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SHIELDING AGAINST THE UNSAFE: EVALUATION OF SHIELDED
DEEP REINFORCEMENT LEARNING TRAINING APPROACHES
FOR AUTONOMOUS SPACECRAFT

Lorenzzo Quevedo Mantovani* and Hanspeter Schaub’

Deep reinforcement learning (DRL) approaches have been proposed to solve the
agile Earth observing satellite (AEOS) scheduling problem. DRL-based poli-
cies demonstrate the potential for real-time on-board decision-making, enabling
greater adaptability and performance in dynamic environments. Despite the promis-
ing results, safety remains a critical concern, particularly in high-stakes applica-
tions such as autonomous spacecraft operations, where human intervention may be
limited. Shields have demonstrated minimal performance degradation while pro-
viding safety guarantees in the AEOS context. However, integrating shields into
the learning process for AEOS remains an active area of research. Therefore, this
paper explores two approaches to shielded training: action replacement with in-
terference penalty, and action masking. Testing episodes thirty times longer than
training episodes are used to evaluate policies in long-term operations and the
trade-off between safety and performance. Results indicate that action replace-
ment methods with interference penalties during training tend to improve safety
without significantly compromising performance. Additionally, introducing the
interference penalty during training enables agents to learn the safety aspects of
the problem more effectively, resulting in fewer safety violations when tested with-
out shields and shield intervention when tested with shields.

INTRODUCTION

Earth observing satellites (EOS) are equipped with sensing instruments to acquire images of
Earth’s surface, which can be used for multiple purposes such as crop monitoring, intelligence gath-
ering, and disaster response. During the spacecraft’s operation, there is a planning and scheduling
phase responsible for providing the sequence of actions the satellite should take to meet the mis-
sion requirements while respecting the system’s constraints. The advent of agile EOSs (AEOSs)
adds complexity to the problem due to their extra maneuverability capabilities, both along- and
across-track, increasing the solution space. The growing demand for satellite imagery has led to
oversubscribed systems, making the scheduling problem increasingly complex.

The AEOS scheduling problem is shown to be NP-hard, and different optimization techniques
are investigated to solve it, including greedy algorithms, dynamic programming, and constraint
programming.! Heuristics,? local search,’ infeasibility-based graph,* budget uncertainty>® have
also been explored. Despite many advances, the need for fast replanning and real-time decision-
making remains a challenge. Deep reinforcement learning (DRL) techniques are proposed to tackle
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Figure 1: Illustration of AEOS running DRL-based policies for on-board closed-loop decision-
making.

these issues, accounting for complex dynamics and constraints.””!! Figure 1 illustrates AEOSs
running DRL-based policies in a closed-loop format.

Despite the advances provided by DRL-based policies, using DRL for on-board autonomy raises
safety concerns. Shields can be added to the system to provide a layer of safety guarantees with
minimal interference.!?!3 Shields can be incorporated during training and deployment, or exclu-
sively during deployment. The different forms of integrating shields in the training pipeline can
result in varying degrees of safety and performance trade-offs during deployment.'* The three main
approaches are action replacement, action masking, and action projection.

In action replacement, the shield will replace the agent’s action with a safe action if the original
selected action is deemed unsafe. In contrast, action masking only allows the agent to sample
from a set of safe actions, effectively filtering out unsafe actions. Lastly, action projection tries
to find a safe action while minimizing its distance from the original action, mainly applicable to
continuous action spaces. In addition to these three main approaches, the policy can be updated
with the corrected safe action or the original action during training. Although existing comparative
studies investigate such approaches, there is a need for further research on these different methods
in more complex scenarios and how these methods can interact with the policy training.'* More
specifically, the training of DRL-based policies with shields remains underexplored in the AEOS
context.

Shields are applied to the satellite scheduling problem when considering a nadir scan action
with battery levels and reaction wheel speeds as safety considerations.! In a similar environment,
training the agent with shields improved safety and performance metrics compared to unshielded
training.'® In the Earth observation case with point targets, the satellite’s angular velocity is also
included as a safety aspect.!” In the rendezvous context, control barrier functions are used to create
an action projection shield, and it is shown that enforcing some constraints can be beneficial during
training.'® Additionally, the use of optimization techniques with action projection shields is also
proposed to keep the spacecraft in a safe trajectory.'”

The use of shields during the testing phase (after training) is shown to provide safety guarantees
for long-term operations without significantly hurting performance.?® Still, the different training
methods with shields remain unexplored in the AEOS context. Therefore, this research aims to
fill this gap by investigating the effect of action replacement (with different interference penalties)
and action masking during training. The trade-off between safety and performance is evaluated



in thirty-times-longer-than-training episodes during testing, providing insights into the long-term
effectiveness of the investigated methods.

PROBLEM FORMULATION

An AEOS scheduling problem is considered, where a single satellite is tasked with imaging point
targets (requests) on Earth’s surface. The satellite is in a 600 km altitude with 45 degrees inclination
orbit. Four actions (flight modes) are available to the agent at any given time: imaging, charging,
downlinking, and reaction wheel desaturation. The mission goal is to maximize the number of
imaged targets weighted by their priorities. The system is subject to two safety constraints: the
battery level must remain above zero, and the reaction wheel angular velocities must not exceed
their maximum limits. Then, the agent’s objective is to find the sequence of actions that maximizes
the cumulative reward.

Partially observable semi-Markov decision process

The AEOS scheduling problem can be formulated as a Markov decision process (MDP), which is
defined by the tuple (S, A, R, T, ~) where S is the state space, A is the action space, R is the reward
function, 7' the transition probability function, and ~ the discount factor. At each step, the agent
must decide on an action a € A, given the current state s € S of the environment. The environment
then transitions to a new state s’ € S with probability 7'(s'|s, a) and provides a reward r = R(s, a).
The goal is to find a policy 7 : S — A that maximizes the expected cumulative discounted reward

V™(s) =E

Z'ykR(sk,ak) | ag ~ W(Sk)] VseS (1)
k=0

where £ is the time step index.

The problem can be further expanded to a semi-MDP (sMDP) to account for variable action
durations (such as imaging targets near and far away), which is shown to improve the policy perfor-
mance.?! In this case, the value function becomes

VT(s) =E

Z 725:0 Ath(sk, ak) ’ ag ~ W(Sk)] Vs e S ()
k=0

where At; is the duration of action a;.

Lastly, the problem can be extended to a partially observable sSMDP (POsMDP) to account for
the fact that the agent does not have access to the full state of the environment. Instead, is received
observation o € O from an observation space O, which is related to the state through an observation
function Z : § x A — O. The policy is then defined as 7 : O — A.

Therefore, the AEOS scheduling problem is modeled as a POsMDP, where:

 State space S: Includes information about the satellite’s states (such as position, battery
charge fraction, etc), the environment states (such as target locations, ground station loca-
tions, etc), and internal flight software states.

* Action space A: Contains [N + 3 discrete actions, which are charging (acharge), downlinking
(@downlink)> reaction wheel desaturation (agesyt), and imaging one of the N upcoming requests



(Gimage,i for 2 = 1,..., N) in the unfulfilled list of requests /. For this study, N = 32 with
requests being ordered by their opportunity window.?!

* Reward function R: Requests 7 are defined by their priority (p) and location (r), such that
7; = (pi, ri). The reward is proportional to the priority of successfully imaged targets:

3)

R )P0 if @ = Gimage,; and target 7; € U and 7; € F’
0, otherwise

Rewards are only awarded for previously unfulfilled requests (re-imaging a target will not
yield rewards). After imaging, the request is moved from the unfulfilled list ¢/ to the fulfilled
list F.

* Transition function 7": The environment’s dynamics are modeled through a high-fidelity sim-
ulator that accounts for the satellite’s orbital dynamics, attitude dynamics, power system,
reaction wheel dynamics, and ground station visibility.

* Observation space O: Is a subset of the state space, which includes information about the
satellite and the upcoming requests.”!

¢ Observation function Z: The observation function is deterministic.

Simulation environment

The simulation environment was implemented in BSK-RL??>*, an open-source Python package
that integrates Basilisk and Gymnasium, which is a widely used reinforcement learning environment
interface. Basilisk™ is an efficient high-fidelity spacecraft simulator with flight-proven software.>3

When tasked with imaging a point target, the satellite must slew to point its camera towards
the target location. The image was only successfully acquired if the relative angle and angular rate
constraints were satisfied during the imaging task. The slew was controlled by a modified Rodrigues
parameter steering law,?* which was used to control the three reaction wheels. The reaction wheels
were subject to maximum torque and angular momentum constraints. Successful imaging added
data to the on-board data storage; when full, no more data could be added, and no more reward
could be awarded.

The downlink action allowed the satellite to transmit the stored data to a ground station, freeing
up space in the data storage. To succeed, the satellite must have access to a ground station and
hold a nadir pointing attitude. Imaging, downlinking, and the use of reaction wheels consumed
energy from the satellite’s battery, in addition to a baseline power consumption. The charging action
allowed the satellite to point its solar panels towards the sun to recharge the battery. Although the
charging action could be performed at any time, it was only effective when the satellite was in
sunlight. Also, the satellite passively charged when performing other actions, and its solar panels
were exposed to sunlight.

When exposed to external torques, the reaction wheels’ momentum can increase and reach their
limit. The desaturation action allowed the satellite to desaturate the wheels by firing thrusters. The
satellite reached a failure state if the battery level dropped to zero or if any of the reaction wheels

*https://avslab.github.io/bsk_rl/
"https://avslab.github.io/basilisk
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exceeded their maximum angular momentum limits. An example script with the environment is
available in the BSK-RL repository*.

SHIELDED DEEP REINFORCEMENT LEARNING
Training

The policy aforementioned can be obtained using reinforcement learning techniques, which im-
prove the policy through interactions with the environment.>> When the policy is represented by
a neural network, the approach is referred to as deep reinforcement learning (DRL). The proximal
policy optimization (PPO) algorithm?® shows promise in solving the AEOS scheduling problem?!
and was used to obtain the policy. The PPO implementation from RLIib?>’ (version 2.35.0) was
used. The training was performed in the University of Colorado Research Computing Alpine high
performance computing resource”® using 32 AMD Epyc-7713 cores with 100 GB of RAM. Each
policy was trained for up to 20M steps or 72 hours of wall-clock time.

Two fully connected layers of 2048 nodes each were used, with a learning rate of 3 - 1075,
a training batch size of 3,000, and 10 epochs, along with a discount factor of 0.997. The gradient
clipping was set to 0.5, PPO clipping was set to 0.2, and the generalized advantage estimation (GAE)
was set to 0.95. Other parameters were set as the standard values in RLIib. The hyperparameters
were used as they show good performance when compared to an optimal solver.?!

Training episodes were limited to three orbits to allow for more frequent resets of the environ-
ment, resulting in a more randomized initial condition and a more diverse training set. The episodes
were truncated after three orbits, so the value function was used to estimate the value of the next
state.

Shields

During training, the agent will be exposed to unsafe states, which can lead to terminal states and
failures. Penalties can be added to the reward function every time the agent reaches the terminal
state, discouraging unsafe behavior. However, this approach does not guarantee safety during train-
ing nor during testing. Alternatively, shields can be used to provide formal guarantees on safety.
Two different shield formulations are considered in this work, one constructed using heuristics from
expert knowledge of the problem,!!-?® and one constructed using formal methods.>"

The handmade (H) shield is based on expert knowledge?® and overrides the agent’s selection to
take action charge if it is not in eclipse and the battery charge is below a certain threshold. The
battery threshold depends on a minimum energy threshold, Fy,, and the time until the next eclipse.
Therefore, the H shield will obtain the eclipse duration, ey, and estimate the energy consumption
during the eclipse, F, in that period with

E. = eqPy “)

where Py is an estimate of the satellite’s power consumption. The minimum energy threshold, E},
is calculated as
E; = Ee + Epin — tePe (5)

where P, is the passive charging rate of the satellite, and ¢, is the time to the next eclipse. The H
shield will also force the agent to enter the momentum management mode to desaturate the wheels

*https://avslab.github.io/bsk_rl/examples/training_with_shield.html
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Figure 2: Illustration of the differences between action replacement and action masking.

if any of the wheels’ angular speed fraction is above a threshold ;. The H shield will select the
charge action if both conditions are met. Despite using expert knowledge, the H shield might fail in
edge cases that are not considered in the design. For this work, Fni, = 0.25, P; = 1.0, P, = 1.0,
and W; = 0.7.

The Q-Optimal (Q) shield is built using a safety-MDP3 abstracted from the original POSMDP.
The safety-MDP considers only states relevant to safety, such as battery levels and reaction wheel
speeds. The probabilities of transitioning to unsafe states are obtained by sampling the high-fidelity
simulator. The Q shield is then constructed with dynamic programming. It obtains a policy 75 that
minimizes the probability of reaching an unsafe state. It allows only actions that have a probability
1 — p of leading to a safe state; if none is available, it uses 73 to obtain the action more likely to
lead to a safe state.

Shielded training approaches

Shields can be used after training to provide safety guarantees during deployment. However,
shields can also be used during training so that the policy learns while interacting with the shield.
Two main approaches to incorporating shields during training are considered: action replacement
and action masking. In action replacement, the shield overrides the agent’s action with a safe action
if the original action is deemed unsafe. In action masking, the shield is used to create a mask that
prevents unsafe actions from being selected by the agent. Figure 2 illustrates the differences between
action replacement and action masking. One of the main differences between the two approaches is
that the selected safe action is used during the update step of the network in action masking, while
the original action is used in action replacement.

When using action replacement, different interference penalties can be added to the reward func-
tion every time the shield overrides the agent’s action. Four interference penalty levels are consid-
ered, which are —0.01, —0.1, —1, and —10. Also, three baseline policies are considered: unshielded
training with no penalties, unshielded training with a failure penalty of —10 (which showed supe-
rior performance compare to other values of failure penalties in a similar scenario®!), and a policy
trained with an excessively large battery and no reaction wheel constraints (no safety constraints,
focusing only on the imaging tasks). Table 1 summarizes the configurations of all trained policies.

RESULTS

All trained policies were tested with and without shields in ninety-orbit-long episodes (equivalent
to 6.3 days, being thirty times longer than training episodes) to evaluate the long-term trade-off



Table 1: Trained policies

Case Safety Shield type Shield mode Penalty
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Table 2: Test case configurations
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between safety and performance in each case. Table 2 summarizes the test cases.

Each case described in Table 1 was trained three times to account for randomness in training.
Each resulting policy was tested with 20 random seeds for each configuration of request density
(100, 500, 1000, 2000, 3000 requests), resulting in 100 test runs per policy (300 per training con-
figuration). To avoid target depletion over time due to the extended episodes, a new random request
was added to the unfulfilled list every time a target was successfully imaged. This approach also
simulates a more realistic scenario where new imaging requests arrive dynamically during the satel-
lite’s operation.

Unshielded testing

Figure 3 shows the aliveness during testing (after training) for policies trained without shields.
Policy 7, presented the highest survival rate, as expected, because it was trained with a failure
penalty. 7., shows the worst survival rate, as it was trained without safety constraints and did not
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Figure 3: Aliveness during testing for policies trained and tested without shields.

learn how to manage its resources. 7; falls in between the other two cases. Still, even the best policy
presented less than 7% survival after ninety orbits, indicating the need for safety measures during
deployment.

Figure 4a shows the aliveness during testing for policies trained with action replacement and ac-
tion masking tested without shields (7; is also included for comparison). Although improvements
are seen when compared to 7, all cases show less than 5% survival after ninety orbits. On the
other hand, Fig. 4b indicates that policies trained with action replacement with moderate interfer-
ence penalties (—0.1 and —1) present significant improvements in survival rate when tested without
shields. For example, cases my.Rr, and 7R, showed 54.3% and 63.6% survival rate after ninety
orbits, respectively. 7R, and TR, ,, cases with high interference penalties, achieved even higher
survivability, up to 75.6% and 78.3%, respectively.

Despite the safety improvements, these results indicate the need for shields during deployment.
Nevertheless, these results provide insights into how different training methods can help the agent
learn safety aspects of the problem, reducing safety violations when deployed without shields and
shield interventions when deployed with shields.

Shielded testing

Figure 5 shows the performance of 7., when tested with shields, together with shield interfer-
ence. Shield interference is measured as the percentage of actions overridden by the shield during
testing. The performance improves significantly when shielded with either shield (7, H and 7
Q) compared to the unshielded case (7). The main drive for the performance improvement is the
significant increase in survival rate, as satellites that reach a terminal state can no longer acquire re-
wards. Nevertheless, the shield interference was 15% and 25% on average for the H and Q shields,
respectively, indicating a large reliance on the shields to maintain safety as expected. Although
performant, this behavior indicates that the policy might be losing imaging opportunities due to
the high interference from the shields (being forced to charge over regions with many requests, for
example).

To better compare the impact of the different shields and shielding methods, Fig. 6 shows the
relative performance of shielded policies 71, o, and 7o,. The relative performance is the average
seed-by-seed ratio of the reward obtained by each policy compared to 7o shielded with Q (72 Q).
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(b) Policies trained with action replacement with different interference penalties tested without shields.
Figure 4: Aliveness during testing for policies trained with shields and tested without shields.

—_— Tl =T H ”ooQ

2000

1000 A

Reward

40

20 A

Shield interference (%)

T T T T T
500 1000 1500 2000 2500 3000
Number of requests U1

Figure 5: Performance of policies trained without shields when tested with shields.
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Figure 6: Relative performance comparison of shielded policies 7, w9, and mo,. 72 Q used as
reference.

Overall, the same pattern is observed for both shields, where 7, shows the worst performance,
followed by 7, and 72 shows the best performance. In terms of shield interference, o shows the
lowest interference, and 7., shows the highest interference. Interestingly, all cases seem to benefit
from the H shield compared to the Q shield, showing higher rewards and lower interference. Despite
being more conservative, the Q shield provides formal safety guarantees.

Figure 7 presents the comparison between the cases trained with action replacement and action
masking. Overall, the policies trained with masking showed superior performance but mixed results
in terms of shield interference. This is expected as the masking approach uses the safe action
selected by the shield during the update step of the network for backpropagation, allowing the agent
to learn safer behaviors. Interestingly, mo2 Q outperforms the cases trained with the Q shield and
shows comparable performance to those trained with the H shield from 1,000 requests and above.
Again, agents using the less conservative H shield outperformed those using the Q shield.

The results comparing the performance of policies trained with action replacement with different
interference penalties are shown in Fig. 8. Overall, a moderate interference penalty of —1 yielded
the best performance during testing, resulting in better results for both shields. Notably, cases with
a high interference penalty of —10 showed a larger decrease in performance, with the case trained
with the Q shield failing to learn, indicating overly conservative behavior during training.

Overall, cases trained with interference penalties tended to outperform other methods. Adding a
large failure penalty during unshielded training (72) also led to good performance, but such penalties
can be sparse and provide a weak learning signal. In contrast, interference penalties provide more
frequent feedback to the agent about unsafe behaviors.

10
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Elite cases

Although shields can provide safety, there is a possible trade-off with performance due to the
interference with the agent’s actions. Therefore, it is of interest to identify the performance decrease
due to shielding. However, unshielded agents tend to reach terminal states quickly, bringing the
average reward down. To provide a better comparison, only the cases that survived the entire ninety-
orbit episode are considered, referred to as elite cases.?? Figure 9 shows the relative performance of
elite cases for policies R, and mg.r, when tested with and without shields.
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Figure 9: Performance of elite cases during testing. 7R, used as reference.

The results indicate that all cases are similar in terms of rewards, with 0.26% and 0.25% differ-
ence on average for the shielded versions of g, and mg.r, compared to their unshielded versions,
respectively. Despite the small performance decrease, all shielded cases achieved 100% survival,
while unshielded cases achieved 54.3% and 63.6% survival for 7y g, and mg.g, , respectively. These
results indicate that shields can provide safety guarantees with minimal performance decrease in the
long run. This behavior is expected with the increase in episode duration, as the impact of failures
becomes more significant; the agent that maximizes rewards is also the agent that minimizes fail-
ures.

CONCLUSIONS

The use of different approaches to train deep neural networks with shields is investigated in the
context of the autonomous agile Earth observation satellite (AEOS) scheduling problem. Two shield
formulations are considered, a handmade shield based on expert knowledge and a shield constructed
using formal methods. The two main shielded training approaches, action replacement and action
masking, are explored.

The results indicate that all training methods lead to good-performing policies, except for action
replacement with high interference penalties. Policies trained with moderate and high interference
penalties during action replacement show the highest survivability when tested without shields,

12



incorporating safety aspects into the learned behavior. When tested with shields, these policies
trained with moderate interference penalties present the best performance and the lowest shield
interference. These results suggest the potential of using shields during training to enhance safety
and performance during deployment.

Furthermore, the results indicate that shields can provide safety guarantees with minimal per-
formance decrease in the long run. Elite cases that survived the entire testing episode showed an
average performance decrease of less than 0.3% when shielded compared to their unshielded ver-
sions, while achieving 100% survival compared to 54.3% and 63.6% survival for the unshielded
versions. These results highlight the potential of shields to enable safe and performant long-term
operations of autonomous AEOS.
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