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Abstract. The current missionsCHAMP and
GRACE have already contributed drastically to our
knowledge of the Earth’s gravity field in terms of ac-
curacy, homogeneity and time- and space-resolution.
The future missionGOCE will further add to that
in terms of spatial resolution. Nevertheless, each
of these missions has its own limitations. At the
same time several geoscience disciplines push for
ever higher requirements on spatial resolution, time
resolution and accuracy. Future gravity field mis-
sions will need to address these requirements.

A number of new technologies may enable these
future missions. They include laser tracking and
atomic interference. Most likely, a mission that im-
plements such technologies, will make use of the
concept of formation flying. This paper will discuss
the feasibility of low-Earth satellite clusters. It fo-
cuses in particular on the stability of satellite for-
mations under the influence of perturbations by the
Earth’s flattening. Depending on initial conditions
several types of relativeJ2 orbits can be attained.

1 Limitations of current and planned
gravity missions

CHAMP, GRACE and GOCE. The satellite mission
CHAMP currently provides static gravity field solu-
tions at dm-level geoid accuracy up to an effective
maximum spherical harmonic degree of around 60,
cf figure 1. Recovery of the time-variable field seems
to be at—or rather below—the edge of feasibility.
Although CHAMP is still in orbit, delivering quality
science data, this combination of resolution and ac-
curacy is the natural limitation of the mission.

The accuracy ofGRACE-derived geoids, on the
other hand, is at mm-level around these degrees. It
achieves its resolution around degree 120 at which
the geoid accuracy is at the dm-level again. Future
data and modeling improvements will likely push the
limit towards a maximum degree of 150. Moreover,
GRACE provides monthly solutions that clearly re-
veal time-variable gravity (Tapley et al., 2004).

The gradiometer missionGOCE, due for launch in

2006, aims at cm-accuracy and a spatial resolution
corresponding to maximum degree 300. This high
resolution, combined with the relatively short mis-
sion duration, does not allow time-variable gravity
recovery, although time variations will alias into the
static solution.
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Figure 1. CHAMP and GRACE gravity recovery performance:

geoid RMS (left) and cumulative geoid error (right) as function

of spherical harmonic degree. TheCHAMP curves represent the

model EIGEN2. Those ofGRACE refer to the modelEIGEN-

GRACE02S.

Despite the wealth of new gravity field informa-
tion and despite the many new scientific issues that
can be addressed, these missions are limited in spa-
tial resolution, temporal behaviour (resolution and
mission duration) and accuracy of the resulting grav-
ity field recovery. The key limitations, at least from
a gravity recovery viewpoint, are:

– Sampling and resolution: missions are designed
for either spatial or spectral resolution. A simul-
taneous high spatial and spectral resolution is fun-
damentally impossible with a single mission.

– Aliasing: phenomena with sub-monthly period
will alias into the monthly GRACE solutions.
Time-variable signal will also map into the static
GOCEfield.

– Monitoring: limited mission durations of 5 year
(CHAMP, GRACE) or 1 year (GOCE).

– Gravity signal: theGRACE-observable is a rela-
tively weak observable, see below.
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The limitations ofGRACE and GOCE are analyzed
from a more technological viewpoint by Aguirre-
Martinez and Sneeuw (2003).

Future low-low SST. At the same time Earth sci-
entist are driving the requirements for ever higher ac-
curacies and resolutions. Moreover, similar to satel-
lite radar altimetry, there is a growing demand for
a monitoring facility rather than a few individual
satellite missions. Studies into next-generation grav-
ity field missions tend to focus on low-low satellite-
to-satellite tracking (SST). Indeed, the accuracy
gain that is potentially achieved by laserSST over a
GRACE-type radio link is far larger than the expected
future improvements in gradiometry technologies.

The keyGRACE-type SST observable is the inter-
satellite distance and relative velocity in a leader-
follower configuration at near-polar inclination. This
type of observable inherently suffers from the weak-
ness that it is mainly sensitive along the line-of-sight,
i.e. in North-South direction. This was demonstrated
by the very first release of aGRACE map, cf. Figure
2, which clearly demonstrated a sensitivity towards
East-West features in the Earth’s gravity field. Note,
for instance, the weak presence of Andes or Rocky
Mountains in the map.

Figure 2. GRACE first light: map of gravity field effect on inter-

satellite baseline.

The observable approximates the along-track
gravity gradient termVxx. This is a relatively weak
term. Its spectral content is approximately one half
of the radial gravity gradient termVzz. More im-
portantly, the directional sensitivity of the observable
also translates into a non-isotropic error behaviour.

Formation flying. Formation flying, which is
currently receiving much attention internationally,
may solve some of the aforementioned issues. A
satellite formation may consist of any number of
satellites that are performing a relative motion
around a common center. AGRACE-type leader-
follower formation is a trivial example. Satellites
may also perform elliptical or circular relative mo-
tion. Obviously, when the distances between these
satellites would be measured, the gravitational sig-
nal would include radial information. Moreover,
a relative inclination might be achieved that would
lead to cross-track information going into the observ-
able. Such observables could address several of the
aforementioned weaknesses, most notably the spec-
tral content and the non-isotropy of the low-lowSST

observable. Including cross-track information may
also reduce the aliasing problem.

For these reasons this paper will mainly investigate
the feasibility of formation flying in a realistic gravity
field. It will then be discussed how to use formation
flying in a gravity field mission.
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Figure 3. Illustration of a general spacecraft formation with out-

of-plane relative motion.

2 Feasibility of formation flying in a J2

gravity field

2.1 Equations of relative motion

Let us adopt the following formation flying nota-
tion. A set of deputy satellites are to fly about a
chief location as shown in Figure 3. This location
could be an actual spacecraft, or simply a reference
point. The inertial chief position vector isrc, while
ρ is the deputy relative position vector. The rotating
Hill frame O = {eθ, eh, er} is defined wither be-
ing along the chief orbit radial,eh being along the
chief orbit plane normal, andeθ completing the right
handed coordinate system. The angular rate of the
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Hill frame (chief motion) isθ̇. The deputy position
vectorρ is then expressed in the Hill frame through

Oρ = (x, y, z)T (1)

The general linearized equations of motion of a
deputy satellite with respect to a chief is given by
Schaub and Junkins (2003):

ẍ + zθ̈ + 2żθ̇ − x

(
θ̇2 − µ

r3
c

)
= ax (2a)

ÿ +
µ

r3
c

y = ay (2b)

z̈ − z

(
θ̇2 + 2

µ

r3
c

)
− xθ̈ − 2ẋθ̇ = az (2c)

whereµ is the gravitational constant and(ax, ay, az)
are non-Keplerian forces acting on the deputy satel-
lite. They could be due to atmospheric drag,J2 grav-
itational oblateness effects, or control thrusters.

Many missions consider formations where the
chief motion is essentially circular with a near zero
eccentricitye. In this case the chief ratėθ is con-
stant and equal to the mean orbit raten =

√
µ/r3

c .
The equations of motion simplify to the well-known
Clohessy-Wiltshire (CW) equations (Clohessy and
Wiltshire, 1960):

ẍ + 2nż = ax (3a)

ÿ + n2y = ay (3b)

z̈ − 2nẋ− 3n2z = az (3c)

These equations are sometimes also referred to as
Hill’s equations. Eq. (3) has been used extensively in
spacecraft formation flying mission analysis and con-
trol research. They are reasonable as long as(x, y, z)
are small compared to the chief orbit radiusrc. In-
stead of using rectilinear local coordinates(x, y, z),
the relative motion can also be expressed through
the curvilinear coordinates(δθ, y, δr), (Schaub and
Junkins, 2003):

rcδθ̈ + 2nδṙ = ax (4a)

ÿ + n2y = ay (4b)

δr̈ − 2nrcδθ̇ − 3n2δr = az (4c)

Note that Eqs. (4) are algebraically equivalent to the
CW equations, but provide greatly improved mod-
eling accuracy. This is achieved by interpreting the
relative motion coordinates differently. Thez coor-
dinate is now interpreted as a difference in orbit radii,
while thex coordinate is interpreted as difference in
argument of latitudeθ. Such cylindrical coordinates

will closely match the relative motion for near circu-
lar chief motion. Along track motions have the nat-
ural bending that leader-follower formations would
exhibit.

Often it is convenient to work in non-dimensional
states. Let (u, v, w) = (x, y, z)/rc be non-
dimensional deputy relative position coordinates. If
the true anomalyf is used as the independent angle
instead of time, then the general first order equations
of motion are given through:

u′′ + 2w′ = αu (5a)

v′′ + v = αv (5b)

w′′ − 2vv′ − 3w

1 + e cos f
= αw (5c)

Many further forms of the relative motion have
been developed. Schweighart and Sedwick (2002)
developed an extension to the CW equations which
includes linearJ2 oblateness perturbations in the
equations of motion. Humi and Carter (2003) have
shown solutions with special forms of quadratic drag.
An excellent survey of relative motion state transition
matrices is found in (Carter, 1998).

2.2 First order analytical solutions

If the chief motion can be modeled as circular, then
the CW equations can be solved analytically. As-
suming no perturbations or thrusting is present (ax =
ay = az = 0), all possible deputy relative motions
can be expressed in closed form (Schaub and Junk-
ins, 2003):

x(t) = −2A0 sin(nt + α)− 3
2
ntzoff + xoff (6a)

y(t) = B0 cos(nt + β) (6b)

z(t) = A0 cos(nt + α) + zoff (6c)

Note that the out-of-plane motion is decoupled from
the in-plane motion. The integration constants can be
expressed in terms of initial conditions through:

A0 =
1
n

√
ż2
0 + (2ẋ0 + 3nz0)2 (7a)

B0 =
1
n

√
ẏ2
0 + (ny0)2 (7b)

α = arctan
(

−ż0

−(3nz0 + 2ẋ0)

)
(7c)

β = arctan
(
−ẏ0

ny0

)
(7d)

zoff =
2
n

(ẋ0 + 2nz0) (7e)

xoff = x0 −
2ż0

n
(7f)
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These equations are very convenient to explore what
possiblenatural and unforced formation shapes are
feasible. For example:

– If B0 = 0, a purely in-plane relative motion
is achieved which is always a 2:1 ellipse (the
CartWheel-mode);

– If B0 =
√

3A0, the relative motion is circular with
radius2A0 (theLISA-mode);

– If B0 = 2A0, one achieves elliptical motion with
a circular cross-section in the local horizon plane
eθ-eh (the TechSat21-mode).

The latter two configurations also require eitherα =
β or α = β + π.

If the chief motion is not circular, then the solution
in Eq. (6) is no longer valid. Even small amounts
of eccentricity can produce modeling errors compa-
rable to those produced byJ2 gravitational pertur-
bations or atmospheric drag. Carter (1998) presents
an analytical solution to the linearized relative mo-
tion where the true anomaly is used as the inde-
pendent variable. However, this solution does not
provide that elegant geometrical insight the classi-
cal CW solution provides. In (Schaub, 2004) the
first order(u, v, w) non-dimensional relative motion
is expressed in terms of orbit element differences.
This analytical relative motion solution is valid for
chief motions of any eccentricity, but also uses true
anomaly as the independent variable. The orbit ele-
ment difference based solution is written in terms of
static offsets and sinusoidal components, and has a
similar geometric structure as the analytical CW so-
lution. Even for highly eccentric chief motions, the
first order out-of-plane relative motion is still decou-
pled from the in-plane motion.

2.3 Bounded relative motion constraints

To avoid having the formation drift apart, bounded
relative motion solutions are sought. If no pertur-
bations are present, then the nonlinear bounded rel-
ative motion constraint is simply that all orbit peri-
ods must be equal. This is equivalent to requiring
that the semi-major axis differencesδa be zero. This
bounded motion constraint is valid for both circular
and eccentric orbits, as well as small and large rela-
tive orbit dimensions.

The orbit element constraintδa = 0 can be ap-
proximated using Hill frame Cartesian coordinates
by taking a first order expansion. An equivalent ap-
proach is to look at the analytical CW solution in
Eq. (6). The only secular growth occurs in the along
track direction through the−3/2ntzoff term. For this

secular growth term to be zero, we find that the initial
Cartesian coordinate conditions must satisfy

ẋ0 + 2nz0 = 0 (8)

This first order approximation ofδa = 0 assumes
that the chief is circular and that the relative orbit ra-
diusρ is small compared to the chief orbit radiusrc.
However, this condition can be applied at any point
within the orbit. If the chief motion has a small but
non-zero eccentricity, then the first order bounded
relative motion constraint is written as (Schaub and
Junkins, 2003; Inalhan et al., 2002):

ẋ0(2 + 3e)z0 = 0 (9)

if the initial time is set at perigee. Ift0 is set at
apogee, then the constraint is (Schaub and Junkins,
2003):

ẋ0(2− 3e)z0 = 0 (10)

These conditions are not valid at any other orbit
point.

If the gravitationalJ2 perturbation is present, then
all orbits experience short and long period perturba-
tions. Only the ascending nodeΩ, argument of peri-
apsisω and initial mean anomalyM0 will experience
secular drift. Their mean rates are given by (Schaub,
2004; Schaub and Alfriend, 2001):

dΩ
dt

= −ε(a, e)
2

n cos i (11a)

dω

dt
=

ε(a, e)
4

n (5 cos2i− 1) (11b)

dM0

dt
=

ε(a, e)
4

n η (3 cos2i− 1) (11c)

with ε(a, e) = 3J2

(
req/a(1− e2)

)2
and whereη =√

1− e2 is an eccentricity measure. The distancereq

is Earth’s equatorial radius. Note that onlya, e and
i control the secular drift rate of the remaining three
orbit elements. This drift could be compensated for
by thrusting. However, this will quickly consume a
lot of fuel. Schaub and Alfriend (2001) introduce
the concept ofJ2-invariant relative orbits. Here the
relative orbit geometry is designed such that while
all orbits are still drifting, on average, they will drift
at equal rates. To achieve this, the following mean
relative drift rates are set to zero:

δθ̇ = δω̇ + δṀ0 = 0 (12)

δΩ̇ = 0 (13)
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The first condition guarantees no in-plane drift and
leads to the orbit element constraint equation

δa

a
=

J2

2
a2

r2
eq

1
η
(4 + 3η)(1 + 5 cos2i)δη (14)

The second conditions controls the out-of-plane drift.
It yields the orbit element constraint

δη = −η

4
tan i δi (15)

By choosing either a difference in eccentricity, incli-
nation, or semi-major axis, the other two orbit ele-
ment differences are then dictated through the con-
straints in Eqs. (14) and (15). Note that in or-
der to have either a difference in eccentricity or in-
clination, a non-zero difference in semi-major axis
is required. This is a departure from the Keple-
rian bounded relative motion results. For near-polar
chief motions, theJ2-invariance constraints result in
very large along track relative orbit dimensions. To
avoid this, the 2nd constraint in Eq. (15) is typically
dropped and any out-of-plane secular drift will have
to be compensated for through thrusting (Schaub
and Junkins, 2003). When designingJ2-invariant
relative orbits, the motion is typically described in
mean element space, cf. (Schaub and Alfriend, 2001;
Brouwer, 1959). To map between the osculating
(instantaneous) orbit elements and the mean orbit
elements (long period and secular terms removed),
the Brouwer-Lyddane theory can be used (Lyddane,
1963; Brouwer, 1959).

3 Gravity mapping from satellite forma-
tions

Future low-low sst missions, whether formation fly-
ing or not, will most likely employ laser technol-
ogy for the intersatellite link. Bender et al. (2003)
discuss heterodyne laser interferometry, whereas
McGuirk et al. (2002) discuss atomic interference.
Differential accelerometry seems feasible at a level
of 10−12 m s−2/

√
Hz. Over a baseline of 1 km

this would translate already into gradiometry at the
10−6 E/

√
Hz level. The baseline length immediately

scales into the error level.
The range ratėρ between two satellites is the pro-

jection of the relative vectorial velocitẏρ on the line-
of-sight unit vectore, e.g. (Rummel et al., 1978):

ρ̇ = ρ̇ · e (16a)

⇒ ρ̈ = ρ̈ · e +
1
ρ

(
ρ̇ · ρ̇− ρ̇2

)
(16b)

Using Newton’s equations, the vectorial acceleration
differenceρ̈ equals the difference in gravitational at-

traction∇V between the forces. The scalar range ac-
celerationρ̈ can be obtained from the observed range
rate by numerical differentiation. To extract the grav-
itational information, one should further correct for
the relative velocity terms at the right of (16b).

Gradiometry from satellite formations. Al-
ternatively, when dividing̈ρ · e by the baseline, one
obtains the in-line gravity gradient in the baseline
directioneV e, with V the gravity gradient tensor.
With the baseline close to along-track direction, this
observable is mainlyVxx. Again, one should cor-
rect for the relative velocity terms at the right hand
side of (16b). Moreover, one has to account for
a linearization error in the approximationVxx ≈
(Vx,2 − Vx,1)/(x2 − x1).

In a satellite formation, the baseline performs a
full revolution in the Hill frameO, i.e. the direc-
tion e rotates once every orbital revolution. Thus the
observed gravity gradienteV e contains projections
of several tensor componentsVij , i, j ∈ {x, y, z}.
The gravity gradient tensorV transforms under a ro-
tation of the coordinate frame asRV RT, in which
R denotes the rotation matrix. Let us consider one
satellite pair only in the simplest formation, namely
the 2:1-ellipse in the orbital plane. Now assume a
time-variable rotationα about they-axis, such that
the two satellites are always on the newx′-axis. The
coplanar gradientsVxx, Vxz, Vzz project onto the ob-
servable as follows:

Vx′x′ = cos2 αVxx + 2 cos α sinαVxz + sin2 αVzz

The observableVx′x′ (= eV e) contains the required
gravity observable already. However, if one wants to
disentangle the 3 contributing tensor components in
the Hill frame, 3 independent intersatellite distances
need to be tracked. With 3 different anglesα one
would have 3 simultaneous equations of the above
kind, leading to an instantaneous determination of
Vxx, Vxz and Vzz. This can either be realized by
a CartWheel of 3 satellites, measuring in a triangle,
or by 6 satellites, measuring along the spokes of the
wheel, cf. figure 4. The spokes configuration may be
easier to realize at the cost of more satellites. The
intersatellite links in the triangular formation are de-
pendent. Technologically that may be more demand-
ing, but it has the added benefit that the required ori-
entations are better constrained.

Gradiometry of out-of-plane components
(Vxy, Vyy, Vyz) can only be achieved through
non-coplanar satellite configurations. A relative
inclination of the formation w.r.t. the orbit plane can
be represented by a rotationRx(β). Along the same
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Figure 4. Potential coplanar configurations for measuring the in-

planeVxx, Vxz andVzz simultaneously: triangle edges (left) or

spokes (right).

lines of arguing as above it can be demonstrated that
all gravity gradient tensor components will generally
project onto a particularVx′x′ . To disentangle this
projection, 6 instantaneous intersatellite distances
should be measured. Thus formation flying offers a
way of full-tensor gravity gradiometry.

4 Conclusion

When designing future gravity field missions, forma-
tion flying is a viable alternative to leader-follower
low-low SST configurations. Despite the presence
of perturbations—the strongest being the Earth’s
oblateness—stable configurations exist. The homo-
geneous Clohessy-Wiltshire equations (Hill equa-
tions) demonstrate which natural formation shapes
are possible. In its simplest form, a 2:1 relative el-
lipse, the radial gravity gradientVzz is projected onto
theSSTobservable. Thus, the inherent weakness and
the non-isotropic behaviour of the conventional low-
low SST observable can be solved by formation fly-
ing.

Gravity field recovery can be based on observed
range rateṡρ. Alternatively they may be differen-
tiated numerically intöρ, which can be interpreted
as differences in the gravitational attraction between
the satellites. Moreover,̈ρ can be recast into a grav-
ity gradient observableeV e. With sufficiently many
satellites linked together in a strategic way, one can
even achieve full-tensor gravity gradiometry.

If the relative orbits comprise a cross-track mo-
tion, the corresponding observables gain sensitivity
in East-West direction. Although this may be help-
ful in dealiasing signals, the fundamental temporal-
spatial sampling problem of a gravity field satel-
lite mission is not addressed. To overcome aliasing
multiple-formation configurations must be consid-
ered, such as the planned geomagnetic field mission
SWARM: one satellite pair at the same altitude but
with different right-ascension, plus a single higher
satellite.

Finally, if the individual satellites can be designed
and launched in a cost-effective way, a formation fly-
ing mission would be suitable as a long-term moni-

toring mission.
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