
14th U.S. National Congress of Theoretical and Applied Mechanics
Blacksburg, VA, June 23–28, 2002

SPACECRAFT RELATIVE ORBIT GEOMETRY DESCRIPTION
THROUGH ORBIT ELEMENT DIFFERENCES
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The relative orbit geometry of a spacecraft formation can be elegantly described in terms of
a set of orbit element differences relative to a common chief orbit. For the non-perturbed orbit
motion these orbit element differences remain constant if the anomaly difference is expressed in
terms of mean anomalies. A general method is presented to estimate the linearized relative orbit
motion for both circular and elliptic chief reference orbits. The relative orbit is described purely
through relative orbit element differences, not through the classical method of using Cartesian initial
conditions. Analytical solutions of the relative motion are provided in terms of the true anomaly
angle. By sweeping this angle from 0 to 2π, it is trivial to obtain estimates of the along-track,
out-of-plane and orbit radial dimensions which are dictated by a particular choice of orbit element
differences. The main assumption being made in the linearization is that the relative orbit radius is
small compared to the Earth relative orbit radius. The resulting linearized relative motion solution
can be used for both formation flying control applications or to assist in selecting the orbit element
differences that yield the desired relative orbit geometry.

Introduction
The relative orbits within a spacecraft formation are typi-

cally prescribed through sets of Cartesian coordinate initial
conditions in the rotating Hill reference frame.1–4 The six
Cartesian initial conditions are the invariant parameters of
the relative orbit. However, to solve for the relative orbit
motion that will result from such initial conditions, the dif-
ferential equations of motion must be solved. Except for
the unperturbed circular reference (or chief) orbit special
case, solving the differential equations for the resulting rel-
ative motion analytically is a very challenging task that has
been tackled in various papers. Melton develops in Refer-
ence 5 a state transition matrix that can be used to predict
the relative motion for chief orbits with small eccentricities.
Tschauner and Hempel have solved the relative equations of
motion directly for the general case of having an elliptic chief
orbit.6 However, their solution is not explicit and requires
the computation of an integral. Kechichian develops in Ref-
erence 1 the analytical solution to the relative orbit motion
under the influence of both the J2 and J3 zonal harmonics
assuming that the eccentricity is a very small parameter.
Unfortunately these methods yield relatively complex solu-
tions and the six Cartesian relative motion initial conditions
do not easily reveal the nature of the resulting relative orbit.
It is not intuitive to the relative orbit design process how to
adjust the initial Cartesian conditions to obtain a relative
orbit of the desired shape and size. More recently, Broucke
has presented in Reference 7 an analytical solution to the
linearized relative equations of motion for eccentric chief or-
bits. His solution uses both time and true anomaly and finds
the current Cartesian coordinates of a deputy satelite given
the initial Cartesian coordinates.

An alternate set of six invariant parameters to describe
the relative orbit is to use orbit element differences relative
to the chief orbit.8–12 In References 8 and 9 the anomaly
difference is prescribed in terms of the mean anomalies,
not true or eccentric anomaly. The reason being that for
elliptic motions, a mean anomaly difference between two
satellites remains constant under the assumption of classical
Keplerian two-body motion. Prescribing the relative orbit
geometry through sets of relative orbit element differences
has the major advantage that these relative orbit coordi-
nates are constants of the non-perturbed orbit motion. Even
if perturbations are considered, they typically have a sim-
ilar influence on each of the satellites in the formation if
these satellites are of equal build and type. For example,
atmospheric drag will cause the orbits to decay. However,
all satellites in the formation will experience nearly identical
amounts of drag. As such, the relative motion between the
satellites is only minorly affected by this perturbation. Fur-
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ther, as the orbits decay and the orbit elements such as the
semi-major axis change, the orbit element differences which
determine the relative motion will only vary slowly.

Using orbit element differences in the control of a space-
craft formation has advantages too. At any instant it is
possible to map the current inertial position and velocities
vectors into an equivalent set of orbit elements. By differ-
encing the orbit elements of the deputy satellite to those of
the chief satellite, we are able to compare these differences
to the prescribed orbit element differences and determine
any relative orbit errors. Note that no differential equations
have to be solved to determine any relative orbit tracking
errors. Several relative orbit control strategies have recently
been suggested that feed back orbit errors in terms of orbit
element differences.13–17 On the other hand, using Cartesian
coordinates to describe the desired relative orbit requires
solving the nonlinear differential relative equations of mo-
tion of the desired relative orbit and differencing these states
with the current position and velocity states, unless the con-
trol tolerances allow any of the linearized relative motion
solutions to be used. Using the orbit element difference de-
scription we are not required to perform any linearization or
solve any nonlinear differential equations to find the current
desired deputy satellite position.

In References 16 and 18, a linearized mapping is presented
between a particular set of orbit element differences and
the Cartesian position and velocity coordinates in the ro-
tating Hill reference frame. This work was then expanded
in Reference 19 to provide the state transition matrix for
the relative orbit motion using orbit elements. This pa-
per expands on this theory and develops direct relationships
between the orbit element differences and the resulting rel-
ative orbit geometry for both circular and eccentric chief
orbits. In particular, the relative orbit along-track, out-of-
plane and orbit radial dimensions are estimated for specific
sets of orbit element differences. Contrary to previous work
in this area,11,12 the presented results apply to both circular
and elliptic chief orbits. But more generally, analytic solu-
tions are provided for the linearized relative orbit motion,
where the linearizing assumption is that the relative orbit
radius is small compared to the inertial orbit radius. While
Tschauner and Hempel provide the complex solution of the
true differential equations of motion, the linearized ana-
lytical solution here is obtained from geometric arguments
without solving any differential equations. The resulting
linearized analytic relative orbit solution is useful when de-
signing a relative orbit that must meet scientific mission
requirements. If the relative orbit must have a certain along-
track behavior, then this solution directly shows how to
adjust the relative orbit element differences to achieve the
desired motion. Further, the general solution for elliptic
chief orbits is specialized for the small eccentricity and near
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2 SCHAUB: RELATIVE ORBIT GEOMETRY

circular orbit case. With the small eccentricity case, linear
terms in the eccentricity e are retained, while higher order
terms of e are dropped. The near-circular analysis drops any
terms containing e. The linearized relationship between the
orbit element difference description of the relative orbit and
the classical Cartesian coordinate description is usefull in
both designing and controlling relative orbits in terms of
orbit element differences.

Relative Orbit Definitions
To following nomenclature is adopted to describe the

satellites within a formation. The satellite about which
all other satellites are orbiting is referred to as the chief
satellite. The remaining satellites, referred to as the deputy
satellites, are to fly in formation with the chief. Note that
it is not necessary that the chief position actually be occu-
pied by a physical satellite. Sometimes this chief position
is simply used as an orbiting reference point about which
the deputy satellites orbit. To express how the relative
orbit geometry is seen by the chief, we introduce the Hill
coordinate frame O.20 Its origin is at the osculating chief
satellite position and its orientation is given by the vec-
tor triad {ôr, ôθ, ôh} shown in Figures 1. The unit vector
ôr is in the orbit radius direction, while ôh is parallel to
the orbit momentum vector in the orbit normal direction.
The unit vector ôθ then completes the right-handed coordi-
nate system. Let r be the chief orbit radius and h be the
chief angular momentum vector. Unless noted otherwise,
any non-differenced states or orbit elements are assumed to
be those of the chief. Differenced states are assumed to be
differences between the deputy and chief satellite. Mathe-
matically, these O frame orientation vectors are expressed
as

ôr =
r

r
(1a)

ôθ = ôh × ôr (1b)

ôh =
h

h
(1c)

with h = r × ṙ. Note that if the inertial chief orbit is
circular, then ôθ is parallel to the satellite velocity vector.

ρ

x
y

ôh
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Fig. 1 Illustration of a General Type of Spacecraft For-
mation with Out-Of-Plane Relative Motion

The relative orbit position vector ρ and velocity vector
ρ̇ of a deputy satellite relative to the chief is expressed in
Cartesian O frame components as

ρ = (x, y, z)T (2)

ρ̇ = (ẋ, ẏ, ż)T (3)

The relative position and velocity vectors are compactly
written as

X =

(
ρ
ρ̇

)
(4)

Thus, given both the relative position vector ρ and the chief
position vector r, we are able to determine the inertial mo-
tion of a deputy satellite.

Instead of using Cartesian coordinates to describe the rel-
ative position of a deputy to the chief, we can also use orbit
element differences.8,9 Let the vector e be defined through
the orbit elements

e = (a, θ, i, q1, q2, Ω)T (5)

where a is the semi-major axis, θ = ω+f is the true latitude
angle, i is the orbit inclination angle, Ω is the argument of
the ascending node and qi are defined as

q1 = e cos ω (6)

q2 = e sin ω (7)

The parameter e is the eccentricity, ω is the argument of
perigee, and f be the true anomaly. Let the relative or-
bit be described through the orbit element difference vector
δe. Whereas all six elements of the relative orbit state X
vector are time varying, all the orbit element differences,
except for the true anomaly difference, are constant for a
non-perturbed Keplerian orbit. This has many advantages
when measuring the relative orbit error motion and applying
it to a control law. In References 18 and 16 a convenient
direct mapping is presented which translates between the
Cartesian states X and the orbit element differences δe.
In deriving this mapping, it is assumed that the relative
orbit radius ρ is small in comparison to the inertial chief
orbit radius r. While Reference 16 shows both the forward
and backward mapping between these relative orbit coor-
dinates, only the mapping from orbit element differences
to Cartesian Hill frame coordinates is used in the following
development. The relative position vector components are
given in terms of orbit elements through:

x ≈ r

a
δa +

Vr

Vt
r δθ − r

p
(2aq1 + r cos θ)δq1

− r

p
(2aq2 + r sin θ)δq2

(8a)

y ≈ r(δθ + cos i δΩ) (8b)

z ≈ r(sin θ δi− cos θ sin i δΩ) (8c)

The parameter p = a(1−e2) = aη2 is the semi-latus rectum,

with η =
√

1− e2 being another convenient measure of the
orbit eccentricity. The chief radial and transverse velocity
components Vr and Vt are defined as

Vr = ṙ =
h

p
(q1 sin θ − q2 cos θ) (9)

Vt = rθ̇ =
h

p
(1 + q1 cos θ + q2 sin θ) (10)

The orbit radius r is defined in terms of the orbit elements
used in Eq. (5) as

r =
a(1− q2

1 − q2
2)

1 + q1 cos θ + q2 sin θ
=

aη2

1 + e cos f
(11)

Note that the ratio Vr/Vt in Eq. (8a) can be rewritten as

Vr

Vt
=

q1 sin θ − q2 cos θ

1 + q1 cos θ + q2 sin θ
=

e sin f

1 + e cos f
(12)

Alternate mappings between orbit element differences and
Cartesian relative orbit coordinates are found in Refer-
ences 10 and 21.

General Elliptic Orbits
Note that Eq. 8 provides us a direct linear mapping

between orbit element differences δe and the Hill frame
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Cartesian coordinates ρ. The only linearizing assumption
that was made is that the relative orbit radius ρ is small
compared to the inertial chief orbit radius r. However,
when describing a relative orbit through orbit element differ-
ences, it is not convenient to describe the anomaly difference
through δθ or δf . For elliptic chief orbits, the difference in
true anomaly between two orbits will vary with time. To
avoid this issue, the desired anomaly difference between two
orbits is expressed in terms of a mean anomaly difference
δM . This anomaly difference will remain constant, assum-
ing unperturbed Keplerian motion, even if the chief orbit is
elliptic. To express the mean anomaly differences in terms of
other anomaly differences, we make use of the mean anomaly
definition

M = E − e sin E (13)

where E is the eccentric anomaly. Taking its first variation
we express differences in mean anomaly in terms of differ-
ences in eccentric anomaly and differences in eccentricity.

δM =
∂M

∂E
δE +

∂M

∂e
δe

= (1− e cos E)δE − sin Eδe
(14)

Using the mapping between eccentric anomaly E and true
anomaly f

tan
f

2
=

√
1 + e

1− e
tan

E

2
(15)

and taken its first variation, differences in E are then ex-
pressed as differences in f and e through

δE =
η

1 + e cos f
δf − sin f

1 + e cos f

δe

η
(16)

Substituting Eq. (16) into Eq. (14) and making use of the
orbit identities

(1− e cos E) =
η2

(1 + e cos f)
(17)

sin E =
η sin f

(1 + e cos f)
(18)

the desired relationship between differences in true and
mean anomalies is found.

δf =
(1 + e cos f)2

η3
δM +

sin f

η2
(2 + e cos f)δe (19)

Let us redefine the orbit element difference vector δe to
consist of

δe = (δa, δM, δi, δω, δe, δΩ)T (20)

Note that all these orbit element differences are constants
for Keplerian two-body motion. Further, while using q1 and
q2 instead of e and ω allows us to avoid singularity issues
for near-circular orbits, for the following relative orbit ge-
ometry discussion such singularities do not appear. In fact,
describing the relative orbit path using δe and δω instead of
δq1 and δq2 yields a simpler and more elegant result. Using
Eqs. (6) and (7), the differences in the qi parameters are
expressed as

δq1 = cos ωδe− e sin ωδω (21a)

δq2 = sin ωδe + e cos ωδω (21b)

After substituting Eqs. (19) and (21) into the linear map-
ping in Eq. (8) and simplifying the result, we are able to

express the relative position coordinates (x, y, z) in terms of
the orbit element differences in Eq. (20) through

x(f) ≈ r

a
δa +

ae sin f

η
δM − a cos fδe (22a)

y(f) ≈ r

η3
(1 + e cos f)2δM + rδω

+
r sin f

η2
(2 + e cos f)δe + r cos iδΩ

(22b)

z(f) ≈ r(sin θδi− cos θ sin iδΩ) (22c)

Note that with this linearized mapping the difference in the
argument of perigee δω does not appear in the x(f) expres-
sion. Further, these equations are valid for both circular
and elliptic chief orbits. Only the δM and δe terms con-
tribute periodic terms to the radial x solution. Due to the
dependence of r on the true anomaly f , all orbit element dif-
ference terms in the along-track y motion contribute both
static offsets as well as periodic terms. For the out-of-plane
z motion both the δi and δΩ terms control the out-of-plane
oscillations. By dividing the dimensional (x, y, z) expres-
sions in Eq. (22) by the chief orbit radius r and making use
of Eq. (11), we obtain the non-dimensional relative orbit
coordinates (u, v, w).

u(f) ≈ δa

a
+ (1 + e cos f)

e sin f

η3
δM

− (1 + e cos f)

η2
cos fδe

(23a)

v(f) ≈ (1 + e cos f)2
δM

η3
+ δω

+
sin f

η2
(2 + e cos f)δe + cos iδΩ

(23b)

w(f) ≈ sin θδi− cos θ sin iδΩ (23c)

Since (y, z) � r, the non-dimensional coordinates (v, w)
are the angular deputy satellite relative orbit position with
respect to the chief orbit radius axis.

However, the present form of Eq. (23) is not convenient
to determine the overall non-dimensional shape of the rela-
tive orbit. Reason is that there are several sin() and cos()
functions being added here. Using the identities

A sin t+B cos t=
√

A2+B2 cos

(
t− tan−1

(
A

B

))
= −

√
A2+B2 sin

(
t− tan−1

(
B

−A

)) (24)

as well as standard trigonometric identities, we are able to
rewrite the linearized non-dimensional relative orbit motion
as

u(f) ≈ δa

a
+

1

η2

√
e2δM2

η2
+ δe2 cos(f − fu)

− eδe

2η2
+

e

2η2

√
e2δM2

η2
+ δe2 cos(2f − fu)

(25a)

v(f) ≈
((

1 +
e2

2

)
δM

η3
+ δω + cos iδΩ

)

+
2

η2

√
e2δM2

η2
+ δe2 cos(f − fv)

+
e

2η2

√
e2δM2

η2
+ δe2 cos(2f − fv)

(25b)

w(f) ≈
√

δi2 + sin2 iδΩ2 cos (θ − θw) (25c)
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with the phase angles fu, fv and θw being defined as

fu = tan−1

(
eδM

−ηδe

)
(26a)

fv = tan−1

(
ηδe

eδM

)
= fu −

π

2
(26b)

θw = tan−1

(
δi

− sin i δΩ

)
(26c)

At these phase angles, the trigonometric terms will reach
either their minimum or maximum value. Note that 180 de-
grees can be added or subtracted from these angles to yield
the second extrema point of the trigonometric functions. To
further reduce the expression in Eq. (25), let us introduce
the small states δu and δw:

δu =

√
e2δM2

η2
+ δe2 (27a)

δw =
√

δi2 + sin2 iδΩ2 (27b)

Using these δu and δw definitions as well as Eq. (26b), the
linearized relative orbit motion is described through

u(f) ≈ δa

a
− eδe

2η2

+
δu

η2

(
cos(f − fu) +

e

2
cos(2f − fu)

) (28a)

v(f) ≈
((

1 +
e2

2

)
δM

η3
+ δω + cos iδΩ

)
− δu

η2

(
2 sin(f − fu) +

e

2
sin(2f − fu)

) (28b)

w(f) ≈ δw cos (θ − θw) (28c)

Note that the cos(2f) and sin(2f) terms are multiplied by
the eccentricity e. Only if the chief orbit is very eccentric
will these terms have a significant contribution to the over-
all relative orbit dimension. For the more typical case of
having a chief orbit with a small eccentricity e, these terms
only provide small perturbations to the dominant sin(f) and
cos(f) terms. Using Eq. (28), it is trivial to determine the
maximum radial, along-track and out-of-plane dimension of
a relative orbit provided that the relative orbit geometry
is prescribed through the set of orbit element differences
{δa, δe, δi, δΩ, δω, δM}. Note that this linearized relative
orbit motion is valid for both circular and elliptic chief ref-
erence orbits. The only linearizing assumption made so far is
that the relative orbit radius is small compared to the planet
centric inertial orbit radius. However, note that we are only
estimating the non-dimensional relative orbit shape. To ob-
tain the true radial, along-track and out-of-plane motions,
we need to mulitpy (u, v, w) by the chief orbit radius r.
Since r is time dependent for an elliptic chief orbit, the
points of maximum angular separation between deputy and
chief satellites may not correspond to the point of maximum
physical distance. To plot the dimensional linearized rela-
tive orbit motion, we use Eq. (22) instead. However, due to
the ratio’s of sin() and cos() terms, it is not trivial to obtain
the maximum physical dimensions of the relative orbit.

Let us take a closer look at the out-of-plane motion.
The true latitude angle θw, at which the maximum angular
out-of-plane motion will occur, is given by Eq. (26c). As
expected, if only a δΩ is prescribed, then the maximum w
motion occurs during the equator crossing at θ = 0 or 180
degrees. If only a δi is prescribed, then the maximum w
motion occurs at θ = ±90 degrees.

The maximum angular out-of-plane motion is given by the
angle δw as shown in Figure 2. This angle δw is the tilt angle
of the deputy orbit plane relative to the chief orbit plane. As
such, it is the angle between the angular momentum vector

hd

hc

δw

i

Chief Orbit
Plane

Deputy Orbit
Plane

δw

Ω

δΩ

i+δi

Fig. 2 Illustration of Orbit Plane Orientation Difference
between Chief and Deputy Satellites

of the chief orbit and the angular momentum vector of the
deputy orbit. To prove that δw is indeed this angle, let us
make use of the spherical law of cosines for angles. Using
the spherical trigonometric law of cosines, we are able to
relate the angles δΩ, i, δi and δw through:22

cos δw = cos i cos(i+δi) + sin i sin(i+δi) cos δΩ (29)

Assuming that δΩ, δi and δw are small angles, we approxi-
mate sin x ≈ x and cos x ≈ 1− x2/2 to solve for δw.

δw =
√

δi2 + sin2 iδΩ2 (30)

Using the angle δw, the out-of-plane motion w(f) in
Eq. (28c) is written in the compact form shown.12,23

Chief Orbits with Small Eccentricity
In this section we assume that the chief orbit eccentricity

e is a small quantity. In particular, we assume that e is
small but greater than ρ/r, while powers of e are smaller
than ρ/r. In this case we only retain terms which are linear
in e and drop higher order terms of e. The orbit radius r is
now approximated as

r =
aη2

1 + e cos f
≈ a(1− e cos f) (31)

while η2 ≈ 1. The linearized dimensional relative orbit mo-
tion in Eq. (22) is written for the small eccentricity case
as:

x(f) ≈ (1− e cos f)δa +
ae sin f

η
δM

− a cos fδe

(32a)

y(f) ≈ a

η
(1 + e cos f)δM + a(1− e cos f)δω

+ a sin f(2− e cos f)δe

+ a(1− e cos f) cos iδΩ

(32b)

z(f) ≈ a(1− e cos f)(sin θδi− cos θ sin iδΩ) (32c)
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Making use of the trigonometric identity in Eq. (24), the
(x, y, z) motion is written as

x(f) ≈ δa + aδx cos(f − fx) (33a)

y(f) ≈ a

(
δM

η
+ δω + cos iδΩ

)
− aδy sin(f − fy)− ae

2
sin(2f)δe

(33b)

z(f) ≈ aδz cos(θ − θz)−
ae

2
δz cos(2f − fz)

− ae

2
(sin ωδi− cos ω sin iδΩ)

(33c)

with the small states δx, δy and δz defined as

δx =

√
e2δM2

η2
+

(
δe +

δa

a

)2

(34a)

δy =

√
4δe2 + e2

(
δM

η
− δω − cos iδΩ

)2

(34b)

δz =
√

δi2 + sin2 iδΩ2 (34c)

and the phase angles fx, fy, θz and fz defined as

fx = tan−1

(
eδM

−η
(
δe + δa

a

)) (35a)

fy = tan−1

e
(

δM
η
− δω − cos iδΩ

)
−2δe

 (35b)

θz = tan−1

(
δi

− sin iδΩ

)
(35c)

fz = tan−1

(
cos ωδi + sin ω sin iδΩ

sin ωδi− cos ω sin iδΩ

)
(35d)

Note that the orbital radial motion x(f) for the small eccen-
tricity case is identical to the general orbit radial coordinate
in Eq. (22a) if δa is zero. The semi-major axis difference
must be zero for bounded relative motion if no perturba-
tions are present. With perturbations present, δa may be
non-zero and the orbit radial coordinate will then be differ-
ent between the linearizing approximations. The estimated
along-track motion y(f) and out-of-plane motion z(f) will
always be numerically different between the generally ellip-
tic case and the small eccentricity case.

The dimensional form of the relative orbit motion in
Eq. (32) is convenient to determine the amplitudes of the
sinusoidal motion in either the along-track, orbit radial or
out-of-plane motion. Note that since e is considered small,
the double-orbit frequency terms sin(2f) are only a minor
perturbutation to the dominant orbit frequency sinusoidal
terms.

Near-Circular Chief Orbit
If the chief orbit is circular or near-circular, then the lin-

earized relative equations of motion are given through the
famous Clohessy-Wiltshire or CW equations.24 These are
sometimes also referred to as Hill’s equations.20

ẍ− 2nẏ − 3n2x = 0 (36a)

ÿ + 2nẋ = 0 (36b)

z̈ + n2z = 0 (36c)

Further, these differential equations are only valid if the
relative orbit radius is small compared to the planet centric
orbit radius. If the relative orbit initial conditions satisfy
the constraint

ẏ0 + 2nx0 = 0 (37)

then a bounded relative motion will occur. Assuming this
constraint is satisfied, then the differential CW equations
can now be solved for an analytical solution of the relative
orbit motion.

x(t) = A0 cos(nt + α) (38a)

y(t) = −2A0 sin(nt + α) + yoff (38b)

z(t) = B0 cos(nt + β) (38c)

The integration constants A0, B0, α, β and yoff are deter-
mined through the relative orbit initial conditions. These
equations have been extensively used to generate relative
orbits if the chief orbit is circular. Let us now compare the
predicted (x, y, z) motion in terms of the true anomaly in
Eq. (33) to the CW solution in Eq. (38) if the chief orbit
is assumed to be near-circular (i.e. e < ρ/r). In this case
terms containing the eccentricity e are dropped, as com-
pared to the small eccentricity case studied earlier where
only higher order terms of e were dropped. Assuming that
all δe components are small (i.e. the relative orbit radius is
assumed to be small compared to the inertial orbit radius),
and letting e → 0, we find that r → a and η → 1. Fur-
ther, note that fx and fy approach 0. Using Eq. (33) the
relative orbit motion (x(f), y(f), z(f)) is expressed for the
near-circular chief orbit special case as

x(f) ≈ δa− a cos fδe (39a)

y(f) ≈ a(δω + δM + cos iδΩ) + 2a sin fδe (39b)

z(f) ≈ a
√

δi2 + sin2 iδΩ2 cos (θ − θz) (39c)

Note that the maximum width of the oscillatory along-track
motion y is given by 2aδe. This result has been previously
presented in References 11 and 12. Comparing Eqs. (38)
and (39) and noting that nt = f for this case, we are able
to establish a direct relationship between the CW constants
and the orbit element differences.

A0 = −aδe (40a)

B0 = a
√

δi2 + sin2 iδΩ2 (40b)

α = 0 (40c)

β = ω − θz (40d)

yoff = a(δω + δM + cos iδΩ) (40e)

Recall that Eqs. (38) require that the bounded relative mo-
tion constraint is satisfied. Thus the δa term is set to zero
when comparing the two forms of the relation orbit motion
expression.

Prescribing Bounded Relative Motion
Conditions

Eqs. (22), (28), (33) or (39) show how the orbit element
differences and the Hill frame Cartesian coordinates must
be related for any chief true anomaly angle f . Since this
mapping must hold at any instance of time, however, these
linearized equations also approximate a solution for the rel-
ative orbit motion ρ(t). To map between time and the
true anomaly we must solve Kepler’s equation. However,
to be able to describe the relative orbit geometry in terms
of the Hill frame Cartesian coordinates, the forms presented
in Eqs. (22), (28), (33) or (39) in terms of the true anomaly
f are preferred. The reason for this is that by sweeping
f through a complete revolution, the (x, y, z) coordinates
found through these equations will yield the linearized rel-
ative orbit approximation that results due to a prescribed
set of constant orbit element differences. Note that no dif-
ferential equations are solved here to determine the relative
orbit motion, and that the dominant relative orbit radial
(x-direction), along-track (y-direction) and out-of-plane mo-
tion (z-direction) can be trivially extracted.
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However, note that Eqs. (22), (28), (33) or (39) do not
explicitly contain any secular terms. For the classical two-
body orbital motion, the only condition on two inertial or-
bits to have a closed relative orbit is that their orbit energies
must be equal. In terms of orbit elements this corresponds
to demanding that

δa = 0 (41)

This constraint is valid for both circular and elliptical chief
orbits. Also, note that this constraint is the precise require-
ment of the Keplerian motion for bounded relative orbit
paths; no linearizations have been made here. For Keple-
rian two-body motion, all the orbit element differences will
naturally remain constant except for the mean anomaly dif-
ference. If δa is not zero between two orbits, then these
orbits will drift apart due to having different orbit periods.
In this case δM will not remain a constant, but grow larger
with time. The linearizations in Eqs. (22), (28), (33) or
(39) can still be used to predict the relative orbit motion,
but only until the relative orbit radius ρ is no longer small
compared to the inerital chief orbit radius r.

Next we would like to see what conditions the δa = 0
constraint imposes on the initial Hill frame Cartesian coordi-
nates X(t0) = X0. Let us use the inverse mapping between
orbit element differences δe and the Hill frame Cartesian
coordinates X found in Reference 16 to express δa as

δa = 0 = 2α(2 + 3κ1 + 2κ2)x(t) + 2αν(1− 2κ1 + κ2)y(t)

+
2α2νp

Vt
ẋ(t) +

2a

Vt
(1 + 2κ1 + κ2)ẏ(t) (42)

where the parameters

α = a/r (43)

ν = Vr/Vt (44)

κ1 = α
(p

r
− 1
)

(45)

κ2 = αν2 p

r
(46)

are used to simplify the expression. This general constraint
can be further simplified by expressing it at the initial time,
where t0 is defined as the time where the true anomaly f
is equal to zero and the satellite is at the orbit periapses.
Note that the orbit radius is now given by

r(t0) = rp = a(1− e) (47)

Further, the radial velocity Vr is given by

Vr(t0) = ṙ(t0) =
h

p
(q1 sin ω − q2 cos ω) = 0 (48)

Thus, using Eqs. (44) and (46) we find that ν = 0 and
κ2 = 0. The bounded relative orbit constraint equation is
now written specifically at the initial time as

0 = 2
a

rp

(
2 + 3

a

rp

(
p

rp
− 1

))
x0

+ 2
a

Vt(t0)

(
1 + 2

a

rp

(
p

rp
− 1

))
ẏ0 (49)

Since Vt(t0) = rpθ̇p and making use of Eq. (47), this con-
straint is further reduced to the simpler form

(2 + e)x0 +
1

θ̇p

(1 + e)ẏ0 = 0 (50)

Let n =
√

µ/a3 be the chief mean angular motion. Express-

ing the true latitude rate θ̇ at perigee as

θ̇p =
h

r2
p

=

√
µp

a2(1− e)2
= n

√
1 + e

(1− e)3
(51)

the constraint is written in its final form as25

ẏ0

x0
=

−n(2 + e)√
(1 + e)(1− e)3

(52)

Let us linearize this constraint about a small eccentricity. In
this case terms which are linear in e are retained and higher
order terms in e are dropped. The bounded relative motion
constraint on the initial Cartesian coordinates is then given
by

ẏ0 + (2 + 3e)nx0 = 0 (53)

The find the initial Cartesian coordinates constraint for
bounded relative motion at the chief orbit apoapses, we set
r(t0) = ra = a(1 + e) and follow the same steps. The re-
sulting constraint for chief orbits with a general eccentricity
is

ẏ0

x0
=

−n(2− e)√
(1− e)(1 + e)3

(54)

while the constraint for chief orbits with a small eccentricty
is given by

ẏ0 + (2− 3e)nx0 = 0 (55)

Note that if the chief orbit is circular and e = 0, then this
bounded relative motion constraint reduces to the familiar
form of

ẏ0 + 2nx0 = 0 (56)

which is classically obtained by solving the Clohessy-
Wiltshire differential equations. The more general bounded
relative orbit constraint in Eq. (52) is valid for eccentric
chief orbits. However, its form requires that t0 be defined
to be at the orbit perigee point.

If we include the J2 perturbation, then the various orbit
elements will experience short period, long period and sec-
ular drift.26,27 Mapping the instanteneous osculating orbit
elements to mean elements, only the ascending node, argu-
ment of perigee and mean anomaly will experience secular
drifts. It was shown in References 8 and 9 that the following
two mean orbit element constraints will make all orbits drift
on average at the same angular rates θ̇ and Ω̇:

δη = −η

4
tan i δi (57a)

δa =
J2

2η5
(4 + 3η)

(
1 + 5 cos2 i

)
reqδη (57b)

The scalar parameter req is the equatorial Earth radius.
Note that all orbit elements and orbit element differences
in Eq. (57) are assumed to be mean states, not osculat-
ing states.26 Whereas a Keplerian motion requires δa to
be zero to obtain a repeating, closed relative orbit, if the
J2 induced orbit drift is also considered than δa must be
non-zero if either a change in eccentricity or change in incli-
nation is required. However, note that with this constraint
the mean δθ̇ will be zero, but the mean δω and δM will
have secular drifts. The linearized relative motion predic-
tions in Eqs. (22), (28), (33) or (39) should be treated as
the mean relative motion where the short and long period
components have been removed. Over one orbit the affect
of the J2 induced drift will be very small. As such, we can
ignore the small drifts in the orbit element differences and
simply hold them constant to evaluate the shape and geome-
try of relative orbit. To see the long term effect of the orbit
elements drift (i.e. study multiple orbit revolutions), the
orbit element differences δω and δM must be considered to
be slowly time varying.9 Other orbit parameter constraints
could be imposed as well, as long as these constraint will
yield a bounded relative orbit.
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Numerical Simulations
The following numerical simulations verify that the rel-

ative motion approximation in Eqs. (22), (33) and (39) do
indeed predict the spacecraft formation geometry. These
simulations also illustrate the accuracy at which these sim-
plified linearized solutions are valid. Let the chief orbit be
given by the orbit elements shown in Table 1.

Table 1 Chief Orbit Elements

Orbit Elements Value Units
a 7555 km
e 0.03 or 0.13
i 48.0 deg
Ω 20.0 deg
ω 10.0 deg

M0 0.0 deg

The relative orbits are studied for two different chief ec-
centricities. For the relative orbits studied, the ratio ρ/r is
about 0.003. The smaller of the two eccentricities consid-
ered is already an order of magnitude larger than this, while
the second eccentricities is even larger again. The numeri-
cal simulations show that the small eccentricity assumption
(i.e. retaining terms in e but dropping higher order terms
in e) will still yield a reasonable relative orbit prediction for
e = 0.03, even though it is larger than the small term ρ/r.
The orbit element differences which define the relative or-
bit are given in Table 2. Since these simulations assume a
two-body Keplerian motion of the satellites, the semi-major
axis difference δa must be zero to achieve a bounded relative
motion.

Table 2 Orbit Element Differences Defining the Space-
craft Formation Geometry

Orbit Elements Value Units
δa 0 km
δe 0.00095316
δi 0.0060 deg
δΩ 0.100 deg
δω 0.100 deg

δM0 -0.100 deg

The following figures compare the relative orbit motion for
four different cases. Case 1 is the relative motion that will
result using the true nonlinear equations of motion. Case 2
uses the dimensional linearized analytical relative orbit so-
lution in Eq. (22). The only assumption that has been made
here is that the ratio between the relative orbit radius ρ and
the inertial chief orbit radius r is small and terms involving
ρ/r have been dropped. Case 3 assumes that the chief or-
bit eccentricity is small, but not near zero. As such, higher
order terms in e are dropped, while terms which depend lin-
early on e are kept. The relative orbit motion is described
through Eq. (33). Case 4 assumes that the chief orbit is
near-circular and that e is very close to zero. Any terms
involving the eccentricity e are dropped here to yield the
classical CW equations in Eq. (39). Case 4 is not included
here to suggest that a circular orbit assumption should be
made when the chief orbit is clearly eccentric. The circular
chief orbit assumption case is included to provide a relative
comparison illustrating the extent of the eccentricity effect.

The resulting relative orbit motion is illustrated in Fig-
ure 3. Figures 3(a) and 3(b) show the three-dimensional
relative orbits for cases 1 through 4 as seen by the rotating
Hill reference frame. The relative orbit radii vary betwen 10
and 20 kilometers. When e = 0.03, note that the relative
orbits for cases 1–3 are virtually indistinguishable. Only the
relative orbit prediction assuming a circular orbit (case 4)
has a clearly distinct motion. Studying Figure 3(b) with e
= 0.13, the case 2 relative orbit is still indistiniguishable on
this scale from the true relative motion in case 1. With this
larger eccentricity the relative motion predicted in case 3

(dropping higher order terms in e) does show some visible
departure from the true relative motion. As expected, the
circular chief orbit assumption (case 4) yields a very poor
prediction of the relative orbit motion.

In Figures 3(c) and 3(d) the RMS relative orbit errors are
shown in polar plots versus the chief orbit true anomaly. For
the e = 0.03 simulations, the relative orbit errors for case 2
lie between 20 and 40 meters. Since the relative orbit radius
is roughly 10 kilometers, this corresponds to a 0.2–0.4 per-
cent relative motion error. The RMS relative motion error
for case three is only marginally worse. As was discussed
earlier, dropping the higher order e terms should begin to
have a noticably affect on the relative motion errors. For
the e = 0.13 simulations, the relative motion errors for case
2 lie between 50 and 100 meters (roughly 0.5–1.0 percent
errors). However, dropping the higher order e terms in case
3 has a very noticable effect with the relative motion errors
growing as large as 500 meters (about 5.0 percent error).

Conclusion
Analytical linearized relative orbit descriptions are pro-

vided for several types of chief orbit eccentricities where
orbit element differences are chosen to define the relative
orbit geometry. The relative orbit motion between a deputy
and chief satellite is given in terms of the true anomaly dif-
ference. With these linearized relative motion solutions, it
is trivial to estimate what the effect of changing a particular
orbit element difference will be. Orbit element differences
have the advantage that they are constants of the Keple-
rian two-body solution if the mean anomaly difference is
selected as the relative anomaly measure. Assuming that a
bounded relative orbit constraint is satisfied, then all six or-
bit element differences will remain constant. If the bounded
relative orbit constraint is not satisfied, or there are other
perturbations present such as the J2 gravitational pertur-
bations, then some or all of the orbit element differences
will vary slowly with time. The presented analytical solu-
tions in terms of the orbit element differences are still valid.
However, care must be taken to treat the appropriate orbit
element differences as time varying. The resuting relative
orbit motion descriptions can be used both in spacecraft
formation flying control developments, as well as in the rel-
ative orbit design phase. The relative orbit solutions are
written such that their secular offset and sinusoidal motions
are clearly separated. As such, it is easy to see what the
offsets and sinusoidal amplitudes will be for a given set of
orbit element differences in the orbit radial, along-track and
out-of-plane motion.
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