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ATTITUDE AND VIBRATION CONTROL FOR A FLEXIBLE
SPACECRAFT WITH DOUBLE-GIMBAL VARIABLE-SPEED

CONTROL MOMENT GYROS

Takahiro Sasaki ∗, Takashi Shimomura †, Sam Pullen ‡, and Hanspeter Schaub §

This paper focuses on attitude and vibration control of a flexible spacecraft with
two parallel double-gimbal variable-speed control moment gyros (DGVSCMGs).
First, in this paper, a gain-scheduled (GS) controller for 3-axis attitude control is
designed by the post-guaranteed linear matrix inequalities (LMIs) method with
H2/H∞ constraints. Next, anH2/H∞ controller for vibration control is de-
signed, then to attain both attitude and vibration control at the same time, obtained
two controllers are combined while using the dynamic inversion (DI) technique.
Finally, the effectiveness of the proposed combined controller is demonstrated
through a numerical example.

INTRODUCTION

Both attitude and vibration control of a flexible spacecraft is of great interest in spacecraft ap-
plications. Missions of flexible spacecraft often require high speed attitude maneuver and high
pointing accuracy and stabilization. However, the oscillations of flexible solar battery paddles or
orbit disturbance torque (e.g. aerodynamics, solar pressure, magnetic toque) prevent such mission
requirements. Additionally, model uncertainty of the flexible spacecraft inertia is also critical factor
to prevent the mission success.

Attitude maneuver dynamics of a flexible spacecraft is described as time varying and nonlinear
which affected by orbit disturbance, model uncertainty and modal frequency of the flexible paddles
or antennas. To guarantee robustness of them, linear parameter-varying (LPV) control theory1 is
applied to the attitude control problems. Using LPV control theory, the spacecraft dynamics are
modeled as an LPV system to avoid difficulties arising from nonlinearities in the dynamics. A gain-
scheduled (GS) controller is applied to this model using linear matrix inequalities (LMIs). To solve
LMIs simultaneously, a multi-objective GS controller for evaluating both optimality and robustness
can be easily designed.2

A variety of control problems have been solved via LMIs under common Lyapunov functions.1,2

Regarding GS control as in,1 which can be considered for some class of nonlinear systems which
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Figure 1. j-th DGVSCMG.

can be described as LPV, if one selects a common Lyapunov function for a whole operating range,
the overall stability of the closed-loop system as time varying is guaranteed for any changing rate of
the scheduling variable. However, selecting a common Lyapunov function for the whole operating
range leads to conservatism of design. To avoid such conservatism easily, the post-guaranteed LMI
method3 is proposed, in which the distinct Lyapunov solutions are adopted. This paper adapts this
post-guaranteed LMI method to the spacecraft attitude problem and a kind of combined controller
for attitude and vibration control is designed while using the dynamic inversion (DI) technique.6,7

The attitude actuator considered in this paper is assumed to be a set of two parallel double-gimbal
variable-speed control moment gyros (DGVSCMGs)8,9 to attain high speed attitude maneuver. A
DGVSCMG is a new type of multi-degree-of-freedom (multi-DOF) actuator with a lot of advan-
tages. One DGVSCMG can generate three dimensional large torques, which leads to reduction
of the number of actuators, the total mass, and volume allocation within the spacecraft. How-
ever, a wheel mechanical failure is serious for a DGVSCMG device. Once its wheel has failed, a
DGVSCMG is unable to generate any torque. To avoid such situations, it is convenient to introduce
redundancy. DGVSCMGs have singularity problem, in which the Jacobian matrix is not calculated
. In this paper, a singularity avoidance steering law is proposed, based on singularity robustness
(SR) steering with null motion.

EQUATION OF MOTION

In this section, the dynamics of a flexible spacecraft with DGVSCMGs is established and the
kinematics with quaternions is described. Then combining both of them, an LPV model for 3-axis
attitude control is developed.

Nonlinear dynamics of a Flexible Spacecraft with DGVSCMGs

The spacecraft considered in this paper is assumed to be a flexible body and contains multiple
DGVSCMG devices as modeled in Fig.1. The body-fixed frameB is represented by a set of unit
vectorsx̂B, ŷB, andẑB. The inertial frame is given byN . SymbolsGo,Gi, andW denote the outer
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gimbal axis frame, the inner gimbal axis frame, and the wheel spin axis frame, respectively. Unit
vectorsŝj , ĝij , andĝoj denote spin axis, inner/outer gimbal axis inj-th DGVSCMG, respectively.

Here, the equation of motion (EOM) of a flexible spacecraft withn DGVSCMGs is considered.
The total inertial angular momentumH is described by

H = HB +Hgo +Hgi +Hws +Hη (1)

with

HB = [Is]ωB/N (2a)

Hgo = [Igo]ωGo/N (2b)

Hgi = [Igi]ωGi/N (2c)

Hws = [Iws]ωW/N (2d)

Hη = QT η̇ (2e)

where

ωGo/N = ωB/N +Ggoδ̇o (3a)

ωGi/N = ωB/N +Ggoδ̇o +Ggiδ̇i (3b)

ωW/N = ωB/N +Ggoδ̇o +Ggiδ̇i +GwsΩ (3c)

and[Is] is the inertia matrix of a spacecraft excluding DGVSCMG inertia contributions andωB/N

is the inertial angular velocity of the spacecraft.[Igi] or [Igo] is the moment of inertia of the
DGVSCMG about the inner or outer gimbal axes, respectively;[Iws] is the moment of inertia
of the wheel about the spin axes; andΩ = [Ω1, . . . ,Ωn]

T ∈ Rn is the wheel spin rate vector,
δi = [δi1, . . . , δin]

T ∈ Rn or δo = [δo1, . . . , δon]
T ∈ Rn is the inner or outer gimbal angle vector.

The matrices of the spin axes, the inner gimbal axes, and the outer gimbal axes are denoted by
Gws = [ŝ1, . . . , ŝn] ∈ R3×n, Ggi = [ĝi1, . . . , ĝin] ∈ R3×n, andGgo = [ĝo1, . . . , ĝon] ∈ R3×n,
respectively. In this flexible model,m elastic modes are considered withη ∈ Rm the modal coor-
dinate vector andQ ∈ Rm×3 the coupling matrix between flexible and rigid dynamics. The total
inertia matrix[J ] of a spacecraft includingn DGVSCMGs is given by

[J ] = [Is] + [Igo] + [Igi] + [Iws]. (4)

Note that this inertia tensor[J ] will vary with time as seen by the body frame. The EOM of a flexible
spacecraft follows from the Euler’s equation:

Ḣ = L, (5)

where the vectorL represents the sum of all the external torques experienced by the spacecraft and
notationx× denotes the following skew-symmetric matrix:

x× :=

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 , ∀x = [x1 x2 x3]
T . (6)

Substituting Eq. (1) into the LHS in Eq. (5) yields

ḢB + Ḣgo + Ḣgi + Ḣws + Ḣη = L. (7)
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In the following development, the short-hand notationω = ωB/N is used to make equation de-
scription more compact. Similarly, the definitions of the gimbal frame angular velocities and the
wheel spin frame angular velocity definitions are shortened such asωGo/N = ωgo, ωGi/N = ωgi

andωW/N = ωws, respectively. Taking the inertial time derivative of the first term of the LHS in
Eq. (7) leads to

ḢB = [Is]ω̇ + ω×[Is]ω. (8)

The second term of the LHS in Eq. (7) is related to the outer gimbals of the DGVSCMGs. This is
shown as follows:

Ḣgo = [Igo](ω̇ +Ggoδ̈o + ω×(Ggoδ̇o)) + ω×
go([Igo]ωgo) (9)

The third term of the LHS in Eq. (7) is related to the inner gimbals of the DGVSCMGs. This is
shown as follows:

Ḣgi = [Igi](ω̇+Ggoδ̈o+Ggiδ̈i+ω×(Ggoδ̇o+Ggiδ̇i)+(Ggiδ̇i)
×(Ggoδ̇o))+ω×

gi([Igi]ωgi) (10)

The fourth term of the LHS in Eq. (7) is related to the wheel spin rates of the DGVSCMGs. This is
shown as follows:

Ḣws = [Iws](ω̇ +Ggoδ̈o +Ggiδ̈i +GwsΩ̇+ ω×(Ggoδ̇o +Ggiδ̇i +GwsΩ)

+ (Ggoδ̇o)
×(Ggiδ̇i +GwsΩ) + (Ggiδ̇i)

×(GwsΩ)) + ω×
ws([Iws]ωws) (11)

The fifth term of the LHS in Eq. (7) is related to the flexible dynamics of a spacecraft. This is shown
as follows:

Ḣη = QT η̈ + ω×QT η̇. (12)

In summary, Eq. (7) is rewritten as the final spacecraft/DGVSCMGs kinetic equations of motion:

[J ]ω̇ = −ω×[Is]ω− [Igo]Ggoδ̈o − [Igo]ω
×(Ggoδ̇o)−ω×

go([Igo]ωgo)− [Igi]Ggoδ̈o − [Igi]Ggiδ̈i

−[Igi]ω
×(Ggoδ̇o)−[Igi]ω

×(Ggiδ̇i)−[Igi](Ggiδ̇i)
×(Ggoδ̇o)−ω×

gi([Igi]ωgi)−[Iws]Ggoδ̈o−[Iws]Ggiδ̈i

− [Iws]GwsΩ̇− [Iws]ω
×(Ggoδ̇o)− [Iws]ω

×(Ggiδ̇i)− [Iws]ω
×(GwsΩ)− [Iws](Ggoδ̇o)

×(Ggiδ̇i)

− [Iws](Ggoδ̇o)
×(GwsΩ)− [Iws](Ggiδ̇i)

×(GwsΩ)−ω×
ws([Iws]ωws)−QT η̈ −ω×QT η̇ +L.

(13)

The modal equation for a flexible spacecraft can be described as follows:

η̈ +Cη̇ +Dη +Qω̇ = 0, (14)

and the damping matrixC and the stiffness matrixD are given by

C = diag{2ζ1ωn1, . . . , 2ζ1ωnm} (15)

D = diag{ω2
n1, . . . , ω

2
nm}. (16)

Note thatωni is the nutural frequency andζi is the modal damping. (1 ≤ i ≤ m)
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Kinematics

The quaternion set for attitude descriptions consists of the vector part and the scalar one. Given
the principal rotation axiŝα = [αx αy αz]

T with α̂T α̂ = 1 and the rotation angleΘ, the quaternion
(Euler Parameters) is (are) defined by

q =

[
q̄
q4

]
:=

[
α̂ sin Θ

2

cos Θ
2

]
, (17)

with the constraint:

qTq = α̂T α̂ sin2
Θ

2
+ cos2

Θ

2
= 1. (18)

To formulate the attitude tracking problem of a spacecraft, we need the error quaternionqe = q†dq,
whereq denotes the current quaternion andqd denotes the desired quaternion with† meaning the
conjugate operation. The kinematics equation is given by[

˙̄qe
q̇4e

]
=

1

2
G(qe)ω, G(qe) :=

[
q4eI3 + q̄×e

−q̄Te

]
. (19)

LPV Model for 3-axis Attitude Control

This paper deals with two parallel DGVSCMGs’ allocation depicted as in Fig.2. In this case,
direction matrices in Eq. (13) are given by

Ggo =

0 0
0 0
1 1

 , Ggi =

− sin δo1 − sin δo2
cos δo1 cos δo2

0 0

 , Gws =

cos δi1 cos δo1 cos δi2 cos δo2
cos δi1 sin δo1 cos δi2 sin δo2
− sin δi1 − sin δi2

 . (20)

Figure 2. Two parallel DGVSCMGs’ allocation.

Here, linear parameter-varying (LPV) model for 3-axis attitude control is introduced. By using
Jacobian linearization of Eq. (13) around the equilibrium point (ωeeq = 0, Ω̇eq = 0, δ̇ieq =
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0, δ̇oeq = 0) and the vector part in Eq. (21) around the equilibrium point (̄qe = 0, q̇4e = 1), the
LPV model of a flexible spacecraft with DGVSCMGs is described as follows:

ω̇ = A(ρ)ω +Bu+Ew (21)

q̄e =
1

2
I3ω (22)

where

A(ρ) = [J ]−1[Iws](ρ)
×, (23)

B = −[J ]−1[Iws], (24)

with

ρ = GsΩ, (25)

Ew is disturbance term including the modal termsQT η̈, ω×QT η̇, the orbital disturbance term and
the model error such as an uncertainty on the spacecraft inertia matrix[J ]. The control inputu is
given as follows:

u = B̄u′ (26)

with

B̄ =
[
Fws Fgi Fgo

]
, (27)

u′ =

Ω̇δ̇i
δ̇o

 , (28)

whereu′ is actuator input vector. This is called steering law of DGVSCMGs. Using this steer-
ing law, the DGVSCMGs’ system can avoid their singularities. Note that Jacobian matrixB̄ is
constructed by

Fws =

cos δi1 cos δo1 cos δi2 cos δo2
cos δi1 sin δo1 cos δi2 sin δo2
− sin δi1 − sin δi2

 , Fgi =

−Ω1 sin δi1 cos δo1 −Ω2 sin δi2 cos δo2
−Ω1 sin δi1 sin δo1 −Ω2 sin δi2 sin δo2

−Ω1 cos δi1 −Ω2 cos δi2

 ,

Fgo =

−Ω1 cos δi1 sin δo1 −Ω2 cos δi2 sin δo2
Ω1 cos δi1 cos δo1 Ω2 cos δi2 cos δo2

0 0

 .

(29)

Note thatFws, Fgi andFgo are torque direction matrix of wheel spin rate, inner gimbal rotation and
outer gimbal rotation, respectively.

Combining linearlized dynamics in Eq. (21) and kinematics in Eq. (22), the state-space represen-
tation for 3-axis attitude control is given as follows:[

ω̇
˙̄qe

]
=

[
A(ρ) 0
1
2I3 0

] [
ω
q̄e

]
+

[
B
0

]
u+

[
E
0

]
w. (30)
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Setting the state variablex := [ωT
e q̄Te ]

T , the state-space representation of Eq. (30) is rewritten as
follows:

ẋ = Ae(ρ)x+Beu+Eew. (31)

The Jacobian matrices are defined as

Ae(ρ) :=

[
A(ρ) 0
1
2I3 0

]
, Be :=

[
B
0

]
, Ee :=

[
E
0

]
. (32)

CONTROLLER SYNTHESIS

First in this section, attitude controller for 3-axis attitude control is obtained by LPV control
theory. Then, attitude and vibration controller is designed while using dynamic inversion (DI).

Gain-Scheduled Attitude Controller

Optimal Gain-Scheduled Controller for 3-axis attitude control is introduced. The generalized
plant for Eq. (31) is defined as follows:{

ẋ = Ae(ρ)x+Beu+Eew

z = C ′x+D′u
(33)

where the coefficient matrix set (C ′,D′) is normally selected such that they normally satisfy the
conditionC ′TD′ = 0, D′TD′ > 0, and wherew andz are the disturbance input vector and the
performance output vector for the simple LPV model in Eq. (31), respectively. This controller is
given by

u = −K(ρ)x. (34)

The LPV system and the GS controller are expressed by the following polytopic representation:

Ae(ρ) =

p∑
i=1

λi(ρ)Aei, (35)

K(ρ) =

p∑
i=1

λi(ρ)Ki, (36)

λi(ρ) ≥ 0,

p∑
i=1

λi(ρ) = 1, (37)

wherep denotes the number of vertices, in this case,p is equal to8 (= 23). λ is polytopic coefficient.
(see in detail in ape of ref) Let us introduce the following mixedH2/H∞ LMI problem:2

inf
Wi,X,Z

[Trace (Z)] subject to (38a)

ΨH2 > 0, Ψ′
H2i < 0, (38b)

ΨH∞i < 0, (38c)

for all 1 ≤ i ≤ p,
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where

ΨH2 =

[
X ∗
ET

e Z

]
,

Ψ′
H2i =

[
(AeiX −BeWi) + ( • )T ∗

C ′X −D′Wi −I

]
,

ΨH∞i =

(AeiX −EeWi) + ( • )T XC ′T −WiD
′T Ee

∗ −γI D′

∗ ∗ −γI

 ,

Eqs. (38a) and (38b) guarantee theH2 performance and Eq. (38c) gives theH∞ constraint. Using
the optimal solution setsX, Wi to the problem of Eqs. (38), the extreme controllersKi at each
vertex of the operation range are given by

Ki = WiX
−1, 1 ≤ i ≤ p. (39)

Then, the GS controller is constructed by substituting Eq. (39) into Eq. (36). Note that the common
Lyapunov solutionX > 0 was used in the past GS controller design and resulted in conservatism.
As an alternative, post-guaranteed LMI method? is used, in which the distinct Lyapunov solutions
Xi > 0 are adopted. By using this method, mixedH2/H∞ LMI problem can be described as
follows:

inf
Wi,Xi,Zi

[Trace (Zi)] subject to (40a)

Ψ̃H2i > 0, Ψ̃′
H2i < 0, (40b)

Ψ̃H∞i < 0, (40c)

for each 1 ≤ i ≤ p,

where

Ψ̃H2i =

[
Xi ∗
ET

e Zi

]
Ψ̃′

H2i =

[
(AeiXi −BeWi) + ( • )T ∗

C ′Xi −D′Wi −I

]

Ψ̃H∞i =

(AeiXi −EeWi) + ( • )T XiC
′T −WiD

′T Ee

∗ −γI D′

∗ ∗ −γI

 .

Using the optimal solution sets (Xi,Wi) to the problem of Eqs. (40), less conservative extreme
controllers can be obtained. The extreme controllers are given by

Ki = WiX
−1
i , 1 ≤ i ≤ p. (41)

By using these extreme controllers, a GS controller is again constructed as in Eq. (36). In order to
guarantee overall stability and control performance in a whole operation range, we seek a common
Lyapunov solutionXc > 0 that satisfies the following LMIs:?

inf
Xc,Z

[Trace (Z)] subject to (42a)

Ψ̄H2c > 0, Ψ̄′
H2i < 0, (42b)

Ψ̄H∞i < 0, (42c)

for all 1 ≤ i ≤ p,
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where

Ψ̄H2c =

[
Xc ∗
ET Z

]
,

Ψ̄′
H2i =

[
(Aei −BeKi)Xc + ( • )T ∗

(C ′ −D′Ki)Xc −I

]
,

Ψ̄H∞i =

(Aei −EeKi)Xc + ( • )T XiC
′T −KiXcD

′T Ee

∗ −γI D′

∗ ∗ −γI

 .

Attitude and Vibration Controller

To attain attitude and vibration control at the same time, vibration controller is designed. From
Eq. (14), the state-space representation for vibration control is given as follows:[

η̈
η̇

]
=

[
−C −D
I 0

] [
η̇
η

]
+

[
Q
0

]
ω̇ +

[
Ẽ
0

]
w̃ (43)

Setting the state variablẽx := [η̇T ηT ]T , the state-space representation of Eq. (43) is rewritten as
follows:

˙̃x = Ãex̃+ B̃eω̇ + Ẽew̃. (44)

The Jacobian matrices are defined as

Ãe :=

[
−C −D
I 0

]
, B̃e :=

[
Q
0

]
, Ẽe :=

[
Ẽ
0

]
. (45)

The generalized plant for Eq. (43) is defined as follows:{
˙̃x = Ãex̃+ B̃eω̇ + Ẽew̃

z̃ = C̃ ′x̃+ D̃′ω̇
(46)

where the coefficient matrix set (̃C ′, D̃′) is normally selected such that they normally satisfy the
conditionC̃ ′T D̃′ = 0, D̃′T D̃′ > 0, and wherew̃ andz̃ are the disturbance input vector and the
performance output vector for the simple LPV model in Eq. (43), respectively. This controller is
given by

ω̇ = −K̃x̃. (47)

Let us introduce the following mixedH2/H∞ LMI problem again as follows:

inf
W̃ , X̃, Z̃

[
Trace

(
Z̃
)]

subject to (48a)

Ψ̄H2 > 0, Ψ̄′
H2 < 0, (48b)

Ψ̄H∞ < 0, (48c)
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where

Ψ̄H2 =

[
X̃ ∗
ẼT

e Z̃

]
,

Ψ̄′
H2 =

[
(ÃeX̃ − B̃eW̃ ) + ( • )T ∗

C̃ ′X̃ − D̃′W̃ −I

]
,

Ψ̄H∞ =

(ÃeX̃ − ẼeW̃ ) + ( • )T X̃C̃ ′T − W̃ D̃′T Ẽe

∗ −γI D̃′

∗ ∗ −γI

 .

Using the optimal solution sets̃X, W̃ , the optimal controllerK̃ is given by

K̃ = W̃ X̃−1. (49)

Note that in Eq. (47), the control input is given bẏω which is the differential of the upper part of
the state vector in general plant for attitude control in Eq. (30). This parameter is difficult to use
as a control input. To avoid this difficulty, dynamic inversion (DI) technique is applied.6,7 Using
the desireḋωref coming from vibration controller in Eq. (47), the desired control input for vibration
controluv is obtained by the following dynamic inversion system:

uv = B−1(ω̇ref −A(ρ)ω). (50)

Therefore, combining GS attitude controller in Eq. (34) and vibration controller in Eq. (50), attitude
and vibration controller̃u is described by

ũ = u+W ′uv, (51)

where the weighting matrixW ′ is given by

W ′ = diag{g1, g2, g3}, gi > 0, 1 ≤ i ≤ 3. (52)

The controller in Eq. (51) to attain attitude and vibration control at the same time can be rewriten
by

ũ = −(Kd(ρ) +W ′B−1A(ρ))ω −Kp(ρ)q̄e −W ′B−1(K̃pη + K̃dη̇), (53)

where

Kd(ρ) = K(ρ)×
[

I3
03×3

]
, Kp(ρ) = K(ρ)×

[
03×3

I3

]
(54)

K̃d = K̃ ×
[

I3
03×3

]
, K̃p = K̃ ×

[
03×3

I3

]
. (55)

STEERING LAW DESIGN

CMGs have singularity problem. In this section, singularity avoidance steering law for a space-
craft with DGVSCMGs is proposed. The steering law considered in this paper is rewriten as follws:

u = B̄u′. (56)

To obtain the actuator inputu′, inverse matrix ofB̄ is considered.
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Moore-penrose Steering Law

The general solution of Eq. (56) is given by

u′ = B̄†u, (57)

with

B̄† = B̄T (B̄B̄T )−1. (58)

The steering law, it is called “Moore-Penrose steering law”, is often used. However, this steering
law can not avoid their singularities.

Singularity Robustness Steering Law

To avoid the singularities, a singularity robustness (SR) steering law10 is proposed as follows:

u′ = B̄♯u, (59)

with

B̄♯ = B̄T [B̄B̄T + αI3]
−1, (60)

whereα is an SR parameter that is a positive scalar to be properly selected. In this paper, a sigmoid
function as an SR parameter is introduced as follows:

α = κ
1− exp

(
− 1

m

)
1 + exp

(
− 1

m

) , (61)

with

m =
√

det(B̄B̄T ), (62)

wherem is a singularity measurement andκ is a positive scalar. Although it can be calculated
control input by using this SR steering law, it is not guaranteed to steer gimbal angles away from
their singularity.

SR steering law with null motion

To steer gimbal angles away from their singularities, an SR steering law with null motion coming
from a redundancy in a DGVSCMGs’ system is proposed. A general solution of an SR steering law
includes two terms constructed by the particular solution and the homogeneous solution as follows:

u′ = B̄♯u+ W̃N (63)

with

W̃ = diag{w1, . . . , w6}, wi > 0, 1 ≤ i ≤ 6, (64)

N = [I6 − B̄♯B̄] t, t ∈ R6 (65)
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where the matrixN is the kernel space of̄B andW̃ is the weighting matrix. Whent ̸= 0, the term
W̃N in Eq. (63) presents null motion of the DGVSCMGs’ steering law. To steer gimbal angles
toward a preferred configuration, the vectort is determined by

t = ū∗ − ū (66)

whereū = [ΩTδTi δ
T
o ]

T is the actuator parameter set vector. the desired actuator parameter set
vectorū∗ is approximately selected to realize a desired configuration. By using this steering law, the
control input can be calculated and also the gimbal angles can be steered toward prefer configuration
away from singularity. In this paper, this steering law in Eq. (63) with Eqs. (65) and (66) is adapted.

NUMERICAL SIMULATION

This section presents attitude maneuver numerical simulations by using the attitude controller in
Eq. (34) and combined attitude and vibration controller in Eq. (53). As an example of a flexible
spacecraft, the thermoelectric outer planet spacecraft (TOPS) is considered.11 The flexible parame-
ters characterizing TOPS are represented by the following coupling matrixQ in Kg1/2m, damping
matrixC and stiffness matrixD:

Q =

−9.4733 −15.5877 0.0052
−0.5331 0.4855 18.0140
0.5519 4.5503 16.9974

 (67)

C =

0.0059 0 0
0 0.0075 0
0 0 0.0097

 (68)

D =

0.5476 0 0
0 0.5625 0
0 0 0.5776

 , (69)

with the nutural frequency in rad/s

ωn1 = 0.7400, ωn2 = 0.7500, ωn1 = 0.7600, (70)

and the modal dampings

ζ1 = 0.0040, ζ2 = 0.0050, ζ3 = 0.0064 (71)

associated to the first 3 natural modes (m = 3). Inertia tensor[J ] is given by

[J ] =

1543.9 −2.3 −2.8
−2.3 471.6 −35
−2.8 −35 1713.3

 . (72)

Initial modal coordinate vector and time derivative of modal coordinate vector isη(0) = [0 0 0]T , η̇(0) =
[0 0 0]T , respectively.

The DGVSCMGs’ parameters are given in Table1. The wheel saturation in DGVSCMG is
Ω = ±500rad/s and the limits of the wheel input isΩ = ±5rad/s2. the limits of the inner/outer
gimbal input isδ̇ = ±1rad/s.
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Table 1. DGVSCMGs’ Parameters

Parameter Value Unit ($)

[Iws] diag[0.0042 0.0042 0.0042] kgm2

[Igi] diag[0.001 0.001 0.001] kgm2

[Igo] diag[0.001 0.001 0.001] kgm2

Ω(0) [200 300] rad/s
δi(0) [0 0] rad
δo(0) [π/4 π/2] rad

The disturbance torque12 experienced by aerodynamics, solar pressure, magnetic torque, and
other environmental factors is assumed by

L =

4× 10−6 + 2× 10−6 sin(nt)

6× 10−6 + 3× 10−6 sin(nt)

3× 10−6 + 3× 10−6 sin(nt)

N ·m, (73)

wheren rev/day denotes the orbital frequency. A near-polar orbital satellite is considered in this
simulation13 in this case,n = 14.57788549.

The controller design parametersC ′
e andD′

e of the GS controller for 3-axis attitude control in
Eq. (34) and the disturbance coefficient matrixEe are given as follows:

C ′
e =

10× I3 03×3

03×3 2× I3
03×3 03×3

 , D′
e =

[
06×3

0.01× I3

]
, Ee =

[
I3

03×3

]
, (74)

the scheduling parameters are given in−700 ≤ ρi ≤ 700, i = 1, 2, 3. The controller design
parameters̃C ′

e andD̃′
e of the vibration controller in Eq. (vib) and the disturbance coefficient matrix

Ẽe are given as follows:

C̃ ′
e =

 I3 03×3

03×3 I3
03×3 03×3

 , D̃′
e =

[
06×3

I3

]
, Ẽe =

[
I3

03×3

]
, (75)

the weighting matrix of the combined attitude and vibration controllerW is given by

W =

0.06 0 0
0 0.06 0
0 0 0.06

 . (76)

Steering law to avoid the singularities in Eq. (63) with Eqs. (65) and (66) is adapted. The design
parameter for steering law is as follows:

W̃ =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 10 0 0 0
0 0 0 10 0 0
0 0 0 0 10 0
0 0 0 0 0 10

 , κ = 10, ũ∗ = [250 250 0 0 0 pi/2]T (77)
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The initial/desired attitude parameter and angular velocity are given in Table2. This maneuver4

corresponds to a rotation as follows:

α̂ = [−2/
√
14 1/

√
14 3/

√
14]T (78)

Θ = 8/9π (79)

in Eq. (17). This maneuver rotates thespacecraft160◦ around the principal rotation axiŝα. And
this simulation also consider the model uncertainty∆[J ] on the inertia tensor[J ]. Therefore in
the numerical simulation, the inertia tensor[J ] is given by[J ] + ∆[J ] with ∆[J ] = 0.2[J ], since
the oscillation of the flexible solar battery paddles or flexible parabolic communication antenna
prevent the spacecraft inertia matrix from being known exactly in a practical situation. This inertia
matrix variation can heavily affect spacecraft attitude, which invariably presents a challenge to the
spacecraft attitude control system.5

Table 2. Attitude Simulation Parameters

Parameter Value Unit ($)

q(0) [0 0 0 1]T −
qd [−0.5264 − 0.2632 0.7896 0.1736]T −

ω(0) [0.03435353 0 0]T rad/s
ωd [0 0 0]T rad/s

Figures3-6 show the comparison of the simulation results by using two controllers. Black lines
and green lines show the simulation result by using the GS attitude controller in Eq. (34) and the
combined attitude and vibration controller in Eq. (53), respectively.

Figures3 and4 shows the attitude behavior of a flexible spacecraft with DGVSCMGs. The time
history of the angular velocity of a spacecraft and attitude parameters (quaternions) are shown in
Figs. 3 and4, respectively. From these figures, the 3-axis attitude control have been completely
attained.

Figure5 shows the modal displacementsη. This figure demonstrates the effectiveness of the
proposed combined attitude and vibration controller, since the response of the modal displacements
is improved and the maximum amplitude value of the result by proposed controller is less than half
of that by the attitude controller. Figure6 shows controller input results. This figure shows the
amount of control input coming from proposed controller is almost the same as attitude controller.

Figures7-11 show the simulation results of the DGVSCMG motion by using the singularity
avoidance steering law in Eq. (63). Figures9 and10 show wheel input and gimbal input, respec-
tively. From these figures, DGVSCMG input does not exceed limit by torque limiter. Wheel and
gimbal motion in Figs9 and10show that wheel angular velocity and gimbal angles converge to pre-
ferred DGVSCMG parameter setũ∗ and also singularity measurement go away from the singularity
statementm = 0.
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Figure 3. Angular velocity of a spacecraft.
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Figure 6. Controller input.
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CONCLUSION

In this paper, the dynamics and the linear parameter-varying (LPV) model of a flexible spacecraft
equipped with multiple DGVSCMGs has been explored and developed, respectively. Then, a gain-
scheduled (GS) controller for 3-axis attitude control has been designed by the post-guaranteed linear
matrix inequalities (LMIs) method withH2/H∞ constraints. Based on the dynamic inversion (DI)
technique, a combined controller for attitude and vibration control has been obtained. To avoid the
singularity problem of DGVSCMGs, a singularity robustness (SR) steering law with null motion
is applied with a sigmoid function as an SR parameter. Finally, the effectiveness of the proposed
combined controller and singularity avoidance steering law is demonstrated through a numerical
example.
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