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Abstract—A practical algorithm is developed for on-board plan-
ning of n-impulse fuel-optimal maneuvers for establishment and
reconfiguration of spacecraft formations. The method is valid
in circular and elliptic orbits and includes first-order secular
J2 effects. The dynamics are expressed in terms of differential
mean orbital elements, and relations are provided to allow the
formation designer to transform these into intuitive geometric
quantities for visualization and analysis. The maneuver target-
ing problem is formulated as an optimal control problem in both
continuous and discrete time. The continuous-time formulation
cannot be solved directly in an efficient manner, and the discrete-
time formulation, which has an analytical solution, does not
directly yield the optimal thrust times. Therefore, a practi-
cal algorithm is designed by iteratively solving the discrete-
time formulation while using the continuous-time necessary
conditions to refine the thrust times until they converge to the
optimal values. Simulation results are shown for a variety
of reconfiguration maneuvers and reference orbits, including
simulations with and without navigation errors for the NASA
CubeSat Proximity Operations Demonstration mission.
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1. INTRODUCTION
Spacecraft formation flying is a key area of research in
modern spacecraft dynamics and control. Numerous forma-

978-1-4799-1622-1/14/$31.00 c⃝2014 IEEE.

tion flying missions have been conceived over the past two
decades and many have flown successfully. This concept
enables several mission types including sparse apertures,
where multiple spacecraft take the place of a large antenna or
telescope, magnetic and electrical interaction studies, and on-
orbit servicing or inspection. One important area of research
in this field is the development of algorithms for establishing
or reconfiguring a formation.

Formation establishment or reconfiguration is defined as the
process of taking a spacecraft formation from some initial
configuration and transforming it to another configuration.
This is necessary in order to, for example, establish a syn-
thetic aperture, initiate or change proximity operations tra-
jectories for inspection of a debris object, or recover from
a period of uncontrolled drift. The main problem addressed
in this paper is that of designing maneuvers, made up of n
impulsive thrusts, to take a spacecraft formation from some
initial trajectory to a desired trajectory with as little fuel as
possible.

This is by no means a new problem and it has been investi-
gated by numerous authors in the past. However, the previous
methods suffer from one or more of the following drawbacks:

1. They involve the computationally expensive and sensitive
solution of sets of nonlinear equations [1–13].
2. They assume a circular or near-circular reference orbit [1–
4, 6, 9, 10, 13–16]
3. They assume a set of impulse times and do not solve for
the optimal ones [15–21].
4. They minimize fuel use for each thrust axis indepen-
dently [14, 17].

Some of these issues may not be critical for certain specific
mission profiles, but the goal of this paper is to design a
general method for optimal maneuver targeting in circular
or elliptic reference orbits, including the J2 perturbation,
which can be implemented on-board a spacecraft with limited
computational power.

This goal is accomplished by using an approach similar
to Lawden’s primer vector theory [22], as in [1–8, 10, 11].
However, instead of solving the nonlinear equations directly,
a suboptimal discrete-time formulation is iteratively refined
using the necessary conditions of the continuous-time system
to find the optimal impulse times. The discrete formulation
is analytically solvable with the use of differential orbital
elements as state variables. Similar discrete solvable formu-
lations have been used by Breger and How [17], Roth [19],
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Saunders [16], Anderson and Schaub [20], and Gaias et
al. [21], where the problem is broken up into many segments
and the overall fuel cost is minimized, but these methods
typically allow more impulses than necessary and do not find
the true optimal times.

Of the previous work, only Gaias et al. [21] include differen-
tial drag in the analytical model, which is a primary consid-
eration in low Earth orbit. However, it is extremely difficult
to model this perturbation accurately for general spacecraft
formations because of its dependence on the attitude and
shape of both spacecraft and problems with modeling at-
mospheric density and surface interactions. In some cases,
attempting to simulate drag effects with uncertain attitude
and density knowledge can result in less accurate state prop-
agation than if drag were not included in the force model
at all [23]. Therefore, the present work does not address
this perturbation, which implicitly invokes the assumption
that either the ballistic coefficients of the spacecraft in the
formation are very similar or the orbit altitude is high enough
that differential drag effects are small.

The dynamic equations in this paper are developed in terms
of mean orbital element differences rather than Cartesian
coordinates. Differential orbital elements are a natural and
convenient choice for designing general formations [24,25] as
they provide several mathematical advantages over Cartesian
coordinates for describing relative motion: they vary slowly,
since they are constants of the unperturbed motion, and using
mean elements allows for the explicit inclusion of secular
J2 effects. Furthermore, using a set of nearly-nonsingular
elements makes the solution uniformly applicable to both
circular and elliptic orbits. Although they provide indirect
insight into the shape, size, and location of the relative
orbit, they can be readily transformed into mission-useful
quantities, such as size, orientation, etc., for visualization and
analysis [26, 27].

From the overall system design standpoint, the best approach
to solving the problem is to use the most efficient mathemat-
ical form (differential mean orbital elements) to describe the
dynamics but allow the formation designer to interact with
more intuitive geometric quantities. The maneuver targeting
problem is formulated as an optimal control problem in which
the analytical solution to the unforced dynamics is given by
the Gim-Alfriend state transition matrix (STM) [28] and the
control influence is given by Gauss’s Variational Equations
(GVE) [29], re-formulated in terms of the nearly-nonsingular
elements. Similar approaches have been used by previous
authors to solve feedback control problems using classical
mean orbital elements [17, 30–32].

Several useful formation configurations have been developed
using the well-known Hill-Clohessy-Wiltshire (HCW) [33,
34] equations, which describe the motion of a spacecraft
formation in a circular, unperturbed reference orbit. These
configurations are discussed at length by authors such as
Fehse [35], Woffinden [36], Alfriend et al. [37], and others.
In elliptic, unperturbed orbits, the dynamics are governed by
the Tschauner-Hempel (TH) [38] or Lawden’s [22] equations.
A useful parametrization of the general solution to these
equations was derived by Sengupta and Vadali [27] in terms
of nearly-nonsingular elements. Using the conversions they
provide, the method of this paper is employed by defining
a desired formation in terms of HCW or TH parameters
and then converting to differential elements for maneuver
targeting.

Uncertainties in navigation and maneuvering systems, as well
as unmodeled perturbations such as J2 and atmospheric drag,
will cause deviations from a desired HCW or TH trajectory
over time. In particular, the greatest uncertainty will be
encountered in the along-track direction, because that is the
direction of orbital motion and any errors in relative orbital
period will cause errors in the along-track drift rate. As
noted by Carpenter and Alfriend [39], relative velocity errors
are directly related to differential semimajor axis uncertainty
(which determines the relative orbital period), which is usu-
ally the most important error in formation flying.

Along-track uncertainty and errors in along-track drift rate
introduce substantial collision risk into any proximity opera-
tion. For example, the NASA DART mission ended unsuc-
cessfully when the spacecraft collided with the MUBLCOM
satellite during near-range acquisition maneuvers because of
poor along-track navigation [40]. Recent authors such as
Fehse [35], Naasz [41], D’Amico and Montenbruck [42],
and Gaylor and Barbee [43] have discussed strategies for
designing passively safe trajectories to mitigate collision risk
without requiring frequent corrective thrusting. The same
DART mission successfully used these types of passively
safe trajectories during the long-range phases of the mis-
sion before transitioning to non-passively safe trajectories
for near-range maneuvers. The DARPA Orbital Express
mission avoided a collision during an abort maneuver and
loss of navigation information thanks to the unintentional
presence of out-of-plane motion which made its trajectory
passively safe [44]. The European PRISMA and TanDEM-
X/TerraSAR-X missions have both successfully used fuel
efficient, passively safe trajectories for proximity operations
as well.

The paper is laid out as follows. In Section 2, the forma-
tion dynamics are defined in terms of differential nearly-
nonsingular mean orbital elements and the HCW and TH
design parameters are summarized. The minimum-fuel ma-
neuver targeting problem is defined in Section 3 and the
necessary conditions for optimality are derived. Section 4
discusses a practical algorithm for on-board maneuver tar-
geting, in which the discrete-time problem is iteratively
solved while using the continuous-time necessary conditions
to refine the thrust times until they converge to the optimal
values. Finally, Section 5 provides simulation results for a
variety of reconfiguration maneuvers and reference orbits.
This includes simulations with and without navigation errors
for the NASA CubeSat Proximity Operations Demonstration
(CPOD) mission, as well as a comparison to the impulsive
maneuver targeting method of Anderson and Schaub [20].
CPOD, sponsored by the NASA Office of the Chief Tech-
nologist, is to demonstrate formation flying and docking of
a pair of 3U CubeSats using miniaturized navigation and
propulsion. The algorithm defined in this paper is to form the
basis of the CPOD guidance system for on-board maneuver
planning.

2. FORMATION DYNAMICS
A general spacecraft formation consists of two or more space
objects flying in close proximity to one another. The term
“close” is defined such that the relative motion between the
objects can be linearized about some reference orbit (this de-
pends on the orbit of the formation and the required accuracy
of the motion). Spacecraft in the formation can act either
cooperatively or noncooperatively and the reference orbit
need not correspond to an actual physical object. Without
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î1
Reference

Orbit

Inertial

Frame

LVLH

Frame

Figure 1. LVLH reference frame.

loss of generality, in this paper, the formation is assumed
to consist of only two spacecraft. One spacecraft, which
defines the reference orbit, is designated the “chief,” and it is
uncontrolled. The other spacecraft is designated the “deputy,”
and it is controlled by a 3-component thrust input.

The dynamics of relative motion are defined in terms of
differential orbital elements, but formation configurations and
visualizations are presented in Cartesian coordinates as well,
using the local-vertical–local-horizontal (LVLH) reference
frame. This frame, shown in Figure 1, is defined with ĥr

in the radial direction, ĥh in the orbit normal direction, and
ĥt completing the right-hand system. The mapping between
differential orbital elements and LVLH coordinates can be
found in a number of references, e.g. [26, 28, 45].

Formation Dynamics in Nearly-Nonsingular Mean Orbital
Elements
The nearly-nonsingular mean orbital elements of the refer-
ence (chief) orbit are defined as

œ = [ a λ i q1 q2 Ω ]T (1)

where a is the semimajor axis, λ = M + ω is the mean argu-
ment of latitude,M is the mean anomaly, ω is the argument of
perigee, i is the inclination, q1 = e cosω and q2 = e sinω are
the orbital frame components of the eccentricity vector, e is
the eccentricity, and Ω is the right ascension of the ascending
node. This set of orbital elements is chosen instead of the
classical orbital elements because it is not singular in the case
of a circular orbit; however, it is still singular in an equatorial
orbit.

The transformation from the osculating elements œ′ to the
mean elements is defined by

œ = g (œ′) (2)

The full transformation is given by Brouwer’s analytical
satellite theory [46], and a first-order truncation is given by
Schaub and Junkins [47]. Including the effects of J2, the
mean elements evolve according to

œ̇ = f (œ) + g (B (œ′)u) (3)

where u is a thrust input defined in the LVLH frame,

u = [ ur ut uh ]T (4)

whose effect on the osculating orbital elements is given by
a modified form (to use the nearly-nonsingular elements)
of Gauss’s Variational Equations (GVE) B (œ′), given in
Appendix A. Since GVE give the effect of accelerations on
the osculating elements, the osculating–mean transformation
must then be applied to determine changes in the mean
elements. However, the sensitivities of mean element changes
with respect to osculating element changes are of at most
O (J2); therefore, for small accelerations it is reasonable to
approximate Eq. (3) by [30, 31]

œ̇ ≈ f (œ) +B (œ)u (5)

The unforced dynamics are given by a modified form of
Lagrange’s Planetary Equations (LPE) for J2 [29],

f (œ) =
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(6)

where J2 is the coefficient of the second zonal harmonic, Re
is the mean equatorial radius of the Earth, p is the semilatus
rectum, n is the mean motion, and η =

√
1− e2.

The motion of the deputy about the reference orbit is de-
scribed by a set of differential mean orbital elements, which
are related to the deputy’s mean elements by

δœ = œd − œ (7)

Assuming the differences between the deputy’s mean ele-
ments and the reference elements are small, the dynamics
of the differential mean elements are found by linearizing
Eq. (5) about the reference orbit:

δœ̇ = Aδœ+Bu (8)

where B is GVE evaluated on the reference orbit and

A =
∂f

∂œ

∣
∣
∣
∣
œ

(9)

is the Jacobian of LPE evaluated on the reference orbit. The
definition ofA is found in Appendix B.

State Transition Matrix for the Differential Elements—The
general solution to Eq. (8) is given by

δœ (t) = Φ (t, t0) δœ (t0)+

t∫

t0

Φ (t, τ)B (τ)u (τ) dτ (10)

where Φ (t2, t1) is the state transition matrix (STM) of A
from t1 to t2. The STM for the differential nearly-nonsingular
mean orbital elements is derived by Gim and Alfriend [28].
The STM found in that paper requires a small modification
due to the fact that it uses the true argument of latitude
θ = f + ω instead of the mean argument of latitude λ.
For formations in near-circular reference orbits, significant
computation effort is saved by using the small-eccentricity
version of the STM given by Alfriend and Yan [48].
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Characterization of Relative Motion in Circular or Elliptic
Orbits
The motion of the deputy relative to the chief in the LVLH
frame in a general unperturbed elliptic orbit is governed by
the Tschauner-Hempel (TH) [38] or Lawden’s [22] equations.
Note that in the following development, the relative motion
is not restricted to periodic solutions, which allows for the
definition of more generic rendezvous trajectories in addition
to standard proximity operations. A useful parametrization of
the general solution to these equations is derived by Sengupta
and Vadali [27] in terms of nearly-nonsingular elements:

x (θ) = ρ1 sin (θ + α̃0)−
2vd
3nη2

[
r

p

−
3 (q1 sin θ − q2 cos θ)

2η3
K (θ)

] (11)

y (θ) =
ρ1r

p
(2 + q1 cos θ + q2 sin θ) cos (θ + α̃0)

+
ρ2r

p
+

vdp

rnη5
K (θ)

(12)

z (θ) =
ρ3r

p
sin

(

θ + β̃0

)

(13)

whereK (θ) is an implicit function of θ,

K (θ) = λ− λ0 = n (t− t0) (14)

x, y, z are the components of the relative position ρ in
the LVLH frame, and ρ1, ρ2, ρ3, vd, α̃0, and β̃0 are the
parameters that define the relative trajectory. ρ1 and ρ3 relate
to the amplitude of the in-plane and out-of-plane motion, α̃0

and β̃0 are the initial phase angles, ρ2 determines how far
offset the motion is in the along-track direction, and vd is the
along-track drift rate. The presence of the time-varying orbit
radius r in many of these terms means that the motion does
not correspond to a simple oscillator in an elliptic orbit.

If the reference orbit is circular, Eqs. (11)–(13) simplify
to the well-known Hill-Clohessy-Wiltshire (HCW) [33, 34]
equations,

x (t) = ρ sin (nt+ α0)−
2vd
3n

(15)

y (t) = 2ρ cos (nt+ α0) + d+ vd (t− t0) (16)
z (t) = ρz sin (nt+ β0) (17)

In this case, ρ and ρz correspond precisely to the amplitude
of the in-plane and out-of-plane motion, the in-plane motion
is the superposition of a 2-1 ellipse and a linear drift in the
along-track direction at a rate of vd, and d is the along-track
offset of the initial in-plane ellipse. Any along-track drift
also induces a small constant radial offset. Several useful
trajectories for proximity operations and rendezvous are spec-
ified by choosing different values of these parameters. These
are discussed at length by authors such as Woffinden [36],
Alfriend et al. [37], and others.

Several authors [26, 27, 45, 49–51] have analyzed the effects
of eccentricity on the HCW trajectories. The most significant
effects of eccentricity are the distortion of the harmonic
motion, the introduction of an along-track bias in the in-plane
motion, a shift in phase for both α0 and β0, and oscillation
of the along-track offset d. Sengupta and Vadali [27] sug-
gest a number of possible corrections to make the elliptical

motion more closely approximate a desired HCW trajectory,
although it will never be possible to match it exactly. For
example, setting

ρ2a =
2η2d

3− η2
(18)

in a leader-follower configuration modifies the along-track
offset so that the time-averaged deputy-chief separation is d.
Similarly, setting

ρ2b = ρ (q1 cosα0 − q2 sinα0) (19)

in an in-plane ellipse with d = 0 corrects the along-track bias
so that y (−α0) = 2ρ and y (π − α0) = −2ρ (this is just
one possible bias correction). For an in-plane ellipse with
non-zero d, use ρ2 = ρ2a + ρ2b. Both of these equations
reduce to the HCW parameters in circular orbits. Additional
corrections are possible for the other parameters as well, but
this paper only employs the two, so that ρ1 = ρ, ρ3 = ρz ,
α̃0 = α0, and β̃0 = β0.

Initial Differential Elements for General Formations
In order for the trajectory designer to make use of the dy-
namic formulation in terms of differential orbital elements,
relationships are required to convert the TH (or HCW) param-
eters into nearly-nonsingular element differences. Sengupta
and Vadali [27] provide the required equations, which are
summarized here for reference:

δa =
−2ηvd
3n

(20)

δλ =
ρ2
p

− δΩ cos i

−
1 + η + η2

1 + η

ρ1
p

(q1 cos α̃0 − q2 sin α̃0)
(21)

δi =
ρ3
p

cos β̃0 (22)

δq1 = −
(

1− q21
) ρ1
p

sin α̃0 + q1q2
ρ1
p

cos α̃0

− q2

(
ρ2
p

− δΩ cos i

) (23)

δq2 = −
(

1− q22
) ρ1
p

cos α̃0 + q1q2
ρ1
p

sin α̃0

+ q1

(
ρ2
p

− δΩ cos i

) (24)

δΩ =
−ρ3
p

sin β̃0

sin i
(25)

J2 Perturbation Effects—A number of authors [26,45,52–54]
have also investigated the effects of the J2 perturbation on
the HCW and TH trajectories. It is possible to impose
conditions on the initial differential mean elements to design
J2-invariant relative orbits (in the mean sense) for formation
flying, as discussed by Schaub and Alfriend [53]. However,
this requires imposing three constraints, leaving only three
degrees of freedom for trajectory design. Instead, it is
common to enforce only one constraint on the differential
semimajor axis, which mitigates along-track drift due to J2
and keeps the long-term motion bounded. Note that the
magnitude of this constraint is approximately proportional
to the eccentricity plus the magnitude of the out-of-plane
motion, so the correction is negligible for near-circular orbits
with very little out-of-plane motion.
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Passively Safe Trajectories
Passively safe trajectories are designed by using a combina-
tion of in-plane and out-of-plane harmonic motion with initial
phase angles selected so that the trajectory never crosses the
along-track axis. In this way, if the deputy is unintentionally
drifting towards the chief in the along-track direction, they
cannot collide since the deputy never actually crosses the
along-track axis. Maximum “safety” is achieved when the
phase angles are chosen such that β0 = α0 ± π

2
since this

maximizes the distance between the deputy and the along-
track axis when either x = 0 or z = 0. This paper uses
the nomenclature of Fehse [35], Naasz [41], and Gaylor and
Barbee [43], which refers to this type of trajectory as a “safety
ellipse,” and an example is shown in Figure 2. The same
strategy is used to achieve passively safe rendezvous by in-
troducing a non-zero along-track drift rate (which introduces
a corresponding radial offset) and initial along-track offset
along with the same ellipse definition. This trajectory is
referred to as a “walking safety ellipse,” and an example is
shown in Figure 3.

3. FUEL-OPTIMAL TARGETING OF
N-IMPULSE MANEUVERS

The main problem addressed in this paper is that of finding
optimal minimum-fuel maneuvers, made up of n impulsive
thrusts, for formation reconfiguration. In this paper, unlike
some other formulations, the minimum-fuel problem is stated
in terms of the 2-norm of the thrust input instead of 1-norm.
In general, even if multiple thrusters are available, it saves
fuel to align the net thrust direction with one of the thrusters
(or pair of co-aligned thrusters) when thrust is required in
more than one LVLH direction, due to the triangle inequality.
The fuel savings are greater for larger maneuvers, as the
extra fuel cost is proportional to the total cost. That is, for
smaller maneuvers, it might make more sense, operationally,
to spend the small amount of extra fuel to use multiple
thrusters to achieve a maneuver and not disrupt the attitude
of the spacecraft.

In this section, the minimum-fuel n-impulse maneuver tar-
geting problem is stated in both continuous- and discrete-
time forms and the necessary conditions for optimality are
derived. Neither of these formulations adequately solves
the problem on its own, but recognizing the duality of the
continuous and discrete formulations under certain conditions
allows a convenient solution to be found. In the section
that follows, a practical algorithm for on-board maneuver
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Figure 3. Walking safety ellipse example.

targeting is described which uses an iterative refinement of
the discrete-time form of the problem to solve for the optimal
thrust times and impulse magnitudes.

Continuous-Time Optimal Control Problem
First, the minimum-fuel problem is defined in terms of the
continuous-time dynamics. The analysis is similar to a
formation flying application of Lawden’s primer vector [22]
theory, which is described in detail by McAdoo et al. [55]
and Jezewski [56]. A number of previous authors have used
primer vector theory to address the formation reconfiguration
problem in terms of Cartesian states [1–8, 10, 11]. The
difference in this formulation is that the primer vector now
depends on all six orbit element costates through GVE, which
are time-varying, instead of only on the three-component
velocity costate as in the Cartesian case.

The fuel cost for an n-impulse maneuver is defined as

J =

tn∫

0

γ (t) dt (26)

where γ (t) is the impulse magnitude at time t, such that

γ (t) = γ1δ (t− t1)+γ2δ (t− t2)+. . .+γnδ (t− tn) (27)

and the thrust is defined by

u = γû (28)

δ (t− ti) is the Dirac delta function and all γi > 0. Note
that the final impulse is constrained to occur at the final
time, which is free. According to the sifting property of
delta function, this cost is exactly the sum of the impulse
magnitudes:

J =
n
∑

i=1

γi (29)

which is the total ∆V of the maneuver. The control goal is
to determine the optimal γi, ti, and û to take the system from
a fixed initial state δœ0 to a desired final state δœn = δœf
(fixed final state).

Necessary Conditions for Optimality—Incorporating the sys-
tem dynamics defined in Eq. (8), the Hamiltonian can be
written,

H = γ + λT (Aδœ+ γBû) (30)
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On an optimal trajectory, the costate equation is

λ̇ = −Hδœ = −ATλ (31)
and both the costate and its derivative must be continuous.
The solution to the costate equation is given by

λ (t) = ΦT (t0, t)λ (t0) (32)
(See proof in Appendix C.) Since the control direction û ap-
pears linearly inH , the optimal control cannot be determined
directly from the stationary condition. Applying Pontryagin’s
minimum principle, the control direction which minimizes
the Hamiltonian is

û = −BTλ = −p (33)
where p is defined as the primer vector, which a formation
flying analogue to Lawden’s primer vector [22]. As men-
tioned above, the difference between this formulation and
previous primer vector-based formation flying analyses is that
p now depends on all six orbit element costates through
GVE, the time-varyingBmatrix, instead of only on the three-
component velocity costate.

Applying the necessary condition for the control direction,
the Hamiltonian then becomes

H =
(

1− pTp
)

γ + λTAδœ (34)

Since H must be continuous along an optimal trajectory, the
coefficient of γ must be zero when each impulse is applied:

∥p∥ = p = 1 , ∀ t = ti (35)
At other times, for the trajectory to be optimal, p < 1 or
else Pontryagin’s minimum principle would imply that the
trajectory is non-optimal since some additional non-zero γ
exists which would decrease the Hamiltonian. In addition,
λ and therefore p must be continuous across the impulses.
Since p < 1 before and after each impulse, then ṗ = 0 at
those points (this includes the final impulse since tn is free
and must also obey Pontryagin’s minimum principle). That
is,

ṗTp = 0 , ∀ t = ti (36)
assuming without loss of generality that t1 ̸= 0. If t1 = 0
and this condition is not satisfied, then there exists a t1 < 0
which will have a lower cost.

Continuity of the Hamiltonian also requires that H+ = H−

for each impulse,

0 = H+ −H− = λTA
(

δœ+ − δœ−
)

= λ̇TBBTλγi (37)
Together, Eqs. (36) and (37) then imply the two conditions

(

BT λ̇
)T (

BTλ
)

= 0 , ∀ t = ti (38)
(

ḂTλ
)T (

BTλ
)

= 0 , ∀ t = ti (39)

In Lawden’s primer vector theory, the B matrix is constant
and these constraints reduce to the familiar ṗ = 0 condition.
For the final time free problem, the last condition is given by

0 = H (tn) = λT
nA (tn) δœf = −λ̇T

n δœf (40)

where λn = λ (tn). This implies that the optimal final time
occurs when the derivative of the costate is perpendicular
to the desired state (or, equivalently, when the costate is
perpendicular to the derivative of the desired state).

Computation Difficulties—The continuous-time optimal con-
trol problem is challenging to solve because of the nonlin-
earity of the problem. When the necessary conditions are
applied, the result is a set of coupled nonlinear differential
equations. Even if the state and costate dynamics are enforced
explicitly, these still result in a set of coupled nonlinear
algebraic equations. Techniques exist in the literature to
solve this problem using the traditional primer vector for-
mulation, e.g. [1, 55–58], by beginning with two impulses
and adding additional ones until the optimal maneuver is
obtained. However, these techniques do not apply directly
to the present problem since the primer vector now depends
on all six elements of the costate through the time-varying
GVE and it is more challenging to obtain a compatible initial
estimate for the costate, especially when adding an additional
impulse. Furthermore, all of these techniques require a
multi-dimensional nonlinear solver, which will be subject to
convergence and multiple solution issues, and it simply may
not be practical to implement such an algorithm on-board a
small spacecraft.

Discrete-Time Optimal Control Problem
Instead of expressing the minimum-fuel problem in terms of
the continuous dynamics, it can be stated as a discrete-time
optimal problem:

Jd =
1

2

N
∑

k=1

uT
k uk (41)

subject to the discrete dynamics

δœk+1 = Φkδœk + Γkuk (42)

where

Φk = Φ (tk+1, tk) (43)
Γk = Φ (tk+1, tk)B (tk) (44)

for impulsive control. Φ (tk+1, tk) is the STM defined in
Eq. (10). The cost in Eq. (41) is the sum of the squares of
the impulse magnitudes at the N discretization points, which
is slightly different than the cost in Eq. (29). However, if
N = n and the tk were placed at the optimal times ti,
then minimizing Eq. (41) would be equivalent to minimizing
Eq. (29).

A number of previous authors have also used discrete-time
formulations such as this to address the reconfiguration prob-
lem, e.g. [14, 16–21]. Most of these arrive at different
solutions since they use different cost functions, make simpli-
fying assumptions about the reference orbit, or use alternate
methods to derive the thrust input or optimality conditions.
However, some of them do arrive at the same solution under
certain conditions and choices of thrust times. The main
difference in this paper compared to previous methods is
that the discrete formulation is solved iteratively so that the
thrust times converge to the optimal times of the continuous
formulation.

Necessary Conditions for Optimality—The Hamiltonian for
the discrete-time problem is

Hd =
1

2
uT
k uk +ΛT

k+1 (Φkδœk + Γkuk) (45)

For an optimal control sequence, the costate equation is

Λk = Hd
δœk

= ΦT
kΛk+1 (46)
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The optimal control is given by the stationary condition,

0 = Hd
uk

= uk + ΓT
kΛk+1 (47)

uk = −ΓT
kΛk+1 (48)

SinceΦk is invertible, the combined state-costate system can
be written as

[

δœk
Λk

]

=

[

Φ−1
k BkB

T
kΦ

T
k

0 ΦT
k

] [

δœk+1

Λk+1

]

zk = Ψk zk+1 (49)

where Bk = B (tk). Proceeding backwards in time, the
solution to Eq. (49) is

z1 = Ξ1,N+1zN+1 (50)

defining

Ξ1,N+1 =

[

ξ11 ξ12
ξ21 ξ22

]

=
N
∏

k=1

Ψk (51)

Expanding the first component of z1 gives

δœ1 = Φ (t1, 0) δœ0 = ξ11δœf + ξ12ΛN+1 (52)

where δœ1 = δœ (t1), since the first impulse does not
necessarily occur at t = 0. Note that the desired state in
the discrete formulation is specified at tN+1. Assuming ξ12
is invertible, ΛN+1 can then be written in terms of the initial
and desired final state:

ΛN+1 = ξ−1
12 [Φ (t1, 0) δœ0 − ξ11δœf ] (53)

Note that because the unperturbed STM contains orbit-peri-
odic terms with in-plane and out-of-plane motion decoupled,
there will be cases when ξ12 is singular for certain thrust
times if only two impulses are used (or nearly singular for
perturbed orbits). In these cases, not all components of
the final costate are uniquely determined by Eq. (52), and
a minimum-norm solution for ΛN+1 will give the optimal
control. However, if the thrust times are nowhere near the
optimal thrust times, the solution may not be practically
feasible, i.e. it could result in unrealistically large impulses.

4. DESIGN OF A PRACTICAL ALGORITHM
FOR ON-BOARD MANEUVER TARGETING

The solution to the minimum-fuel n-impulse maneuver prob-
lem is given by the continuous-time optimal control for-
mulation, rather than the discrete formulation, in general.
This is because the thrust times in the discrete formulation
are specified a priori by the choice of discretization times.
If a fine discretization time spacing is used, the optimal
thrust times may be found but more thrusts will occur than
necessary since the control is determined by the costate which
evolves according to the continuous dynamics and cannot
simply become zero for several time steps when the optimal
trajectory should have a coast arc.

However, the discrete-time optimal control problem is rela-
tively simple to solve: it involves a number of large matrix
multiplications and the inversion of a 6 × 6 matrix. The

key to designing a practical algorithm for on-board maneuver
targeting is recognizing the link between the discrete and
continuous formulations. Since the state transition matrix
solution to the dynamics is known explicitly and the control
is impulsive, there is no need for the discretization times to be
close together or equally spaced, and the final time tN+1 can
be arbitrarily chosen to be the same as the final control time
tN . As mentioned previously, if the tk are placed exactly
at the optimal times ti, then the discrete optimal control
sequence is also optimal in the continuous formulation.

In that case, the control at each ti is the same in both the
continuous and discrete formulations:
ui = −BT

i Φ
T (tn, ti)Λn = −γiB

T
i Φ

T (tn, ti)λn (54)
since ΛN+1 = ΛN , N = n, and where Bi = B (ti). λn can
then be found by solving the linear system

⎡

⎢
⎢
⎣

−γ1BT
1 Φ

T (tn, t1)
−γ2BT

2 Φ
T (tn, t2)
...

−γnBT
n

⎤

⎥
⎥
⎦
λn =

⎡

⎢
⎢
⎣

u1

u2

...
un

⎤

⎥
⎥
⎦

(55)

This system is guaranteed to have an exact solution since all
of the necessary conditions for optimality of the continuous
formulation are satisfied under these assumptions.

If the tk are not placed at the optimal times, then the discrete
optimal control sequence will not be optimal in the continu-
ous formulation, but it will still represent a feasible solution
since it satisfies the final state constraint. In this case, Eq. (55)
may not have an exact solution. However, if the tk are close
to the optimal times, then a least squares solution of Eq. (55)
will give an approximation of the final costate, but it will not
satisfy the necessary conditions for optimality. By examining
the resulting primer vector magnitude history it is possible to
use the analysis of Lawden [22], Lion and Handelsman [57],
and Jezewksi and Rozendaal [58] to improve the trajectory.
That analysis identifies two important criteria for improving
a suboptimal trajectory:

1. Moving an impulse: if ṗ ̸= 0 at any impulse, move the
impulse time slightly in the direction of increasing p.
2. Adding an impulse: if p > 1 somewhere other than near
an impulse, add another impulse at the time of maximum p.

However, those methods always begin with two impulses
and add more as required for optimality, whereas this algo-
rithm may begin with a suboptimal solution with too many
impulses. Therefore, one additional criterion is defined for
removing an impulse:

3. Removing an impulse: if p < 1 and ṗ = 0 at any impulse,
remove the impulse.

The improved trajectory is determined by re-solving the
discrete optimal control problem with the new impulse times
tk. In any case, the maximum number of impulses required
for the optimal maneuver is six. This is determined from a
result by Neustadt [59] and Potter and Stern [60] which states
that for a linear system the maximum number of impulses
necessary to realize an optimal transfer is the number of
constraints on the state variables at the final time. Practically
speaking, four impulses is usually sufficient for an in-plane
maneuver, since the out-of-plane coupling is of O (J2).

To obtain an initial estimate for the optimal thrust times, solve
the discrete optimal control problem using a large number
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Figure 4. Impulse magnitudes for 24-impulse maneuver,
identifying candidate optimal impulse times.
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Figure 5. Primer history for suboptimal 3-impulse ma-
neuver using candidate optimal impulse times.

of impulses, e.g. 12 or more. Note that the total maneuver
duration used to generate the initial estimate is implicitly
assumed to be the approximate maximummaneuver duration.
The final solution obtained using this algorithm is a local
optimum in the vicinity of this maneuver duration. That
is, the final optimal maneuver may have a duration of less
than or slightly greater than the original duration, but the
algorithm will not find optimal maneuvers with durations
multiple orbits greater than the initial estimate. For maneu-
vers without large along-track, i.e. anomaly, changes, 1–2
orbits is typically a sufficient duration. For pure along-track
maneuvers, or maneuvers with large along-track changes,
the optimal maneuver duration is actually infinite, so the
maximum maneuver duration must instead be dictated by
mission constraints—this algorithm then finds the closest
locally optimal maneuver (see Section 5 for an example of
a pure along-track maneuver).

Table 1. Total Fuel Cost for Maneuver

Maneuver ∆V , m/s
2-impulse from [14] 0.3316

24-impulse 0.2050
Suboptimal 3-impulse 0.1694
Partly Refined 3-impulse 0.1669
Optimal 3-impulse 0.1658
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Figure 6. Primer history for partly refined suboptimal
3-impulse maneuver.
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Figure 7. Primer history for optimal 3-impulse maneuver.

After solving the discrete optimal control problem using a
large number of impulses, examine the resulting impulse
magnitude history and select the times of any local maxima as
estimates for the optimal thrust times. This technique quickly
identifies the likely optimal number of impulses, and it even-
tually converges to the continuous-time optimal solution. In
practice, though, it may not be necessary to determine the
optimal thrust times exactly. Thrust magnitude and alignment
errors, minimum impulse limits, finite thrust approximations,
on-board navigation and timing inaccuracies, and other error
sources mean that there is a point at which the improvement
in going from a suboptimal to an optimal trajectory is below
the threshold realizable by the actual system. Therefore,
it is possible to define an algorithm which incrementally
improves a suboptimal trajectory until the improvement in
fuel cost (or the changes in thrust application times) is below
some threshold, at which point the problem is considered
“solved.” The solution is the optimal number of impulses n,
their application times {t1, t2, . . . , tn}, and the final costate
ΛN+1, which yields the optimal impulses through Eqs. (46)
and (48).

For example, the impulse magnitude history for a 24-impulse
in-plane reconfiguration is shown in Figure 4 (for a circular,
unperturbed reference orbit). The optimal number of im-
pulses appears to be three and the candidate optimal thrust
times (t1, t2, and t3) are identified at the peak impulse
locations, shown in red in the figure. After re-solving the dis-
crete problem using the new impulse times, the least squares
solution of Eq. (55) results in the primer magnitude history
shown in Figure 5, with the impulse locations indicated as red
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Figure 8. Optimal planar 3-impulse maneuver, e = 0.

circles (note that the primer magnitude at each impulse is not
exactly equal to one, as expected). The criteria above indicate
that the trajectory can be improved by slightly decreasing
t1 and t2 and increasing t3, which results in the refined
primer magnitude history shown in Figure 6 once the discrete
problem has been re-solved. Continuing to refine the thrust
times in this fashion eventually results in the optimal primer
magnitude history of Figure 7, which corresponds to the
trajectory shown in Figure 8. The total∆V fuel cost required
for each of these iterations is listed in Table 1 along with the
corresponding 2-impulse solution from Vaddi et al. [14].

5. SIMULATION RESULTS
Next, the ability of the algorithm of Section 4 to target general
reconfiguration maneuvers is demonstrated. Several example
maneuvers are considered for circular and elliptic orbits,
with and without J2. Maneuvers planned with J2 included
in the dynamics are simulated with J2–J6. Maneuvers are
also simulated for the reference orbit of the CPOD mission,
showing the effects of typical navigation and thrust errors.

Circular Orbit
Circular orbits are an important case to consider for any for-
mation flying algorithm because of the breadth of interest in
the aerospace community for applications and theory in such
orbits. Classical orbital element methods fall short in this re-
spect because the reference orbit parameters become singular
for e = 0, reducing to a set of 5 independent quantities, while
the deputy still requires 6 quantities to describe its relative
orbit. Since this paper uses the nearly-nonsingular elements,
the algorithm described here is uniformly applicable to both
circular and elliptic orbits without modification (except when
i = 0). The first circular orbit example is described in the
previous section, a reconfiguration from a ρ = 200m, α0 = 0
in-plane ellipse to a ρ = 400 m, α0 = π

4
in-plane ellipse,

simulated without perturbations.

Pure Along-Track Maneuver—Another important case to con-
sider is a reconfiguration between two leader-follower forma-
tions, a pure along-track or anomaly change, also known as a
“V-Bar maneuver.” This maneuver is challenging to design
because the optimal maneuver times are spaced infinitely
far apart. This is because the optimal maneuver uses the
natural anomaly drift of the dynamics to create the desired
anomaly change by introducing a small non-zero semimajor
axis difference. For example, considering only tangential
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Figure 9. Primer history for pure along-track maneuver.

thrust, the optimal 2-impulse maneuver is

∆V1 = −
1

3

∆d

NorbT
= −∆V2 (56)

where ∆V1 and ∆V2 are the two tangential impulses, spaced
an integer number Norb of orbits periods T apart, and ∆d is
the desired change in along-track position. Since the total
fuel cost is inversely proportional to the duration, the optimal
maneuver has an infinitesimal fuel cost and infinite duration.

However, this algorithm still finds the suboptimal maneuver
for a given maneuver duration. The optimal primer histories
for the two orbit and five orbit cases of a 100 m along-track
maneuver are shown in Figure 9, and the resulting maneuver
trajectories are shown in Figure 11. The primer in the two
orbit case satisfies the necessary conditions for optimality,
but extrapolating the primer magnitude into the future clearly
shows that it is not globally optimal. The same would be seen
if the primer magnitude in the five orbit case was extrapolated
as well. Note that the (locally) optimal maneuver times are
not spaced precisely an integer number of orbits apart because
the optimal thrusts have a small radial component as well, as
shown in the magnified plots of Figure 11. The fuel cost for
the five orbit maneuver is 2.387 mm/s, whereas the cost for a
purely tangential five orbit maneuver is 2.4 mm/s. The cost
for the two orbit maneuver is 5.967 mm/s.

Out-of-Plane Maneuver—Next, out-of-plane motion is added
and a maneuver is designed to reconfigure a formation from a
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Figure 10. Impulse magnitudes for maneuver to safety
ellipse, identifying candidate optimal impulse times.
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Figure 11. Two and five orbit along-track maneuver, e = 0.

ρ = 200 m, α0 = 0 in-plane ellipse to a ρ = 400 m, α0 = π
4
,

ρz = 200 m, β0 = 3π
4
safety ellipse, in a circular orbit

with J2 included in the dynamics. An initial estimate for the
candidate optimal thrust times is obtained from the discrete-
time optimal impulse profile in Figure 10. The iterative
refinement of the primer history is shown in Figure 12, which
results in a 3-impulse optimal maneuver.

In this case, the optimal primer magnitude is equal to one
for the entire maneuver, which is still a valid solution of
the degenerate type discussed by Prussing [1]. The optimal
thrust times cannot be immediately identified by examining
the final primer history, but they are still determined by this
algorithm since it converges to the optimal times from a series
of compatible suboptimal solutions. The optimal 3-impulse
trajectory is shown in Figures 14 and 15 and the total fuel
cost for the maneuver is 0.3093 m/s. Using the method of
Vaddi et al. [14], the 3-impulse fuel cost is 0.5566 m/s.

0 t1 0.2 0.4 t2,0.6 0.8 1 t3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time, Fraction of Period

Pr
im

er
 M

ag
ni

tu
de

 

 

Initial Candidate Profile
Candidate Times
Iterative Refinements
Optimal Profile
Optimal Times

Figure 12. Primer history for maneuver to safety ellipse.

Comparison to the Method of Anderson and Schaub—The
same maneuver to reconfigure a formation from a ρ = 200m,
α0 = 0 in-plane ellipse to a ρ = 400m, α0 = π

4
, ρz = 200m,

β0 = 3π
4
safety ellipse is now generated using the method of

Anderson and Schaub [20]. That method, which is designed
for general formation flying applications including those in
the geostationary regime, uses a discretized approximation
to generate a near-fuel-optimal impulsive control sequence
with impulses applied at equal spacings in true anomaly.
The method is applicable in general circular, elliptic, and
equatorial orbits, because it uses a set of completely nonsin-
gular elements which does not suffer from the same i = 0
singularity as the nearly-nonsingular element set used in this
paper.

Using an anomaly discretization of 10◦, the resulting 36-
impulse trajectory is shown in Figures 16 (labeled “PVA
Trajectory”), along with the optimal 3-impulse trajectory of
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Figure 13. Impulse magnitudes for maneuver to V-Bar,
e = 0.5, identifying candidate optimal impulse times.

10



−1000−50005001000
−400

−200

0

200

400

Along−Track Pos (y), m
R

ad
ia

l P
os

 (x
), 

m
 

 
Trajectory
Initial Trajectory
Impulse Point

(a) LVLH relative position (in-plane).

−5000500
−400

−200

0

200

400

Out−of−Plane Pos (z), m

R
ad

ia
l P

os
 (x

), 
m

(b) Out-of-plane vs. radial.

−5000500
−500

0

500

Along−Track Pos (y), m

O
ut
−o

f−
Pl

an
e 

Po
s 

(z
), 

m
(c) Along-track vs. out-of-plane.

Figure 14. Optimal 3-impulse maneuver to safety ellipse, e = 0 with J2–J6.
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Figure 15. Optimal 3-impulse maneuver to safety ellipse, e = 0 with J2–J6.

the previous example. In the formulation of Anderson and
Schaub [20], the anomaly parameter is not directly control-
lable, which is the reason for the along-track discrepancy
between the two trajectories. The main goal of that method
is to reach a formation with a desired size and orientation
without specifying a target anomaly. The total fuel cost
for the 36-impulse maneuver is 0.3106 m/s, compared to
0.3093 m/s for the optimal 3-impulse maneuver.

Elliptic Orbit
As mentioned previously, the algorithm presented in this
paper is also applicable to formations in elliptic reference

orbits, with no approximations or loss of fidelity. To demon-
strate, the next simulation shows the design of a maneuver
in a reference orbit with an eccentricity of e = 0.5, from a
ρ = 1 km, α0 = π

4
, ρz = 1 km, β0 = 3π

4
eccentric safety

ellipse to a d = 1 km average V-Bar position. The actual
TH parameters are defined using the eccentric modifications
described in Section 2.

An initial estimate for the candidate optimal thrust times is
obtained from the discrete-time optimal impulse profile in
Figure 13. The iterative refinement of the primer history is
shown in Figure 17, which results in the 3-impulse optimal
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Figure 16. 36-impulse maneuver to safety ellipse compared to optimal 3-impulse maneuver.

maneuver shown in Figures 20 and 21. In this case, the initial
candidate maneuver has four impulses, but one is removed
during the iterative refinement. In fact, the algorithm initially
removed the first impulse but then failed to converge to an
optimal primer profile, so the impulse was added back and
the final impulse was removed instead. The total fuel cost for
the maneuver is 0.4559 m/s.

CPOD Maneuvers in Near-Circular Orbit
The NASA CPOD mission is designed to perform ren-
dezvous, proximity operations, and docking with a pair of
identical 3U CubeSats, and is currently scheduled for launch
in the fall of 2015. The mission baseline is modeled as a near-
circular (e = 0.005), 425 km Sun-synchronous orbit. The
maneuver targeting algorithm presented here is to be used as
the basis of the CPOD guidance system. The mission will
employ passively safe trajectories for rendezvous and standby
between active operations.
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Figure 17. Primer history for maneuver to V-Bar, e = 0.5.
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Figure 18. Primer history for CPODmaneuver to initiate
walking safety ellipse.
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Figure 19. Primer history for CPOD maneuver to safety
ellipse.
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Figure 20. Optimal 3-impulse maneuver to V-Bar, e = 0.5 with J2–J6.
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Figure 21. Optimal 3-impulse maneuver to V-Bar, e = 0.5 with J2–J6.

Initiate Walking Safety Ellipse—The first CPOD maneuver
simulated in this section is the initiation of a rendezvous
trajectory, i.e. reconfiguring from a safety ellipse displaced
some distance away from the chief to a walking safety ellipse.
The iterative refinement of the primer history is shown in
Figure 18. The initial candidate maneuver has three impulses
and two additional impulses are added, resulting in another
solution of the degenerate type in which the optimal primer
magnitude is equal to one for the entire maneuver. The final
5-impulse optimal maneuver is shown in Figures 22 and 23,
and it has a total fuel cost of 23.87 mm/s.

Maneuver to Safety Ellipse—The final maneuver simulated
is the initiation of a safety ellipse from a V-Bar standoff
position. The iterative refinement of the primer history is
shown in Figure 19, which results in a 2-impulse optimal
maneuver. This time, the actual trajectory is simulated by
applying randomly generated navigation and thrust errors.
The initial positions and velocities of the chief and deputy
are each displaced by 2 m and 2 mm/s in random directions,
and each impulse is applied with 0.5% magnitude and 0.5◦

direction errors in random orientations.

13



050010001500200025003000
−500

0

500

Along−Track Pos (y), m
R

ad
ia

l P
os

 (x
), 

m
 

 
Trajectory
Initial Trajectory
Impulse Point

(a) LVLH relative position (in-plane).

−5000500
−500

0

500

Out−of−Plane Pos (z), m

R
ad

ia
l P

os
 (x

), 
m

(b) Out-of-plane vs. radial.

0100020003000
−1000

−500

0

500

1000

Along−Track Pos (y), m

O
ut
−o

f−
Pl

an
e 

Po
s 

(z
), 

m
(c) Along-track vs. out-of-plane.

Figure 22. Optimal 5-impulse CPOD maneuver to initiate walking safety ellipse with J2–J6.
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Figure 23. Optimal 5-impulse CPOD maneuver to initiate walking safety ellipse with J2–J6.

The resulting 2-impulse optimal maneuver is shown in Fig-
ures 24 and 25, where the nominal trajectory shows what
the maneuver would look like without errors. As mentioned
in Section 1 and described by Carpenter and Alfriend [39],
the most significant effect of navigation and thrust errors is
unwanted along-track drift cause by differential semimajor
axis uncertainty. The total fuel cost for this maneuver is
0.1903 m/s.

6. CONCLUSIONS
The dynamic formulation and optimal control equations pre-
sented here provide the information necessary to set up the
complete formation reconfiguration algorithm derived in this
paper. This algorithm is suitable for implementation on-
board a spacecraft with limited processing power since it only
involves the solution of linear systems, as opposed to more
complex methods which require the solution of nonlinear
systems. Fuel-optimal, n-impulse reconfiguration maneuvers
are designed by iteratively solving a discrete-time maneuver
targeting problem, which satisfies the state constraints but
does not necessarily use the optimal number of impulses or
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Figure 24. Optimal maneuver to safety ellipse with navigation and thrust errors.
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Figure 25. Optimal maneuver to safety ellipse with navigation and thrust errors.

impulse times, using the continuous-time necessary condi-
tions for optimality to refine the impulse times until they
converge to the optimal values. Simulation results show that
this method, which is uniformly applicable to both circular
and elliptic orbits, and includes J2 effects, produces accurate
maneuvers with significantly lower fuel costs than compara-
ble, suboptimal, practically-implementable methods.
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APPENDICES
A. GAUSS’S VARIATIONAL EQUATIONS FOR

THE NEARLY-NONSINGULAR ELEMENTS
The nearly-nonsingular form of Gauss’s Variational Equa-
tions (GVE) is derived from the classical form of Battin [29]
using the relationships,

e cos f = q1 cos θ + q2 sin θ (57)
e sin f = q1 sin θ − q2 cos θ (58)
η − 1

he
=

−e

h (1 + η)
(59)

η2 = 1− q21 − q22 (60)

In terms of nearly-nonsingular elements, the orbit equation is

r =
aη2

1 + q1 cos θ + q2 sin θ
(61)

The nearly-nonsingular form of GVE is then expressed as

da

dt
=

2a2

h

[

(q1 sin θ − q2 cos θ)ur +
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ut

]
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dλ

dt
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r cos θ
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B. DIFFERENTIAL FORM OF LAGRANGE’S
PLANETARY EQUATIONS

The Jacobian of the Lagrange’s Planetary Equations (LPE)
is formed by populating the columns of A with the partial
derivatives with respect to each of the nearly-nonsingular
mean elements:

A = [aij ] =

[
∂fi
∂œj

]

(68)

Defining the constant parameter ϵ as in Schaub et al. [30],
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(
Re

p

)2
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the nonzero elements ofA are
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Note that the only time-varying quantities in this matrix are
q1 and q2, whose time derivatives are

q̇1 = −q2ω̇ (86)
q̇2 = q1ω̇ (87)

with
ω̇ =

3ϵ

4

(

5 cos2 i− 1
)

(88)

on the order of J2. The solution to these equations is periodic
with a period of O

(

J−1
2

)

,

q1 (t) = q1,0 cos (ω̇ (t− t0))− q2,0 sin (ω̇ (t− t0)) (89)
q2 (t) = q1,0 sin (ω̇ (t− t0)) + q2,0 cos (ω̇ (t− t0)) (90)

where q1,0 and q2,0 are their values at t0. Therefore, the
matrix A is composed of only constant and slowly-varying
periodic terms.

C. SOLUTION OF THE COSTATE EQUATION
Consider a system of the form

ẋ = A(t)x (91)
λ̇ = −AT (t)λ (92)

It turns out that

xT (t)λ(t) = constant (93)

is an invariant of this dynamical system. To show this,
differentiate xTλ and substitute Eqs. (91)–(92) to find

d(xTλ)

dt
= ẋTλ+ xT λ̇

= xTAT (t)λ+ xT
[

−AT (t)λ
]

= 0 (94)

Next, assume state transition matrices have been developed
for both states yielding:

x(t2) = Φ(t2, t1)x(t1) (95)
λ(t2) = φ(t2, t1)λ(t1) (96)

To find the analytical relationship between the STM φ(t2, t1)
and Φ(t2, t1), substitute Eqs. (95)–(96) into the invariant
property in Eq. (93).

xT (t1)λ(t1) = xT (t2)λ(t2)

= xT (t1)Φ
T (t2, t1)φ(t2, t1)

︸ ︷︷ ︸

I6×6

λ(t1) (97)

This leads to

I6×6 = ΦT (t2, t1)φ(t2, t1) (98)
⇒ φ(t2, t1) = Φ−T (t2, t1) = ΦT (t1, t2) (99)

Thus, finally, the STM solution of the λ(t) trajectory is

λ(t2) = ΦT (t1, t2)λ(t1) (100)
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