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Abstract— This paper applies the linear parameter-varying
(LPV) control theory to the attitude stabilization problem for a
spacecraft with a double-gimbal variable-speed control moment
gyro (DGVSCMG). The LPV control theory can provide an
optimal gain-scheduled (GS) controller by using linear matrix
inequalities (LMIs) with regional pole placement constraints.
When LMIs are solved, most studies select a common Lyapunov
function for the whole operating range. However, selecting a
common Lyapunov function leads to conservatism of design.
The scheduling parameters in the LPV model of a spacecraft
with a DGVSCMG have an interesting property. By using
this property, this paper proposes the method to geometrically
reduce the number of vertices in the convex hull to cover
the LPV system. Through numerical examples, the proposed
method can reduce the conservatism of design.

I. INTRODUCTION

Control moment gyros (CMGs) have been used for 3-axis
attitude control of spacecraft as attitude actuators. CMGs
are capable of producing large gyroscopic control torques
onto the spacecraft which are proportional to the rotor speed
and the gimbal rate. A double-gimbal variable-speed CMG
(DGVSCMG) has two gimbal axes and a variable speed
wheel. A DGVSCMG can generate large three dimensional
torques if the wheel motor torque is sized accordingly. This
advantage enables a high-speed attitude maneuver. Some
studies related to DGVSCMGs are discussed in Refer-
ences [1], [2], [3]. In particular, Stevenson and Schaub [1]
develop the spacecraft-DGVSCMG dynamics and presented
a nonlinear control algorithm with a Newton-Raphson (NR)
scheme. Zhang and Fang [2] apply robust backstepping
control while considering disturbance torques to the attitude
control problem by using a DGVSCMG. Further, Jikuya et
al. [3] show two types of computational procedures for a
rest-to-rest maneuver using a DGVSCMG.

The satellite dynamics with a DGVSCMG is described
through a set of nonlinear differential equations. Most of
recent studies about attitude control have used non-linear
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controllers such as Lyapunov function-based controllers [4],
[5]. With Lyapunov function-based controllers, overall sta-
bility of attitude control is always guaranteed. However,
the closed-loop control performance is not discussed in
detail. To study the DGVSCMG performance, the linear
parameter-varying (LPV) control theory [6] is applied to the
attitude stabilization problems. In the LPV control theory,
to avoid difficulties coming from the nonlinearity in satellite
dynamics, the dynamics of spacecraft is modeled as an LPV
system. A gain-scheduled (GS) controller is applied to this
model using linear matrix inequalities (LMIs) [7], [8].

A variety of control problems have been solved via
LMIs under common Lyapunov functions [6], [7], [9], [10].
Regarding GS control as in [6], which can be considered
for some class of nonlinear systems which can be described
as LPV, if one selects a common Lyapunov function for a
whole operating range, the overall stability of the closed-loop
system as time varying is guaranteed for any changing rate
of the scheduling variable. However, selecting a common
Lyapunov function for the whole operating range leads to
conservatism of design. Many researchers have judged that
this conservatism arises from selecting a common Lyapunov
function and shifted their research into parameter dependent
Lyapunov functions [11], [12], [13], [14]. However, theory of
parameter dependent Lyapunov functions are more compli-
cated and sometimes installed additional sufficient conditions
or a line search parameter to make the problem convex. In
addition, changing rates of scheduling variables are restricted
in many cases. As a result, it has not been so useful for
practitioners to use so far. To avoid such conservatism easily,
the post-guaranteed LMI method [15] and another method
[16], in which the distinct Lyapunov solutions are adopted.
Another method to reduce the conservatism of solving the
LMIs are to reduce the number of vertices of the convex hull
with the operation range of the system [17], [18], [19] or to
divide the convex hull [20], [21].

In this study, first, the dynamics of a spacecraft with a
DGVSCMG is developed. Then, an interesting characteristic
of the scheduling parameters of a DGVSCMG is focused
on and the proposed method to reduce the vertices of the
convex hull is adopted by geometric approach. Finally, a GS
controller is designed by using LMIs for H2 constraints and
regional pole placement [16], [22] and the effectiveness is
demonstrated by numerical simulation results.
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Fig. 1. DGVSCMG.

II. EQUATION OF MOTION

The spacecraft considered in this paper is assumed to be
a rigid body and contains a single DGVSCMG device. The
body-fixed frame B is represented by a set of unit vectors x̂B ,
ŷB , and ẑB . The inertial frame is given by N . Symbol Go,Gi,
and W denote the outer gimbal axis frame, the inner gimbal
axis frame, and the wheel spin axis frame, respectively. Then,
as in Fig. 1, the unit vectors of the spin axis, the inner gimbal
axis, and the outer gimbal axis are denoted by ŝ, ĝi, and ĝo,
respectively. The outer gimbal axis ĝo is always paralleled
to ẑB of the body frame B. Therefore, it is given as follows:

Bĝo =

B00
1

 , Bĝi =

B− sin δo
cos δo
0

 , Bŝ =

Bcos δo cos δisin δo cos δi
− sin δi


where δi, δo denote the inner and outer gimbal angles, re-
spectively. The dynamics of a spacecraft with a DGVSCMG
[1] is considered. The total inertial angular momentum H is
described by

H = HB +Hgo +Hgi +Hws (1)

with

HB = [Is]ωB/N (2a)

Hgo = [Igo]ωGo/N (2b)

Hgi = [Igi]ωGi/N (2c)

Hws = [Iws]ωW/N (2d)

where

ωGo/N = ωB/N + δ̇oĝo (3a)

ωGi/N = ωB/N + δ̇oĝo + δ̇iĝi (3b)

ωW/N = ωB/N + δ̇oĝo + δ̇iĝi +Ωŝ (3c)

and [Is] is the inertia matrix of a spacecraft excluding
DGVSCMG inertia contributions and ωB/N is the inertial
angular velocity of the spacecraft. [Igi] and [Igo] are the
moment of inertia of the DGVSCMG about the inner and
outer gimbal axis, respectively; [Iws] is the moment of inertia
of the wheel about the spin axis; and Ω is the wheel spin
rate. The total inertia matrix [J ] of a spacecraft including a

DGVSCMG device is given by

[J ] = [Is] + [Igo] + [Igi] + [Iws]. (4)

Note that this inertia tensor [J ] will vary with time as seen by
the body frame. Assuming that no external torque is applied
to the spacecraft body, the dynamics is given by

Ḣ = 0. (5)

Substituting Eq. (1) into the first term of the LHS in Eq. (5)
yields

ḢB + Ḣgo + Ḣgi + Ḣws = 0. (6)

In the following development, the short-hand notation ω =
ωB/N is used to make equation description more com-
pact. Similarly, gimbal frame angular velocity definitions
are shortened such as ωGo/N = ωgo, ωGo/N = ωgi, and
ωW/N = ωws. Taking the inertial time derivative of the first
term of the LHS in Eq. (6) leads to

ḢB = [Is]ω̇ + ω×[Is]ω. (7)

In the sequel, the notation x× denotes the following skew-
symmetric matrix:

x× :=

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 , ∀x = [x1 x2 x3]
T . (8)

The second term of the LHS in Eq. (6) is shown as follows:

Ḣgo = [Igo](ω̇+ δ̈oĝo+ω×(δ̇oĝo))+ω×
go([Igo]ωgo) (9)

The third term of the LHS in Eq. (6) is related to the inner
gimbal of the DGVSCMG. This is shown as follows:

Ḣgi = [Igi](ω̇ + δ̈oĝo + δ̈iĝi + ω×(δ̇oĝo + δ̇iĝi)+

(δ̇iĝi)
×(δ̇oĝo)) + ω×

gi([Igi]ωgi) (10)

The fourth term of the LHS in Eq. (6) is related to the wheel
spin rate of the DGVSCMG. This is shown as follows:

Ḣws = [Iws](ω̇ + δ̈oĝo + δ̈iĝi + Ω̇ŝ+ ω×(δ̇oĝo + δ̇iĝi

+Ωŝ) + (δ̇oĝo)
×(δ̇iĝi +Ωŝ) + (δ̇iĝi)

×(Ωŝ))

+ ω×
ws([Iws]ωws) (11)

Substituting Eqs. (7)-(11) into Eq. (6), the dynamics of a
spacecraft with a DGVSCMG is obtained.

III. LPV MODELING

An LPV model to design GS controllers for attitude
stabilization is developed. First, Eq. (6) must be transformed
into an LPV model that linearly depends on scheduling
parameters [6]. The Jacobian linearization of Eq. (6) around
the equilibrium point (ωeq = 0, Ω̇eq = 0, δ̇ieq = 0, δ̇oeq =
0) leads to the linear dynamics of a spacecraft with a
DGVSCMG as follows:

ω̇ = A(ρ)ω +B(ρ)u+Ew (12)
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Fig. 2. Operation range of a DGVSCMG.

where u = [Ω̇ δ̇i δ̇o]
T is the control input, Ew the

disturbance term including model error and

A(ρ) = [J ]−1[Iws]M(ρ), (13)

B(ρ) = −[J ]−1[Iws]N(ρ), (14)

with

M(ρ) = (Ωŝ)×

=

 0 Ω sin δi Ωcos δi sin δo
−Ωsin δi 0 −Ωcos δi cos δo

−Ωcos δi sin δo Ωcos δi cos δo 0


(15)

N(ρ) = [ŝ Ωĝi×ŝ Ωĝo×ŝ]

=

cos δi cos δo −Ωsin δi cos δo −Ωcos δi sin δo
cos δi sin δo −Ωsin δi sin δo Ωcos δi cos δo
− sin δi −Ωcos δi 0


(16)

where ρ(Ω δi δo) is the scheduling parameter vector. If ρ
is defined by ρ = [Ω sin δi cos δi sin δo cos δo]

T , this
system is covered with a convex hull which has 32 (= 25)
extreme points or vertices [6]. In this way, the scheduling
parameters of the LPV model in Eq. (12) have too many
vertices to perform the GS controller design. To overcome
this problem, the method is considered to reduce the number
of vertices. The part which depends on the scheduling
parameters of the coefficient matrix B(ρ) is embeded into
a new input u′ as follows:

B̄ = −[J ]−1[Iws] (17)

u′ = N(ρ)u (18)

Therefore, the state-space representation of Eq. (12) is rewrit-
ten as follows:

ω̇ = A(ρ)ω + B̄u′ +Ew (19)

In this case, it is easy to design the optimal GS controller to
define the scheduling parameters as follows:

ρ =

 Ωŝ1
Ωŝ2
−Ωŝ3

 =

Ωcos δi cos δo
Ωcos δi sin δo

Ωsin δi

 :=

ρ1ρ2
ρ3

 (20)

In this case, matrix M(ρ) in Eq. (15) is rewritten by

M(ρ) =

 0 ρ3 ρ2
−ρ3 0 −ρ1
−ρ2 ρ1 0

 . (21)

Therefore, the scheduling parameters of a spacecraft with
a DGVSCMG in Eq. (20) have an interesting property. It
can be represented by the spherical coordinate system as in
Fig. 2. This property comes from DGVSCMG’s motion. Note
that the wheel spin rate Ω represents the radial coordinate and
the gimbal angles δi and δo represent the angular coordinate.

IV. CONVEX OPTIMIZATION

To design the GS controller, the convex hull to cover the
LPV system is designed.

A. Convex Hull #1

The polytopic system is introduced. Setting the state
variable x := ω, the state-space representation of Eq. (19)
is described as follows:

ẋ = A(ρ)x+ B̄u′ +Ew (22)

With the maximum value and the minimum one of the
scheduling parameters, the number of vertices is set to
8 (= 23). The coefficient matrix in this LPV system can
be expressed by the following polytopic representation:

A(ρ) =
8∑

i=1

λi(ρ)Aei, λi(ρ) ≥ 0,
8∑

i=1

λi(ρ) = 1 (23)

Let ρ
i

and ρi denote the lower and the upper bound of ρi.
Using these parameters and introducing the following inter-
polation parameters αi and αi, the scheduling parameters ρi
can be described as follows:

ρi = αiρi + αiρi, 0 ≤ αi, αi ≤ 1, αi + αi = 1 (24)

In this way, this system is covered with the convex hull as in
Fig. 3. From Eq. (20), the operation range of the scheduling
parameter is given by

−Ωmax ≤ ρ1 ≤ Ωmax; (25)

−Ωmax ≤ ρ2 ≤ Ωmax; (26)

−Ωmax ≤ ρ3 ≤ Ωmax. (27)

Therefore, first, the extreme controller Ki is designed at each
vertex of the convex hull. Then, the GS controller K(ρ) is
obtained by the combination of those extreme controllers as
follows:

K(ρ) =

8∑
i=1

λi(ρ)Ki, λi(ρ) ≥ 0,

8∑
i=1

λi(ρ) = 1. (28)

B. Convex Hull #2

How to reduce the vertex of the convex hull is considered.
Setting the new scheduling parameters

−Ωmax ≤ ρ′1 ≤ (1 +
√
2)Ωmax; (29)

−Ωmax ≤ ρ′2 ≤ (1 +
√
2)Ωmax; (30)

−Ωmax ≤ ρ′3 ≤ Ωmax, (31)
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Fig. 3. Convex hull #1.

the system is covered with the convex hull as in Fig. 4. In
this case, the number of the vertex can be represented by 8
or 6 and the polytopic representation A(ρ) is given by

A(ρ′) =

n∑
i=1

λi(ρ
′)Aei, λi(ρ

′) ≥ 0,

n∑
i=1

λi(ρ) = 1. (32)

Similary, the GS controller K(ρ) is obtained by the combi-
nation of extreme controllers as follows:

K(ρ′) =

n∑
i=1

λi(ρ
′)Ki, λi(ρ

′) ≥ 0,

n∑
i=1

λi(ρ) = 1. (33)

Note that n denotes the number of vertices in this case 8 or
6. The vertices (i = 1, 2) are common in convex hull #1
or #2 as in Figs. 3 and 4.

V. MULTIOBJECTIVE CONTROLLER DESIGN

A GS controller with LMIs that guarantees overall sta-
bility and achieves H2 performance for the LPV model as
in Eq. (22) is considered. First, the generalized plant for
Eq. (22) is defined as follows:{

ẋ = A(ρ̃)x+ B̄u′ +Ew

z = Cx+Du′ (34)

where ρ̃ is set to ρ in Eq. (25) or ρ′ in Eq. (29) and the
coefficient matrix set (C,D) is normally selected such that
they satisfy the condition CTD = 0, DTD > 0, and
where w and z are the disturbance input vector and the
performance output vector, respectively. In this study, LMI
representation for pole placement[16], [22] is introduced
as well as LMIs for H2 performance. The following LMI

Fig. 4. Convex hull #2.

problem is considered:

inf
Wi,X,Z

[Trace (Z)] subject to[
X ∗
ET Z

]
> 0, (35)[

(AiX − B̄Wi) + ( • )T ∗
CX −DWi −I

]
< 0, (36)

(AiX − B̄Wi) + ( • )T + 2αX < 0, (37)[
−rX AiX − B̄Wi

∗ −rX

]
< 0, (38)[

Φi (Θ) Ψi (Θ)
∗ Φi (Θ)

]
< 0, (39)

for all 1 ≤ i ≤ p,

where
Φi (Θ) = sinΘ

{
(AiX − B̄Wi) + ( • )T

}
(40)

Ψi (Θ) = cosΘ
{
(AiX − B̄Wi)− ( • )T

}
(41)

and p is the number of scheduling parameters, in this case
p is set to 8 or 6. Note that Eqs. (35) and (36) present the
H2 norm constraint and Eqs. (37)-(39) present the regional
pole constraints [16], [22] as in Fig. 2. Using the optimal
solution sets X, Wi to the problem in Eqs. (35)-(39), the
extreme controllers are given as follows:

Ki = WiX
−1, 1 ≤ i ≤ p. (42)

Substituting Eq. (42) into Eq. (28) or (33), the GS controller
K(ρ) is given by

u′ = −K(ρ)x. (43)
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Fig. 5. Pole Placement.

VI. NUMERICAL SIMULATIONS

This section presents two numerical simulations by using
two types convex hulls (with 8 vertices or 6 vertices). The
controller design parameters C and D, and the disturbance
coefficient matrix E are given as follows:

C =

[
30× I3
03×3

]
, D =

[
03×3

0.01× I3

]
, E =

[
I3

03×3

]
(44)

The simulation parameters are given in Table I, in which the
initial condition, the minimum input or the maximum one of
the DGVSCMG are given.

Figure 6 shows the time histories of the H2 norms (the
evaluation function of the LQ problem Jzw) in Cases 1-3.
The function Jzw is defined as follows:

Jzw(t) =

∫ t

0

(xTCTCx+ uTDTDu)dτ (45)

Note that the terminating time of the H2 norm is considered
as the current time. The number of vertex and volume of two
convex hulls are shown in Table II.

Figure 7 shows the angular velocity of a spacecraft and
DGVSCMG’s motion by using convex hull #1 in Case
1. From this figure, attitude stabilization of a spacecraft is
successfully accomplished. From Fig. 6, the proposed GS
controller with 6 vertices has improved the control perfor-
mance compared with the GS controller with 8 vertices.
From this Table and simulation results, in attitude control
of a spacecraft with DGVSCMG, the effectiveness of the
convex hull with few vertices is demonstrated.

VII. CONCLUSIONS

This paper, first, presents the dynamics and the lin-
ear parameter-varying (LPV) model of a spacecraft with
a double-gimbal variable-speed control moment gyro
(DGVSCMG). Then two types of convex hull are proposed
while focusing on the characteristics of the scheduling
parameters in the LPV model. To design optimal gain-
scheduled (GS) controllers, linear matrix inequalities (LMIs)
with regional pole placement constraints are applied. Finally,

TABLE I

SIMULATION PARAMETERS.

Parameter value Unit
[J ] diag[10 10 8] kgm2

[Iws] diag[0.008 0.008 0.008] kgm2

[Igi] diag[0.001 0.001 0.001] kgm2

[Igo] diag[0.001 0.001 0.001] kgm2

Ω0 200 rad/s
Ωmax 300 rad/s

Ω̇min, Ω̇max −5, 5 rad/s2

δi0, δo0 0, 0 rad

δ̇i,min, δ̇i,max −1, 1 rad/s

δ̇o,min, δ̇o,max −1, 1 rad/s
ω0 (Case 1) [0.08 0.05 − 0.06] rad/s
ω0 (Case 2) [−0.02 0.04 − 0.08] rad/s
ω0 (Case 3) [−0.08 − 0.06 − 0.05] rad/s

TABLE II

COMPARISON OF TWO CONVEX HULLS (CHS).

- CH #1 CH #2
Vertices 8 6 8

Volume (×Ω3
max) 8 6 + 4

√
2 12 + 8

√
2

the simulation results demonstrate the effectiveness of the
convex hull with few vertices.
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Fig. 7. Attitude stabilization: Convex hull #1 (Case 1).
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