
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which yields a positive definite matrix by inspection for the general case with Ωi 6= 0. Thus the solution in Eq. (31)
provides the null-space scaling parameters yielding a minimum instantaneous power control.

What occurs if the [A] matrix is not invertible? First, consider the simple case where all the RWs are at rest with
Ωi = 0. Studying Eq. (26) it is apparent that the power cost function is zero regardless of which torque solution is
used. Any torque solution in Eq. (19) would provide a power optimal solution. In this case it would make sense to
simply use the minimum torque solution u∗s .

Next the scenario is investigated where some Ωi are non-zero, yet the [A] matrix is not full rank. Let R be the
number of non-zero RW spin rates Ωi, where R < M to guarantee that [A] is not invertible. Without loss of generality
let us assume that only the first R craft have non-zero Ωi. Equation (28) is satisfied if a vector t is chosen such that

nT
i t = −u∗si

for i = 1, · · · , R (34)

Using Eq. (30) the power-optimal scaling parameter condition in Eq. (28) is rewritten as

[A]t =
(

Ω2
1n1n

T
1 + · · ·+ Ω2

RnRn
T
R

)
t = −Ω2

1n1u
∗
s1
− · · · − Ω2

RnRu
∗
sR

(35)

where u∗si
is the ith components of u∗s . Because the square matrix [A] is not full-rank in this scenario, it is not possible

to solve this equation for a unique t. Instead, there are an infinity of scaling parameters which yield the desired power
optimal solution. A simple solution to Eq. (35) is to determine the minimum norm solution to t. Let theR×M matrix
[N ] be defined as

[N ] =

n
T
1
...
nT

R

 (36)

and Us =
(
u∗s1

· · · u∗sR

)T
, then the desired null-space scaling parameter vector t is determined using

t̂ = −N T ([N ][N ]T )−1Us (37)

for this degenerate scenario with an infinity of solutions.

b̂1

b̂2

b̂3

RW 1
RW 2

RW 4

RW 3 Rigid 
Spacecraft 

Body

Body Fixed 
Coordinate Frame
B : {b̂1, b̂2, b̂3}

N : {n̂1, n̂2, n̂3}

Inertial Coordinate 
Frame

Figure 2: Spacecraft Illustration containing 4 Reaction Wheels

IV. Numerical Simulations
Numerical simulations of a spacecraft containing 4 RWs are performed to compare the minimum-torque attitude

control solution in Eq. (18) to the minimum-power control proposed in Eq. (31). As illustrated in Figure 2, the 4 RW
spin axis ĝsi

as setup as follows in spacecraft body frame B coordinates:

ĝs1 =

B1
0
0

 ĝs2 =

B0
1
0

 ĝs3 =

B0
0
1

 ĝs4 =
1√
3

B1
1
1

 (38)
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Figure 3: Spacecraft Attitude Tracking Errors.

This standard redundant RW configuration has the first three RW spin axes aligned with the principal spacecraft body
axes, while a 4th wheel is aligned diagonally to the others. In this setup the loss of any RW can be compensated for by
the remaining three RWs. The 1× 4 null-space matrix [N ] of [Gs] is expressed as

[N ] =
[
− 1√

3
− 1√

3
− 1√

3
1
]

(39)

The spacecraft inertia matrix is given by

[I] = diag(86.215, 85.070, 113.565) kg m2 (40)

while the RW spin axis inertia is Js = 0.13 kg m2.
The reference attitude is set to be that of the inertial frame N . The simulations demonstrate the response of a

regular problem. The initial spacecraft state vectors are

σ(t0) = (0.414, 0.3, 0.2) (41)
ω(t0) = (0.23, 0.05,−0.01) rad/s (42)

The reaction wheel rates Ωi are all set to 40 rpm initially. The minimum-power attitude control law has a more
noticeable performance difference to the minimum-torque solution if the reactions have a non-zero spin rate. While
the nominal RW operating condition is to have the wheels speeds near zero, the Ω’s do not remain near zero as they
compensate for persistent external torques. The control feedback gains are set to

K = 0.1 Nm P = 0.3 Nms

The numerical simulations are run for 60 seconds each. The attitude response is illustrated in Figure 3. Regardless
of the choice of us which produces the required torque Lr in Eq. (17), the attitude closed loop equations are the same.
The feedback gains are chosen such that the attitude errors decay in a near critically damped manner.

Where the minimum-torque (Case 1) and minimum-power (Case 2) RW control solutions differ is in internal RW
speeds, the applied motor torques, and the instantaneous power requirement. Of interest is how much instantaneous
power requirement is changed in Case 2, and how much energy can be saved. The Case 1 RW spin rates and motor
torques are illustrated in Figures 4(a) and 4(b). To return the spacecraft attitude to that of the inertial frame, the
control requires the initial 40 rpm Ωi rates to change substantially. The equivalent states for Case 2 are illustrated in
Figures 4(c) and 4(d). The overall response is similar to that of Case 1. However, the rate of Ω2 actually changes its
sign in this scenario. The individual torque trajectories vary slightly from those of Case 1, but not substantially.

The total electrical power required throughout the regulation maneuver is illustrated in Figure 4(e). Note that
the Case 2 requires lower power levels at all times. This is not guaranteed to occur for all initial conditions. The
minimum-power attitude control law only minimizes the required power at a particular time, and not for an entire
maneuver. However, the behavior shown was typically seen for all the test runs attempted.

The attitude control of small spacecraft is often limited by the limited peak electrical power available to the control
system. Note that both cases have about the same peak power requirement at the beginning of the simulation. The
minimum-power solution did not substantially reduce this. However, the new control did reduce the average power
requirement from about 0.203 J/s to 0.182 J/s, a 10.5% reduction. As a result case 2 uses 10.5% less energy to perform
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Figure 4: Comparison of Minimum-Torque Control (Case 1) and Minimum-Power Control (Case 2) Perfor-
mances.
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the same attitude regulation maneuver. Energy storage is also limited with the small satellites, and such an energy
savings is significant.

The cost to achieve these power and energy saving is a slightly increased torque. Figure 4(f) shows the magnitude
of the RW torque vector us during the maneuver. As expected, the total torques required for case 2 are larger than
those of case 1. However, they are only larger by a very small margin. This behavior is common across all the initial
conditions tested. The differences in the total RW power and torque requirements for this maneuver are illustrated
in Figures 4(g) and 4(h). The maximum percent increase in torque is only about 6.27%, while the reduction in total
energy required is over 10%.
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Figure 5: Maneuver-Wide Energy Usage Reduction for Various Initial RW Speeds.

The energy savings for various initial reaction wheel spin speeds are shown in Figure 5. For small initial fly wheel
speeds the resulting attitude control maneuver will strongly influence how much energy is saved. However, as the
initial RW speeds increased to larger values, then the energy saving settle down between 14–15%.

V. Conclusion
The classical minimum torque attitude control law for a redundant cluster of reaction wheels is revisited to examine

locally power-optimum solutions. The reaction wheel redundancy creates a null-space in the fly wheel motor torque
solution. An analytical solution is provided which determines which solution in the null-space will provide the smallest
electrical power requirement at the current time step. This control does not provide for global maneuver-wide optimal
power solutions. However, the new control strategy can provide a 10% or better energy saving for a minimal increase
in the average torque used. Degenerate cases where several fly wheels have a zero spin speed are also investigate. Here
the local minimum power solution is no longer unique and an alternate closed form analytical expression is provided
to determine a set of reaction wheel motor torques. Future research will investigate the more complicated scenario of
the spacecraft containing a cluster of CMG or variable speed CMG devices.
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