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Abstract—The concept of a spinning 2-craft Coulomb tether
is introduced. Here a physical tether is replaced with an elec-
trostatic force field resulting in an attractive Coulomb force
between the 2 craft. The spacecraft charge is assumed to be
regulated with an active charge servo system. The open-loop
stability of a Coulomb tether with constant spacecraft charges
is investigated. The reduced equations of motion for a deep
space mission are obtained and linearized to determine eigen-
values of the perturbed motion. This analysis shows that if
the plasma Debye length is smaller than the spacecraft sepa-
ration distance the radial motion is guaranteed to be unstable.
For larger Debye lengths the nonlinear radial motion is lo-
cally stable. The perturbed out-of-plane motion is shown to
always be stable regardless of Debye length. Further, open-
loop charge solutions are obtained to perform reconfiguration
where the circular orbit radius is changed to a new value. This
maneuver is related to the classical Hohmann transfer orbit
between circular orbits. However, in the Coulomb tether con-
cept the reconfiguration is achieved by varying the effective
gravitational parameter through spacecraft charge changes.
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1. INTRODUCTION

Coulomb thrusting is a novel method to control the close rela-
tive motion of spacecraft using electrostatic (Coulomb) force
fields. This concept was introduced by King and Parker in
[1] in 2001 where they explored the natural spacecraft charg-
ing that occurred on a GEO satellite. Instead of treating this
Coulomb force as a perturbation, they proposed to use it in-
stead as an active means of relative motion control. Through
active charge emission of electrons and ions the spacecraft
potential is regulated to desired values.

This has led to a multitude of novel relative motion mis-
sions. The concept of virtual Coulomb structures has the
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electrostatic forces perfectly cancel out the differential grav-
itational acceleration, resulting in a spacecraft cluster whose
satellite positions appear frozen as seen by the rotating chief
local-vertical-local-horizontal (LVLH) frame [1], [2], [3], [4].
However, all charged static relative equilibria solutions in or-
bit or in deep space have been unstable and will required ac-
tive charge feedback to stabilize.

The first feedback stabilized charged virtual structures is the
nadir aligned Coulomb tether concept discussed in [5] and
[6]. Here the physical tether connecting 2 spacecraft is re-
placed with a Coulomb force field. However, while a phys-
ical tether must always be in tension, the Coulomb tether
can exert both attractive and repulsive forces between the 2
craft. But, while the cable tether can have lengths of multi-
ple kilometers, the Coulomb tether concept is only applica-
ble for relative small separation distances of up to 100 me-
ters. The electrostatic force field strength drops off rapidly
with increasing separation distances, limiting its effective-
ness to relatively close mission scenarios of less than 100
meters. The potential Coulomb tether applications include
deploying a free-flying sensor and tethering it to the mother
craft using Coulomb forces, or using this electrostatic force
to achieve a rendezvous and docking approach. Natarajan
shows in [5] that sensing only the separation distance is suffi-
cient to develop a charge feedback control law which asymp-
totically stabilizes both the separation distance and the in-
plane motion. The out-of-plane motion for the nadir aligned
Coulomb tether is naturally stabilized through the gravity gra-
dient torque acting across the cluster.

The first spinning charged spacecraft clusters are explored in
[7]. Here the charged 3-body problem is written in a form
similar to Lagrange’s invariant shape gravitational 3-body
problem yielding the famous collinear and triangular libration
points. Similar results are obtained for the spinning 3 charged
spacecraft problem. However, this analysis only investigates
the open-loop charges required for a relative equilibria and
discusses the resulting trajectory shapes and boundedness.
The stability of any spinning charged spacecraft cluster has
not yet been explored.

Beyond looking at electrostatic force fields to control satel-
lite relative motion, MIT is investigating the use of electro-
magnetic force fields to control the satellite relative orbits [8].
This concept can produce general force vectors between the
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Figure 1. Illustration of a 2-craft Coulomb tether formation spinning with a constant separation distance in deep space.

craft, but requires sophisticated magnetic coils and an active
attitude control system to absorb momentum. Mason Peck
has also looked at using electrostatically charged spacecraft
control [9]. However, he is looking to exploit the Lorentz
force which arises from a charged body flying through a plan-
ets magnetic field.

This paper investigates the orbital stability of a spinning
charged 2-craft cluster as illustrated in Figure 1. The spin-
ning Coulomb tether formation contains spacecraft with op-
posite charges, resulting an attractive force which balances
the centripetal force. This configuration is a constant charge
relative equilibria solution of this system. Of interest is the
question of whether this system is stable under small posi-
tion, velocity or spacecraft charge errors. Another question
of interest is: How can charge be used to vary the circular
trajectory radii and reconfigure the shape of the spinning 2-
craft system. In this analysis the spacecraft are assumed to
be operating in deep space and the orbital motion is ignored.
However, the spacecraft are not operating in a pure vacuum,
but are in a space plasma environment of rarified charge par-
ticles. This will cause the electric field strength calculation
to deviate from the standard inverse square of separation dis-
tance relationship. In particular, the influence of this plasma
environment on the stability of the system is investigated.

The spinning 2-craft Coulomb tether concept has a direct ap-
plication for interferometric sensor missions. Here the sensor
measurement of discrete free-flying spacecraft are combined
to yield an equivalent sensor measurement of a much larger
base-line. With the spinning Coulomb tether concept the 2
craft are sweeping out circular paths as they complete a revo-

lution. If the target is not moving fast relative to the Coulomb
tether rotation speed, then these measurements can be used
for interferometric sensing. As illustrated in Figure 1, if the
2 spacecraft have unequal masses, then the inertial trajecto-
ries will be 2 circles of different radii, sweeping out 2 dif-
ferent disks in one revolution. The spinning Coulomb tether
could be deployed away from Earth on a heliocentric orbit to
search for near Earth asteroids. The relatively short separa-
tion distance of less than 100 meters would provide a wide
field-of-view sensor which could look for unknown satellites.
Further, the focal length of this aperture dish could be varied
by changing the spacecraft charge and resulting in larger or
smaller relative orbits. Another application involves a deep
space mother ship deploying a free-flying sensor. The spin-
ning Coulomb tether concept could provide a purely electro-
static means of keeping this sensor flying about the mother
craft while taking images or other sensor measurement.

This paper is organized as follows. First the basic charged
relative equations of motion are presented for a body in
a space plasma environment, and their limitations are dis-
cussed. Then the stability of the spinning 2-craft Coulomb
tether concept is investigated for a circular relative equilibria.
Finally, open-loop charge maneuvers are investigated which
allow the circular orbit radii to be changed over time. Numer-
ical simulation illustrate the resulting performance.

2. PROBLEM STATEMENT

This spinning 2-craft Coulomb tether study assumes that
the spacecraft are flying in deep space and are not orbit-
ing any celestial body. Figure 2 shows an inertial frame



3N : {n̂1, n̂2, n̂3} with its origin at the inertial cluster cen-
ter of mass. Let ri be the inertial position vector of the ith

spacecraft, qi the spacecraft charge, and mi the mass. The
equations of motion are then given by

m1r̈1 = kc
q1q2
d2

e−d/λd ı̂r (1a)

m2r̈2 = −kc
q1q2
d2

e−d/λd ı̂r (1b)

where d = r1 + r2 and ri = |ri|, while ı̂r = r1/r1 is
the unit direction vector of craft 1. The parameter kc =
8.99 · 109 Nm2/C2 is the Coulomb constant. Due to the
spacecraft flying in a space plasma environment, the typi-
cal 1/d2 electrostatic force magnitude function is modified
with the exponential term. The additional drop off depends
on the plasma Debye length parameter λd [10]. A charged
spacecraft in a plasma will statistically attract more plasma
particles with opposite charge to its own. A second craft a
distance d apart would not only experience the charge of the
first craft, but also this opposite charge gathering around it.
In essence, this effect causes the first spacecraft charge to be
shielded from the second craft. The stronger the shielding is,
the shorter the Debye length λd. In low Earth orbits the De-
bye length is on the order of millimeters to centimeters, far
too small for the Coulomb thrusting concept to be practical.
However, at GEO the plasma is hotter and less dense which
increases the Debye length to values of 100-1000 meters [1],
[11]. Such high Earth orbits has been the typical flight regime
of most Coulomb thrusting research. In deep space at 1 AU
the Debye length reduces again due to the colder plasma and
can range between 20-40 meters [1]. Note that once the
spacecraft are more than 1-2 Debye lengths apart, the expo-
nential drop off dominates which makes the Coulomb force
ineffective.

Let τ me the mass ratio and be defined as

τ =
m1

m2
(2)

Because the inertial N frame origin is defined to be the clus-
ter center of mass, the motion of the second satellite can be
determined through

r2 = −τr1 (3)

Using r1 = r1ı̂r, d = r1(1 + τ), the equations of motion of
the first craft can be written in the form

r̈1 =
kc
m1

q1q2
(1 + τ)2

e−r1(1+τ)/λd
r1

r31
(4)

Next, let us define the effective gravitational parameter µ1 as

µ1(r1) = µ0e−r1(1+τ)/λd (5)

where

µ0 = − kc
m1

q1q2
(1 + τ)2

(6)

is a constant, positive parameter due to q1q2 < 0, then the
charged spacecraft equations of motion can be written as

r̈1 = −µ1(r1)
r31

r1 (7)

If µ1 is a constant, then these equations are equivalent to
the equations of motion of the gravitational 2 body problem
where µ would be the gravitational constant. Analogously,
the equations of motion of the second satellite can be written
as

r̈2 = −µ2(r2)
r32

r2 (8)

where r2 = −r2ı̂r and

µ2(r1) = − kc
m2

q1q2
(1 + τ)2

τ2e−r1(1+τ)/λd (9)

For µ1 to be constant in Eq. (5), the radius r1 must be constant
or the Debye length must be infinitely large. This dictates that
the constant µ1 scenario is only possible with circular relative
orbits if the Debye length is not much larger than the separa-
tion distance. However, if d � λd, then µ1 is a constant
and all possible spacecraft trajectories must be conic solu-
tions (i.e. circles, ellipses, parabolas or hyperbolas). How-
ever, it should be noted that the charged spacecraft motion
can yield both a positive or negative effective gravitational
parameter µ, resulting in either attractive or repulsive inter-
spacecraft forces. As discussed in [7], the negative µ1 case
always results in unbounded hyperbolic motion about the un-
occupied focus. The positive µ1 case yields equivalent orbit
shapes to the gravitational 2-body problem. For the Coulomb
tether problem in this paper, the charge product q1q2 is as-
sumed to be negative.

Note that as with the gravitational 2-body problem, if the
equations of motion are written of one satellite relative to an-
other, the same vector equation is obtain as in Eq. (7), but
with a different µ definition. If both case the solutions are
conic sections for the large Debye length situation.

From a stability point of view, if λd � d and µ1 is a con-
stant, then all charged relative trajectories will be stable. This
scenario yields a Hamiltonian system with only conservative
forces acting on it. The response is now equivalent to the
motion of satellites about a planet whose orbits are stable.

Of interest is what occurs when the plasma Debye length
is not ignorable and the Coulomb force is no longer mod-
eled through the vacuum electrostatic potential function
−kcq1q2/r. Let us consider the inertial angular momentum
vector of craft 1 about the center of mass:

H1 = r1 ×m1ṙ1 (10)

Taking the inertial time derivative yields

Ḣ1 = r1 ×m1r̈1 = 0 (11)
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Figure 2. Illustration of coordinates used to describe spinning charged 2-craft cluster.

because the Coulomb force is always aligned with r1 regard-
less of the Debye length. Thus, whatever plane the initial
position and velocity vectors form, all resulting motion will
be within this plane even if the plasma charge shielding effect
is considered.

The open loop charge product q1q2 required to maintain a cir-
cular orbit of radius rc and velocity vc is found as follows.
Equating the centripetal acceleration magnitude with the in-
ertial acceleration magnitude in Eq. (1) yields

v2
c

rc
= − kc

m1

q1q2
r2c (1 + τ)2

e−r1(1+τ)/λd (12)

Solving for q1q2 we find the open-loop charge solution which
will maintain a circular trajectory to be:

q1q2 = −v2
crc

m1

kc
(1 + τ)2er1(1+τ)/λd (13)

This paper investigates the stability of this circular spinning
Coulomb tether in the presence of the plasma shielding effect.

3. STABILITY ANALYSIS

Reduced Equations of Motion

Before investigating the stability of the circularly-restricted
Coulomb tether, let us reduce the equations of motion to a
more convenient form using the spherical position coordi-
nates (r, θ, φ) illustrated in Figure 2. This leads to conditions
for a relative equilibria.

The system has six degrees of freedom which are the posi-
tions of the craft in space. However, setting the origin of the
coordinate system at the center of mass of the formation, one
only needs to consider the motion of one of the craft. The
second spacecraft spherical coordinates are related to the first

craft coordinates through:

r2 = τr1 (14a)
θ2 = π + θ1 (14b)
φ2 = −φ1 (14c)

We will work in terms of the coordinates r1, θ1 and φ1. From
here on we rename these coordinates r, θ, and φ as shown in
Figure 2. In terms of these spherical coordinates, the inertial
kinetic energy of craft 1 is given by

K(r, ṙ, θ, θ̇, φ, φ̇) =
m1

2

(
ṙ2 + r2 cos2φ θ̇2 + r2φ̇2

)
(15)

The Lagrangian for this system is simply the kinetic energy:

L(r, ṙ, θ, θ̇, φ, φ̇) = K(r, ṙ, θ̇, φ, φ̇) (16)

The Lagrange d’Alembert principle:

δ

∫
L(r, ṙ, θ, θ̇, φ, φ̇)dt

+
∫

F (r, ṙ, θ, θ̇, φ, φ̇) · (δr, δθ, δφ)dt = 0 (17)

can be used to derive the equations of motion, where F is
the vector of generalized forces acting on the system. In the
present case the generalized force is given by

F (r, ṙ, θ, θ̇, φ, φ̇) =

kcq1q2e−
r(1+τ)
λd

r2(1 + τ)2
, 0, 0

 (18)

The Lagrange d’Alembert principle then gives the following



5equations of motion

d
dt

(
∂L

∂ṙ

)
− ∂L

∂r
=
kcq1q2e−

r(1+τ)
λd

r2(1 + τ)2
(19a)

d
dt

(
∂L

∂θ̇

)
= 0 (19b)

d
dt

(
∂L

∂φ̇

)
− ∂L

∂φ
= 0 (19c)

We observe that the Lagrangian is independent of θ, which
is therefore a cyclic variable. Associated with the cyclic vari-
able θ is a conserved quantity, namely the angular momentum
about the axis perpendicular to the plane of the orbit of the
spacecraft pair. While the kinetic energy is not conserved for
the general Debye length case, the cluster angular momentum
is conserved because the Coulomb force is an internal force
in all cases. Carrying out a Routhian reduction [12], we can
use conservation of this quantity to derive the equations of
motion, which are going to be independent of θ. Note that the
generalized angular momentum is given by

pθ =
∂L

∂θ̇
= m1r

2 cos2φ θ̇ (20)

which is conserved according to Eq. (19b). For this system pθ
is the n̂3 vector component of the inertial angular momentum
vector H1 = (H1, H2, H3) in Eq. (10). Thus, given the ini-
tial conditions we can set H3 = pθ. If φ = 0o then pθ is the
angular momentum magnitude. Using Eq. (20) we are able to
express θ̇ in terms of the radius r as

θ̇ =
H3

m1r2 cos2φ
(21)

The Routhian is given

R(r, ṙ, φ, φ̇) =
[
L−H3θ̇

]
θ̇= η

m1r2 cos2φ

=
1
2

(
m1ṙ

2 +m1r
2φ̇2 − H2

3

m1r2 cos2 φ

)
(22)

The reduced equations of motion are then given by

d
dt

(
∂R

∂ṙ

)
− ∂R

∂r
=
kcq1q2e−

r(1+τ)
λd

r2(1 + τ)2
(23a)

d
dt

(
∂R

∂φ̇

)
− ∂R

∂φ
= 0 (23b)

which result in

m1r̈ −m1rφ̇
2 − H2

3

m1r3 cos2 φ
=
kcq1q2e−

r(1+τ)
λd

r2(1 + τ)2
(24a)

m1r
2φ̈+ 2m1rṙφ̇+

H2
3 tanφ

m1r2 cos2 φ
= 0 (24b)

For the following stability analysis the lack of θ in the re-
duced equations of motion provides an ideal simplification.
For the un-perturbed orbit, θ is the in-plane angular position
of the spacecraft. If a perturbed orbit has a slightly different
θ̇ rate, or orbit period, then this neighboring trajectory is still
considered stable in the orbital sense.

Stability of Circularly Spinning Coulomb Tether

Let our circular orbit correspond to r = rc > 0 (a constant),
ṙ = 0, φ = φc = 0 and φ̇ = 0. The generalized angular
momentum corresponding to this orbit is given by

H2
3 = −m1rckcq1q2e−

rc(1+τ)
λd

(1 + τ)2
(25)

We immediately note that for a bounded circular orbit, we
require that

q1q2 ≤ 0 (26)

Linearizing equations (24) about the nominal circular orbit,
we obtain

m1δr̈ +
kcq1q2e−

rc(1+τ)
λd

r2cλd(1 + τ)2

(
1 + τ − λd

rc

)
δr = 0 (27a)

m1r
2
cδφ̈−

kcq1q2 exp−
rc(1+τ)
λd

rc(1 + τ)2
δφ = 0 (27b)

where we have substituted H2
3 by the expression in Eq. (25).

Note that the linearized equations are decoupled. Regarding
the linearized radial equation of motion, the eigenvalues are
given by

sr = ± H3

m1r2c

√
1
λd

(
1 + τ − λd

rc

)
(28a)

= ±

√√√√− kcq1q2e−
rc(1+τ)
λd

m1r3cλd(1 + τ)2

(
1 + τ − λd

rc

)
(28b)

Noting that q1q2 < 0, one eigenvalue will have a real positive
value if

λd ≤ rc(1 + τ) (29)

Thus, if the spacecraft separation distance d = rc(1 + τ)
is greater than the Debye length λd, the circularly spinning
Coulomb tether with constant charges is guaranteed to be un-
stable. For small separation distances where d < λd the
eigenvalues are purely imaginary, providing only marginal
stability of the linearized in-plane motion.

Regarding the out of plane motion, the linearized φ equation
has the following eigenvalues

sφ = ±ı H3

m1r2c
(30a)

= ±ı

√√√√−kcq1q2e−
rc(1+τ)
λd

m1r3c (1 + τ)2
(30b)

Because q1q2 < 0, we immediately see that the linearized φ
equation is marginally stable regardless of the Debye length
value. However, in this case it can be argued that this lin-
earized stability result does yield a stable equilibrium motion



6for the nonlinear system. Recall that the angular momentum
vector H1 is conserved, which led to the argument that the
spinning 2-craft Coulomb tether motion will always be pla-
nar. If the orbit plane is not in the nominal (n̂1, n̂2) plane,
but rather is inclined by an angle i, this angle is determined
through the initial r1(t0) and ṙ1(t0) vectors. The spherical
coordinate φ will then be bounded by this constant inclina-
tion angle.

|φ(t)| ≤ i (31)

Thus, regardless of initial conditions, the out-of-plane angle
φ(t) is guaranteed to be stable for the nonlinear system thanks
to the conservation of angular momentum in the presence of
plasma charge shielding.

To investigate the nonlinear stability of the radial motion we
can consider only the reduced radial equations of motion in
Eq. (24a) for the planar motion without loss of generality.
The nominal circular orbit angular momentumH in is written
using Eq. (6) as

H2 = µ0m
2
1rce

− rc(1+τ)λd (32)

Using H3 = H and φ = 0 for the planar case, the radial
equations of motion in Eq. (24a) are reduced to the form

r̈ + F (r) = 0 (33)

with

F (r) =
µ0

r3

(
re−

r(1+τ)
λd − rce−

rc(1+τ)
λd

)
(34)

where rc is the nominal circular orbit radius. Note that the
angular momentum expression has been absorbed into the
equivalent gravitational constant µ0 in this formulation. If
r = rc, then r̈ = 0 and the circular reference motion is re-
tained.

Because the radial acceleration only depends on the radius r
and not ṙ, the F (r) function can be written as the gradient of
the potential function VF (r)

VF (r) = −µ0

r
e−

r(1+τ)
λd +

µ0

2r
rc
r

e−
rc(1+τ)
λd

− µ0(1 + τ)
λd

∫ ∞
− r(1+τ)λd

e−s

s
ds (35)

Using r̈c = 0, the equation of motion of radial deviations
δr = r − δrc is then

δr̈ = −∇rVF (r) (36)

This potential function can be approximated about r = rc
through the Taylor series expansion:

VF (r + δr) = VF (rc) + k1δr
2 + k2δr

3 + · · · (37)

where

k1 =
µ0

2r3c

(
1− d

λd

)
e−

d
λd (38)

k2 =
k1

3rc

(
d2

λ2
d

+ 4
d

λd
− 6
)

(39)

with d = rc(1 + τ) being the spacecraft separation distance.
For the case where d < λd (the marginally stable linearized
result) the quadratic term has k1 > 0. The potential function
VF is thus guaranteed to have a finite neighborhood about
δr = 0 for which VF is positive definite in δr.

The Lagrange-Dirichlet stability states that an equilibrium
point is stable if the second derivative of the potential function
is positive definite [13], [14]. Using the potential function ex-
pansion in Eq. (37) it is evident that

d2VF
dr2

∣∣∣
r=rc

= k1 +O(δr) > 0 (40)

for some finite neighborhood about the origin.

Alternatively, we can define the candidate Lyapunov function
V to study the nonlinear stability of r(t).

V (δr, δṙ) =
1
2
δṙ2 + VF (rc + δr)− VF (rc) (41)

Note that at the equilibrium states δr = δṙ = 0 that
V (δr) = 0. Further, because there exists a neighborhood
about the equilibrium where VF is positive definite, this Lya-
punov function is also locally positive definite. Evaluating
the Lyapunov rate V̇ yields

V̇ = δṙ (δr̈ +∇rVF ) = 0 (42)

Because V̇ ≤ 0 the nonlinear radial motion is guaranteed to
be locally stable about the equilibrium.

Table 1. Numerical Simulation Parameters

Parameter Value Units
m1/m2 50/75 kg
kc 8.99× 109 Nm2

C2

q1/q2 10/-10 µC
rc1/rc2 15/10 m
vc1/vc2 11.119/-7.413 mm/s
δr1(t0) 0.3 m
θ(t0) 0.0 deg
φ(t0) 1 deg

Numerical Simulation

To illustrate the stability of a spinning 2-craft Coulomb tether
in deep space for different Debye length cases, the following
numerical simulations are performed. The spacecraft masses,
charges, and other relevant simulation parameters are listed in
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Table 1. Note that m2 > m1 to have both craft travel circu-
lar trajectories of different radii. With the given velocities it
will take about 2.35 hours for the nominally circular Coulomb
tether to complete one revolution. With higher charge limits
this period could be reduced.

First let us investigate the phase plot of this nominally circular
Coulomb tether with simulation parameters as specified in Ta-
ble 1. The basic equations of motion in Eq. (1) are integrated
for a range of initial δr and δṙ perturbations while holding
the angular momentum magnitude H and spacecraft charges
constant. The charges q1 and q2, and thus the parameter µ0,
are computed for the nominally circular trajectory were craft
1 has a circular radius of rc1 and speed vc1, while craft 2 has
a radius rc2 and speed vc2. The Debye length is set to λ = 50
meters, for which the stability condition d < λd is satisfied.
The resulting phase portrait is shown in Figure 3(a). The tear-
drop region around the origin results in stable motions about
this equilibrium as predicted. Figure 3(b) illustrates the posi-
tion dependent behavior of the Lyapunov function V . About
the origin V (δr, 0) is locally positive definite. However, it
is interesting to note that for a given H and µ0 value, there
exists a second circular equilibrium point. For this setup this
equilibrium is hyperbolic, resulting in unstable motion. This
would be expected because here the separation distance has
grown larger than the Debye length.

Next the three-dimensional charged spacecraft motion is con-
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Figure 4. Numerical simulation results for stable case 1 with
a large Debye length of λd = 50 meters for craft 1 (- - -) and
craft 2 (——). The unperturbed motion is shown in black.

sidered for two different Debye length cases. In case 1 the
Debye length is 50 meters, which is larger than the 25 me-
ter nominal separation distance. Case 2 sets λd = 20 meters
which should result in unstable motion. Both cases use the
same radial distance error δr and out of plane motion φ shown
in Table 1. The initial velocity vectors were not perturbed in
these simulations, only the initial positions. As a result, the
perturbed Coulomb tether has an orbit plane inclination of
i = φ(t0) = 1o.



8The inertial nonlinear equations of motion in Eq. (1) are in-
tegrated for 5 nominal orbit periods in this numerical simula-
tion. The resulting motion for case 1 is illustrated in Figure 4.
The planar projection of the 2 craft trajectories in Figure 4(a)
shows the initial positions of the craft as small spheres, the
nominal circular trajectories as black lines. The actual per-
turbed motion oscillates about the nominally circular trajec-
tories, but does not form closed curves. If the Debye length
were negligible here than the perturbed motion would also
form conic solutions. However, with the plasma shielding
active the inverse square Coulomb force is weakened further
as the separation distances increase. The radial and out-of-
plane motion coordinates are illustrated in Figures 4(b) and
4(c). As predicted, the angle φ is bounded in magnitude by
the perturbed orbit inclination angle of 1 degree.

If the Debye length is reduced to 20 meters in case 2, then the
numerical simulation yields unstable relative trajectories as
illustrated in Figure 5. With the same initial perturbation, the
plasma shielding effect is sufficient to destabilize the relative
motion and cause the radial separation distance to grow in-
finitely large. The angular out-of-plane coordinate φ remains
bounded by the orbit inclination angle and reduces in value
as the spacecraft separate.

4. COULOMB-TETHER LENGTH
RECONFIGURATION

One benefit of the Coulomb tether concept is that the space-
craft charges qi can be regulated to desired values. For exam-
ple, if the charges are lowered, then the effective gravitation
parameter µ is reduced and the craft would increase their sep-
aration distance. This section outlines a method to reconfig-
ure a spinning Coulomb tether and change the circular orbit
radius to a new value.

For the case where the Debye length can be ignored (d �
λd), the equations of motion of spacecraft 1 relative to the
cluster center of mass as given by

r̈1 = −µ1

r31
r1 (43)

where the effective gravitational parameter µ1 is the constant

µ1 = − kc
m1

Q12

(1 + τ)2
(44)

If Q12 = q1q2 < 0, the µ1 > 0 and a gravity-like attrac-
tive force is experienced between the two spacecraft. This
scenario allows us to be motivated by the gravitational orbit
boost maneuvers such as the Hohmann transfer [15] to de-
velop a spinning Coulomb tether reconfiguration maneuver.
Following equivalent steps as are used to derive the energy
equation for the gravitational 2-body problem [16], an equiv-
alent energy equation can be found for the charged spacecraft
motion.

v2
1

2
− µ1

r1
= −µ1

2a
(45)
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Figure 5. Numerical simulation results for unstable case 2
with a small Debye length of λd = 20 meters for craft 1 (- -
-) and craft 2 (——). The unperturbed motion is shown in
black.

Here r1 and v1 are the radius and speed of craft 1, and a is the
semi-major axis of the resulting conic motion. This energy
equation is very useful for the 2-craft Coulomb tether prob-
lem because it can be used to determine the how much speed
the craft can have without resulting in unbounded parabolic
(a → ∞) or hyperbolic (a < 0) motion. For example,
to achieve a parabolic trajectory with a given radius r1 and
charge product Q12, the condition v2

1 = 2µ1 must be true
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Figure 6. Illustration of the Coulomb Tether Reconfiguration
Maneuver.

leading to an escape speed of

v1,esc = − 2
r1

kc
m1

Q12

(1 + τ)2
> 0 (46)

For the gravitational 2-body problem the Hohmann transfers
are obtain ∆v maneuvers to transfer between 2 circular orbits
using an elliptical transfer orbit. During the first burn the
velocity magnitude is changed to make the satellite increase
or decrease its radius. The burn is selected such that the next
extremal point is at the desired orbit radius. After applying a
second burn the desired circular orbit speed is maintained.

With the spinning 2-craft Coulomb tether problem it is not
possible to apply an impulsive velocity change ∆v using the
Coulomb forces. Instead the effective gravitational parameter
µ1 is changed to weaken or strength the attractive Coulomb
force. In this manner Coulomb tether reconfigurations are
possible which are equivalent to the Hohmann gravitational
maneuver, as illustrated in Figure 6.

Without loss of generality, let’s assume we are going to
increase our orbit radius of craft 1 from r0 = r1(t0) to
r1(t1) = γr1(t0), where γ > 0 is a orbit radius scaling pa-
rameter. At time t0 the gravity-like parameter µ1 must be
changed such that the given spacecraft speed is greater than
the circular orbit speed and the craft fly apart. At time t1
the craft has reached apoapses and the µ1 parameter must be
changed again to maintain the new circular orbit. Note that
each µ1 change is accomplished using Eq. (44) by changing
the spacecraft charge levels.

Given the initial circular orbit of radius r0 and speed v0, the

initial parameter µ1(t−0 ) must be

µ1(t−0 ) = v2
0r0 (47)

The elliptical transfer orbit will have a semi-major axis of

a =
r0 + γr0

2
= r0

1 + γ

2
(48)

To perform this maneuver we are changing the effective grav-
itational parameter µ1 instantaneously such that the result-
ing elliptical motion will reach the desired final relative orbit
altitude. The spacecraft charge can reach maximum values
within milli-seconds, make the instantaneous charge change
assumption valid. Thus, to write the energy equation at time
t0 where we enter the transfer orbit by changing µ1(t−0 ) to
µ1(t0), we still have a radius of r0 and the initial circular or-
bit speed v0.

v2
0

2
− µ1

r0
= −µ1

2a
(49)

Using the semi-major axis a in Eq. (48), this leads to the con-
dition

v2
0r0 = µ0 = µ1

(
2γ

1 + γ

)
(50)

Because µ1 is proportional to the charge product Q12, we
can state that to enter the desired transfer orbit at time t0,
the spacecraft charge product must be:

Q12(t0) = Q12(t−0 ) ·
(

1 + γ

2γ

)
(51)

The percentage change is

Q12(t0)−Q12(t−0 )
Q12(t−0 )

=
1− γ

2γ
· 100% (52)

At time t1 a new parameter µ1(t1) is needed to re-circularize
the orbit. The spacecraft velocity at apoapses is v1 = v(t1)
and the radius is r1 = r0γ. To maintain a circular orbit, the
effective gravitational parameter µ1 must be changed from
µ1(t0) to µ1(t1) such that

v2
1r0γ = µ1(t1) (53)

Expressing the transit orbit energy equation at apoapses we
find

v2
1

2
− µ1(t0)

r0γ
= −µ1(t0)

2a

Substituting in the transfer orbit semi-major axis a and solv-
ing for v2

1r0γ yields

v2
1r0γ = µ1(t0)

(
2− 2

1 + γ

)
= µ1(t0)

2
1 + γ

(54)



10Using Eq. (54) and (50) we find

µ1(t1) = µ1(t0)
2

1 + γ
= µ0(t−0 )

1 + γ

2γ
2

1 + γ

=
µ0(t−0 )
γ

(55)

Thus, the final effective gravitational parameter is simply the
initial value on the original circular orbit divided by the scal-
ing factor γ. Finally, the spacecraft charge product Q12 at
time t1 must then be

Q12(t1) = Q12(t−0 )
1
γ

(56)

The percent change with respect to the original Q12(t−0 ) is

Q12(t1)−Q12(t−0 )
Q12(t−0 )

=
1− γ
γ
· 100% (57)

The percent change with respect to the intermediate Q12(t0)
value is

Q12(t1)−Q12(t0)
Q12(t0)

=
1− γ
1 + γ

· 100% (58)

Thus, by instantaneously change the spacecraft charge prod-
uct using Eqs. (51) and (57), a Hohmann-transfer like re-
configuration of the circular spinning Coulomb tether is
achieved.

5. CONCLUSIONS

The concept of a spinning 2-craft Coulomb tether is intro-
duced in this paper. This is the first open-loop stable Coulomb
spacecraft mission scenario that has been investigated. All
previous work on virtual Coulomb structures, static nadir
aligned Coulomb tethers, or general spacecraft cluster control
required feedback control laws to stability the cluster shape,
size and orientation. The analysis shows that the nonlinear
radial motion is locally stable if the spacecraft separation dis-
tance is less than the Debye length, and it is guaranteed to be
unstable if it is larger than the Debye length. The out-of-plane
motion is shown to always be stable thanks to the conserva-
tion of angular momentum. This stability results are veri-
fied in two numerical simulations which illustrate both stable
and unstable configurations. Further, open-loop charge ma-
neuvers are illustrated which are inspired by the gravitational
Hohmann transfer orbit problem. To reconfigure the sepa-
ration distance of the Coulomb tether, instantaneous charge
changes are computed which change the effective gravita-
tional parameter and allow the tether length to expand or re-
duce to a desired value.
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