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ATTITUDE AND VIBRATION CONTROL FOR A FLEXIBLE
SPACECRAFT WITH DOUBLE-GIMBAL VARIABLE-SPEED
CONTROL MOMENT GYROS

Takahiro Sasaki ¥ Takashi Shimomura | Sam Pullen  and Hanspeter Schaub $

This paper focuses on attitude and vibration control of a flexible spacecraft with
two parallel double-gimbal variable-speed control moment gyros (DGVSCMGS).
First, in this paper, a gain-scheduled (GS) controller for 3-axis attitude control is
designed by the post-guaranteed linear matrix inequalities (LMIs) method with
Ha/Hoo constraints. Next, afiis/H., controller for vibration control is de-
signed, then to attain both attitude and vibration control at the same time, obtained
two controllers are combined while using the dynamic inversion (DI) technique.
Finally, the effectiveness of the proposed combined controller is demonstrated
through a numerical example.

INTRODUCTION

Both attitude and vibration control of a flexible spacecraft is of great interest in spacecraft ap-
plications. Missions of flexible spacecraft often require high speed attitude maneuver and high
pointing accuracy and stabilization. However, the oscillations of flexible solar battery paddles or
orbit disturbance torque (e.g. aerodynamics, solar pressure, magnetic toque) prevent such mission
requirements. Additionally, model uncertainty of the flexible spacecraft inertia is also critical factor
to prevent the mission success.

Attitude maneuver dynamics of a flexible spacecraft is described as time varying and nonlinear
which affected by orbit disturbance, model uncertainty and modal frequency of the flexible paddles
or antennas. To guarantee robustness of them, linear parameter-varying (LPV) controi iheory
applied to the attitude control problems. Using LPV control theory, the spacecraft dynamics are
modeled as an LPV system to avoid difficulties arising from nonlinearities in the dynamics. A gain-
scheduled (GS) controller is applied to this model using linear matrix inequalities (LMIs). To solve
LMIs simultaneously, a multi-objective GS controller for evaluating both optimality and robustness
can be easily designed.

A variety of control problems have been solved via LMIs under common Lyapunov funétfons.
Regarding GS control as #hwhich can be considered for some class of nonlinear systems which
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can be described as LPV, if one selects a common Lyapunov function for a whole operating range,
the overall stability of the closed-loop system as time varying is guaranteed for any changing rate of
the scheduling variable. However, selecting a common Lyapunov function for the whole operating
range leads to conservatism of design. To avoid such conservatism easily, the post-guaranteed LMI
method is proposed, in which the distinct Lyapunov solutions are adopted. This paper adapts this
post-guaranteed LMI method to the spacecraft attitude problem and a kind of combined controller
for attitude and vibration control is designed while using the dynamic inversion (DI) tech®fque.

The attitude actuator considered in this paper is assumed to be a set of two parallel double-gimbal
variable-speed control moment gyros (DGVSCM&s)o attain high speed attitude maneuver. A
DGVSCMG is a new type of multi-degree-of-freedom (multi-DOF) actuator with a lot of advan-
tages. One DGVSCMG can generate three dimensional large torques, which leads to reduction
of the number of actuators, the total mass, and volume allocation within the spacecraft. How-
ever, a wheel mechanical failure is serious for a DGVSCMG device. Once its wheel has failed, a
DGVSCMG is unable to generate any torque. To avoid such situations, it is convenient to introduce
redundancy. DGVSCMGs have singularity problem, in which the Jacobian matrix is not calculated
. In this paper, a singularity avoidance steering law is proposed, based on singularity robustness
(SR) steering with null motion.

EQUATION OF MOTION

In this section, the dynamics of a flexible spacecraft with DGVSCMGs is established and the
kinematics with quaternions is described. Then combining both of them, an LPV model for 3-axis
attitude control is developed.

Nonlinear dynamics of a Flexible Spacecraft with DGVSCMGs

The spacecraft considered in this paper is assumed to be a flexible body and contains multiple
DGVSCMG devices as modeled in Fi@. The body-fixed framés is represented by a set of unit
vectorsz g, yg, andzg. The inertial frame is given hy/. Symbolsg,, G;, andV denote the outer



gimbal axis frame, the inner gimbal axis frame, and the wheel spin axis frame, respectively. Unit
vectorss;, g;;, andg,; denote spin axis, inner/outer gimbal axisjith DGVSCMG, respectively.

Here, the equation of motion (EOM) of a flexible spacecraft withGVSCMGs is considered.
The total inertial angular momentuld is described by

H =Hp+ Hy, + Hy + Hys + H, (1)
with

Hp = [I5]wp/n (2a)
Hgy, = [Igo}wgo//\f (2b)
Hgyi = [Igilwg, /n (2c)
Hys = [Lys|wyw/n (2d)
H,=Q"n (2e)

where
wg,/n = wp/n + Ggodo (3a)
wg, /N = wp/n + Ggodo + Gid; (3b)
wyy/n = wp/n + Ggodo + Ggid; + Gruys (3c)

and[I;] is the inertia matrix of a spacecraft excluding DGVSCMG inertia contribution

is the inertial angular velocity of the spacecraftl,;] or [I,,] is the moment of inertia of the
DGVSCMG about the inner or outer gimbal axes, respectivily;] is the moment of inertia

of the wheel about the spin axes; afid= [, ... ,Qn]T € R"™ is the wheel spin rate vector,

8; = [0i1,--,0i]T € R"0réd, = [0o1,-..,00n]7 € R"is the inner or outer gimbal angle vector.

The matrices of the spin axes, the inner gimbal axes, and the outer gimbal axes are denoted by
Gus = [81,...,8n] € R¥", Gyi = [Gi1,--.,0in) € R¥", andGyo = [Go1,- - -, Gon] € R¥*",
respectively. In this flexible modeh, elastic modes are considered wijhe R the modal coor-

dinate vector and) € R™*3 the coupling matrix between flexible and rigid dynamics. The total
inertia matrix[.J] of a spacecraft including DGVSCMGs is given by

[J] = [IS] + [Igo} + [Igi] + [st}- (4)

Note that this inertia tens¥| will vary with time as seen by the body frame. The EOM of a flexible
spacecraft follows from the Euler’'s equation:

H-=1L, (5)

where the vectoL represents the sum of all the external torques experienced by the spacecraft and
notationz* denotes the following skew-symmetric matrix:

0 —xI3 T2
¥ = 3 0 -z |, "z= [x1 22 xg}T. (6)
—x9 T 0

Substituting Eq.[1) into the LHS in Eq.[§) yields

HB+Hgo+ng+st+H = L. (7)



In the following development, the short-hand notation= wg/ is used to make equation de-
scription more compact. Similarly, the definitions of the gimbal frame angular velocities and the
wheel spin frame angular velocity definitions are shortened sudyas, = wgo, wg, /v = wyi
andwyy,/n = wus, respectively. Taking the inertial time derivative of the first term of the LHS in
Eq. () leads to

Hp = [I]w + w*[[]w. (8)

The second term of the LHS in Ed{)(is related to the outer gimbals of the DGVSCMGs. This is
shown as follows:

Hgo = [Lgo)(w + GQOSO + w™ (GQOSO)) + ngo([Igc)]WQO) )

The third term of the LHS in Eq[{) is related to the inner gimbals of the DGVSCMGs. This is
shown as follows:

Hgi = [Igi](w‘i‘Ggoso‘i‘Ggisi‘i’wx(Gg050+Ggi8i)+(Ggi5i)X(Ggoso))‘i'wg ([ gz]wgz) (10)

The fourth term of the LHS in Eq[Z]j is related to the wheel spin rates of the DGVSCMGs. This is
shown as follows:

H s = [Lys| (@ + Gyodp + Gyidi + Gus 4+ W (Gyody + Gyidi + G s Q)
+ (Gg00o)“ (Gygili + Gusf) + (Ggidi)* (Gus®)) + wii ([Tws|wws)  (11)

The fifth term of the LHS in Eq[{) is related to the flexible dynamics of a spacecraft. This is shown
as follows:

H, =Q"ij+w*Qn. (12)

In summary, Eql{) is rewritten as the final spacecraft/DGVSCMGs kinetic equations of motion:

[Jw = —w™[Ls]w - QO]GQO(S [Lgolw (Ggo(so) wgo([Lgolwgo) — [Igi]Ggogo - [Igi}Ggisi
_[Igi]wX(GQOSO)_[ Igilw™ (Ggi‘si) [ glKngé )X(Ggoéo) gz({lgi]wgi)_[IwS]Ggoso_[IwS]GgiSi
— [1ws) s = [Tus]w™ (Godo) — [Tus)w™ (Gygids) — [Tus]w™ (Gus) = [Luws] (Godo) * (Gyids)

— [Lus)(Ggo90) “ (Gus®) — [T} (Ggidi) * (Gus®) — wis ([Luws|wws) — QT — w* Q" +I(Ii3)

The modal equation for a flexible spacecraft can be described as follows:
7+ Cn+ Dn+ Qw =0, (14)
and the damping matri€' and the stiffness matril> are given by

C = diag{2Gwn1,...,20wWnm} (15)
D = diag{w?,...,w>}. (16)

Note thatw,,; is the nutural frequency an@ is the modal damping1(< i < m)



Kinematics

The quaternion set for attitude descriptions consists of the vector part and the scalar one. Given
the principal rotation axig& = [a, a, a.]T with &T'& = 1 and the rotation angl®, the quaternion
(Euler Parameters) is (are) defined by

— A O
_|q|._ |asny 17
0= [5) =[] ¢
with the constraint:
C) C)
q"q = &T asin? 5 + cos? 5 = 1. (18)

To formulate the attitude tracking problem of a spacecraft, we need the error quamrﬁiomjlq,
whereq denotes the current quaternion apddenotes the desired quaternion witineaning the
conjugate operation. The kinematics equation is given by

ée _1 L Q4eI3+le
I = e@w. cla)= |0 LE. 19)

LPV Model for 3-axis Attitude Control

This paper deals with two parallel DGVSCMGs' allocation depicted as iniZidn this case,
direction matrices in Eq) are given by

0 0 —sind,;  —sindes €08 0;1 COS0p1  COS 09 COS 2
Ggo= |0 0|, Ggi= | cosdo c0S0p2 |, Gus = |cosd;isind,; cosdizsindeye | . (20)
11 0 0 —sin (51'1 —sin 5¢2
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Figure 2. Two parallel DGVSCMGs' allocation.

Here, linear parameter-varying (LPV) model for 3-axis attitude control is introduced. By using
Jacobian linearization of E{I8 around the equilibrium pointue., = 0, 2., = 0, diey =



0, Soeq = 0) and the vector part in Eq2{) around the equilibrium poinig, = 0, ¢4 = 1), the
LPV model of a flexible spacecraft with DGVSCMGs is described as follows:

w = A(p)w+ Bu+ Ew (21)
g = lw (22)
where
A(p) = [J] [Tws)(p)*, (23)
B = —[J]7 L], (24)
with
p =G0, (25)

Ew is disturbance term including the modal ter@$7j, w>Q”n, the orbital disturbance term and
the model error such as an uncertainty on the spacecraft inertia malrixhe control inputu is
given as follows:

u = Bu/ (26)
with
B = [Fws ng Fgo] ) (27)
Q
u' = 51 5 (28)
3o

wherew’ is actuator input vector. This is called steering law of DGVSCMGs. Using this steer-
ing law, the DGVSCMGSs’ system can avoid their singularities. Note that Jacobian niati$x
constructed by

c0s J;1 oS 0p1  COS Jjn COS 02 [—Qy sin §;1 cosdp1  —$2g sin Jj cos 2 |
Fws = | COS 5@'1 sin 501 COS 51’2 sin 502 y ng = —Ql sin (51'1 sin 501 —QQ sin (Sig sin 502
—sin (51'1 —sin 52’2 —Ql COS (51'1 —QQ COS (51'2
[—q cosd;18ind,;  —o coS o Sin 0y |
Fy, = | Q1cosdicosdor 2208042 COS 02
0 0

(29)
Note thatF’,,, F,; andFy, are torque direction matrix of wheel spin rate, inner gimbal rotation and
outer gimbal rotation, respectively.

Combining linearlized dynamics in E@I) and kinematics in EqRP), the state-space represen-
tation for 3-axis attitude control is given as follows:

[QZEﬁﬁHﬁ+ﬁ”%ﬂw (30)



Setting the state variabte := [w! g!]7, the state-space representation of B) {s rewritten as
follows:

= Ac(p)r+ Bcu+ E.w. (31)

The Jacobian matrices are defined as

Ac(p) = {A(”) 0], B, = [B] E.:— [E] (32)

CONTROLLER SYNTHESIS

First in this section, attitude controller for 3-axis attitude control is obtained by LPV control
theory. Then, attitude and vibration controller is designed while using dynamic inversion (DI).

Gain-Scheduled Attitude Controller

Optimal Gain-Scheduled Controller for 3-axis attitude control is introduced. The generalized
plant for Eq. [B]) is defined as follows:

(33)

&z =A.(p)xr+ B.u—+ Ew
z=C'z+ D'u

where the coefficient matrix se€(, D’) is normally selected such that they normally satisfy the
conditonC'"D’ = 0, D'"D’ > 0, and wherew andz are the disturbance input vector and the
performance output vector for the simple LPV model in E3{l)( respectively. This controller is
given by

u=—-K(p)x. (34)

The LPV system and the GS controller are expressed by the following polytopic representation:

p
Ac(p) =D Xi(p)Adi, (35)
=1
p
K(p)=>_ Xilp)Ki, (36)
=1
p
Xi(p) =0, Z Xilp) =1, (37)

wherep denotes the number of vertices, in this casis,equal ta8 (= 23). ) is polytopic coefficient.
(see in detail in ape of ref) Let us introduce the following migég/ ., LMI problem?

Wllrg 2 [Trace (Z)] subject to (38a)
\I/HQ > 0, \IIIJ;IQ,L < O, (38b)
\IIHooi < 07 (38C)

forall1 < <p,



where

X %
L [AGX-BW) (o)
H2i — C'X — D/“/Z Il
(AuX — E.W) + (o) XCT_-W,DT E,
\I/Hooi = * —’}/I D’ 5

* * —’yI

Eqgs. B89 and B8h) guarantee thé{, performance and EJ384) gives theH ., constraint. Using
the optimal solution setX, W; to the problem of Eqs[38), the extreme controller&’; at each
vertex of the operation range are given by

K, =W; X', 1<i<p. (39)

Then, the GS controller is constructed by substituting B8). ihto Eq. 36). Note that the common
Lyapunov solutionX > 0 was used in the past GS controller design and resulted in conservatism.
As an alternative, post-guaranteed LMI methilused, in which the distinct Lyapunov solutions
X,; > 0 are adopted. By using this method, mixgéd /*., LMI problem can be described as
follows:
inf [T Z; bject t 40a
WilAI)lci,Zi[ race (Z;)] subject to (40a)
\i/Hooi < O, (4OC)
foreach1 <1 <p,

where
= -Xi *
\I/H2z - _Eg“ Z’L

T (A X; — BW;)+ (e )T =«

H2z — i C'X,— D'W; I
5 _(AeiXi - Eevvi) + ( L4 )T XiC/T - VVZ'DIT Ee
\I’Hooi = 3k —'yI D/
* * —~I

Using the optimal solution setsX(;, W;) to the problem of Eqsi4(), less conservative extreme
controllers can be obtained. The extreme controllers are given by

K, =W;X; !, 1<i<np. (41)

By using these extreme controllers, a GS controller is again constructed as BgEdn(order to
guarantee overall stability and control performance in a whole operation range, we seek a common
Lyapunov solutionX, > 0 that satisfies the following LMIS:

)gl,fz [Trace (Z)] subject to (42a)
Wpoe >0, Wy <0, (42b)
\I’Hooz’ <0, (42C)

forall1 < < p,



where

= X, =
Vgoe = [ET Z} ,
I — (Aei - BeKi)Xc + ( L4 )T *
H2i — (C/—D/KZ‘)XC -1l
(A —E.K)X.+ ()T X,C"-K;X.D" E,
UHooi = * —~T D’

* * —I

Attitude and Vibration Controller

To attain attitude and vibration control at the same time, vibration controller is designed. From
Eq. (I9), the state-space representation for vibration control is given as follows:

A=l ) 8] G 43)

Setting the state variable := [ n’]7, the state-space representation of E@) (s rewritten as
follows:

&= A2+ B.w+ Ec. (44)

The Jacobian matrices are defined as

. [-Cc -D - [Q - [E
i=[€ R 5.-19. 5-[f]. s

The generalized plant for EGJ) is defined as follows:
_ (46)

where the coefficient matrix se€(, D’) is normally selected such that they normally satisfy the
conditionC'"D’ = 0, D'"D’ > 0, and wherew andz are the disturbance input vector and the
performance output vector for the simple LPV model in E)( respectively. This controller is
given by

w=-Kz&. (47)

Let us introduce the following mixe#, /. LMI problem again as follows:

_inf [Trace <Z)} subject to (48a)
W,.X,Z

Upo >0, WUyy <0, (48b)
Voo <0, (48¢c)



where

_ (X«
U = | T
H2 Eg“ VA )
o [(AX —BW) ()T«
a2 C'X -D'W —I|’
) (AX —EW)+(e) XCT_-WDT E,
\I/Hoo = * —’)/I D,
i * * —I

Using the optimal solution sef&, W, the optimal controlled is given by
K=wXx . (49)

Note that in Eq.[47), the control input is given by which is the differential of the upper part of
the state vector in general plant for attitude control in Eg).( This parameter is difficult to use
as a control input. To avoid this difficulty, dynamic inversion (DI) technique is apfffedising
the desiredv,.s coming from vibration controller in Eq4{d), the desired control input for vibration
controlu, is obtained by the following dynamic inversion system:

wy, = B (et — A(p)w). (50)

Therefore, combining GS attitude controller in E&4)and vibration controller in EqR0), attitude
and vibration controllef: is described by

u=u+ Wu,, (51)
where the weighting matri¥¥”’ is given by
W/ = diag{91792a93}, gi > Oa 1<0<3. (52)

The controller in Eq.[]) to attain attitude and vibration control at the same time can be rewriten
by

—(Ka(p) + W'B™' A(p))w — K, (p)d. — W'B~ (K,n + Kun), (53)
where
Kilo) = Ko x [l | o) = K () x|y 59
- - T - ~ 03
K, = Kx [03;}, K,=K x [ ;33], (55)

STEERING LAW DESIGN

CMGs have singularity problem. In this section, singularity avoidance steering law for a space-
craft with DGVSCMGs is proposed. The steering law considered in this paper is rewriten as follws:

u = Bu/. (56)

To obtain the actuator input’, inverse matrix ofB is considered.
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Moore-penrose Steering Law

The general solution of Ed56) is given by
u' = Bfu, (57)
with
Bt = BY(BBT) 1. (58)

The steering law, it is called “Moore-Penrose steering law”, is often used. However, this steering
law can not avoid their singularities.

Singularity Robustness Steering Law

To avoid the singularities, a singularity robustness (SR) steerint iayproposed as follows:
W = Biu, (59)
with
B* = BT[BB” + oI5, (60)

wherea is an SR parameter that is a positive scalar to be properly selected. In this paper, a sigmoid
function as an SR parameter is introduced as follows:
1 —exp (—%)
K1\
1+ exp (_R)

(61)

with

m = y/det(BBT), (62)

wherem is a singularity measurement ardis a positive scalar. Although it can be calculated
control input by using this SR steering law, it is not guaranteed to steer gimbal angles away from
their singularity.

SR steering law with null motion

To steer gimbal angles away from their singularities, an SR steering law with null motion coming
from a redundancy in a DGVSCMGs' system is proposed. A general solution of an SR steering law
includes two terms constructed by the particular solution and the homogeneous solution as follows:

v =Bu+WN (63)

with
W = diag{wi,...,wg}, w; >0, 1<i<6, (64)
N = [Is—B'B]t, tecRS® (65)

11



where the matrixV is the kernel space dB andW is the weighting matrix. Wheh # 0, the term
W N in Eq. ©&3) presents null motion of the DGVSCMGS’ steering law. To steer gimbal angles
toward a preferred configuration, the vectas determined by

t=a"—a (66)

wherew = [Q75761]7 is the actuator parameter set vector. the desired actuator parameter set
vectoru* is approximately selected to realize a desired configuration. By using this steering law, the
control input can be calculated and also the gimbal angles can be steered toward prefer configuration
away from singularity. In this paper, this steering law in &) (vith Eqs. &5) and [66) is adapted.

NUMERICAL SIMULATION

This section presents attitude maneuver numerical simulations by using the attitude controller in
Eq. (34 and combined attitude and vibration controller in E§3)( As an example of a flexible
spacecraft, the thermoelectric outer planet spacecraft (TOPS) is considdiieel flexible parame-
ters characterizing TOPS are represented by the following coupling n@rixkg'/?m, damping
matrix C and stiffness matrixD:

[—9.4733 —15.5877 0.0052
Q = |-05331 04855 18.0140 (67)
| 0.5519  4.5503  16.9974
[0.0059 0 0 ]
Cc = 0 00075 0 (68)
0 0 0.0097]
[0.5476 0 0 ]
D = 0 05625 0 |, (69)
0 0  0.5776]

with the nutural frequency in rad/s
wnt = 0.7400, wpa = 0.7500, w,y = 0.7600, (70)
and the modal dampings
¢1 = 0.0040, ¢ = 0.0050, (3 = 0.0064 (71)
associated to the first 3 natural modes£ 3). Inertia tensof.J] is given by

1543.9 —2.3 —2.8
[J]=| -23 4716 —35 |. (72)
—28 —35 17133

Initial modal coordinate vector and time derivative of modal coordinate vectgtis= [000]”, 7(0) =
[000]7, respectively.

The DGVSCMGSs’ parameters are given in Taflle The wheel saturation in DGVSCMG is
Q0 = +500rad/s and the limits of the wheel input @ = +5rad/s?. the limits of the inner/outer
gimbal inputisé = +1rad/s.
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Table 1. DGVSCMGSs'’ Parameters

Parameter Value | Unit ($)
[Iws] | diag[0.0042 0.0042 0.0042 kgm?
[1,] diag[0.001 0.001 0.001 kgm?
[ ] diag[0.001 0.001 0.001 kgm?

rad
rad

]
|

[200 300} rad/s
]

[r/4m/2

The disturbance torqdie experienced by aerodynamics, solar pressure, magnetic torque, and
other environmental factors is assumed by

4 x 10* +2 x 1079 sin(nt)
L= |6x10"5+3x10"5sin(nt)| N -m, (73)
3 x 1076 + 3 x 107 % sin(nt)

wheren rev/day denotes the orbital frequency. A near-polar orbital satellite is considered in this
simulatiort? in this casen = 14.57788549.

The controller design parametef§ and D, of the GS controller for 3-axis attitude control in
Eqg. (34) and the disturbance coefficient mat#ix are given as follows:

10 x Ig 03><3

;o s | Oexs _| I3
o[ 8] ooz el o
X X

the scheduling parameters are givenHni00 < p; < 700, ¢ = 1, 2, 3. The controller design
p~arameter€g and D!, of the vibration controller in Eq. (vib) and the disturbance coefficient matrix
E, are given as follows:

) I3 0343 . Opxs ~ I
Cé = 03><3 I3 ; Dé = |: I>3< :| ) Ee = |:03 3:| ) (75)
03x3 03x3 .

the weighting matrix of the combined attitude and vibration contrdBéiis given by

006 0 0
W=1|0 00 0. (76)
0 0 0.06

Steering law to avoid the singularities in EG3[ with Eqs. €5 and [&8) is adapted. The design
parameter for steering law is as follows:

100 0 0 0
01 0 0 0 0
- oo 10 0 0 0 B . T
W=1000 10 0 ol r=10 @ =[250250000pi/2] (77)
00 0 0 10 0
00 0 0 0 10]
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The initial/desired attitude parameter and angular velocity are given in [Bafleis maneuvér
corresponds to a rotation as follows:

& = [-2/V141/V143/V14)7 (78)
© = 8/9« (79)

in Eq. . This maneuver rotates thespaceci#fi® around the principal rotation axi&. And

this simulation also consider the model uncertaity/] on the inertia tensof./]. Therefore in

the numerical simulation, the inertia tengdt is given by[J] + A[J] with A[J] = 0.2]J], since

the oscillation of the flexible solar battery paddles or flexible parabolic communication antenna
prevent the spacecraft inertia matrix from being known exactly in a practical situation. This inertia
matrix variation can heavily affect spacecratft attitude, which invariably presents a challenge to the
spacecraft attitude control systém.

Table 2. Attitude Simulation Parameters

Parameter Value | Unit ($)
q(0) [0o01* -
g4 [~0.5264 — 0.2632 0.7896 0.1736]" —
w(0) [0.03435353 00]” | rad/s
wq [000]" rad/s

Figured3H6 show the comparison of the simulation results by using two controllers. Black lines
and green lines show the simulation result by using the GS attitude controller ii8&oand the
combined attitude and vibration controller in EG3), respectively.

Figured3 andd shows the attitude behavior of a flexible spacecraft with DGVSCMGs. The time
history of the angular velocity of a spacecraft and attitude parameters (quaternions) are shown in
Figs. @ andd, respectively. From these figures, the 3-axis attitude control have been completely
attained.

Figured shows the modal displacemenjs This figure demonstrates the effectiveness of the
proposed combined attitude and vibration controller, since the response of the modal displacements
is improved and the maximum amplitude value of the result by proposed controller is less than half
of that by the attitude controller. Figul&shows controller input results. This figure shows the
amount of control input coming from proposed controller is almost the same as attitude controller.

Figures[ZH11 show the simulation results of the DGVSCMG motion by using the singularity
avoidance steering law in E@J). Figuredd and[Id show wheel input and gimbal input, respec-
tively. From these figures, DGVSCMG input does not exceed limit by torque limiter. Wheel and
gimbal motion in Fig®andldshow that wheel angular velocity and gimbal angles converge to pre-
ferred DGVSCMG parameter sét and also singularity measurement go away from the singularity
statementn = 0.

14
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Figure 8. Gimbal angular velocity (gimbal input).
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CONCLUSION

In this paper, the dynamics and the linear parameter-varying (LPV) model of a flexible spacecraft
equipped with multiple DGVSCMGs has been explored and developed, respectively. Then, a gain-
scheduled (GS) controller for 3-axis attitude control has been designed by the post-guaranteed linear
matrix inequalities (LMIs) method witf/» /# ., constraints. Based on the dynamic inversion (DI)
technique, a combined controller for attitude and vibration control has been obtained. To avoid the
singularity problem of DGVSCMGs, a singularity robustness (SR) steering law with null motion
is applied with a sigmoid function as an SR parameter. Finally, the effectiveness of the proposed
combined controller and singularity avoidance steering law is demonstrated through a numerical
example.
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