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Abstract. The current mission&€HAMP and 2006, aims at cm-accuracy and a spatial resolution

GRACE have already contributed drastically to our corresponding to maximum degree 300. This high

knowledge of the Earth’s gravity field in terms of ac- resolution, combined with the relatively short mis-

curacy, homogeneity and time- and space-resolution.sion duration, does not allow time-variable gravity

The future missioncocE will further add to that  recovery, although time variations will alias into the

in terms of spatial resolution. Nevertheless, each static solution.

of these missions has its own limitations. At the

same time several geoscience disciplines push for geoid degree RMS o geoid commission error

ever higher requirements on spatial resolution, time

resolution and accuracy. Future gravity field mis-

sions will need to address these requirements. _ w0
A number of new technologies may enable these = .

future missions. They include laser tracking and

atomic interference. Most likely, a mission that im-

plements such technologies, will make use of the 17 e o o = TTR—TS

concept of formation flying. This paper will discuss SH degree SH degree

the feasibility of low-Earth satellite clusters. It fo-

cuses in particular on the stability of satellite for-

mations under the influence of perturbations by the Figure 1.  CHAMP and GRACE gravity recovery performance:

Earth’s flattening. Depending on initial conditions geoid RMs (left) and cumulative geoid error (right) as function

several types of relativé, orbits can be attained. of spherical harmonic degree. TleiAMP curves represent the
model EIGEN2. Those ofGRACE refer to the modeEIGEN-

GRACEO2s.
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1 Limitations of current and planned _ o

gravity missions _ Despite the_ wealth of new graw_ty f|_e_ld_|nforma-

tion and despite the many new scientific issues that

CHAMP, GRACE and GOCE. The satellite mission  can be addressed, these missions are limited in spa-
CHAMP currently provides static gravity field solu- tjal resolution, temporal behaviour (resolution and
tions at dm-level geoid accuracy up to an effective mjssion duration) and accuracy of the resulting grav-
maximum spherical harmonic degree of around 60, ity field recovery. The key limitations, at least from
cffigure 1. Recovery of the time-variable field seems g gravity recovery viewpoint, are:

to be at—or rather below—the edge of feasibility.
Although cHAMP is still in orbit, delivering quality
science data, this combination of resolution and ac- ; . e
curacy is the natural limitation of the mission. taneous hlg_h spat|a_1| and _Spectr_al resol_ut|_on is fun-
The accuracy ofcRACEderived geoids, on the damentally impossible with a single mission.
other hand, is at mm-level around these degrees. It — Aliasing: phenomena with sub-monthly period
achieves its resolution around degree 120 at which ~ Will alias into the monthly GRACE solutions.
the geoid accuracy is at the dm-level again. Future  Time-variable signal will also map into the static
data and modeling improvements will likely pushthe ~ GOCEfield.
limit towards a maximum degree of 150. Moreover, — Monitoring: limited mission durations of 5year

— Sampling and resolution: missions are designed
for either spatial or spectral resolution. A simul-

GRACE provides monthly solutions that clearly re- (CHAMP, GRACE) or 1year GOCE).
veal time-variable gravity (Tapley et al., 2004). — Gravity signal: theGRACE-observable is a rela-
The gradiometer missioeOCE, due for launch in tively weak observable, see below.



The limitations of GRACE and GOCE are analyzed  Formation flying. Formation flying, which is
from a more technological viewpoint by Aguirre- currently receiving much attention internationally,
Martinez and Sneeuw (2003). may solve some of the aforementioned issues. A
satellite formation may consist of any number of
satellites that are performing a relative motion
around a common center. ARACEtype leader-
follower formation is a trivial example. Satellites
may also perform elliptical or circular relative mo-
tion. Obviously, when the distances between these
satellites would be measured, the gravitational sig-
nal would include radial information. Moreover,
a relative inclination might be achieved that would
lead to cross-track information going into the observ-
able. Such observables could address several of the
aforementioned weaknesses, most notably the spec-
tral content and the non-isotropy of the low-l@gT
observable. Including cross-track information may
also reduce the aliasing problem.

For these reasons this paper will mainly investigate
the feasibility of formation flying in a realistic gravity
field. It will then be discussed how to use formation
flying in a gravity field mission.

Future low-low ssT. Atthe same time Earth sci-
entist are driving the requirements for ever higher ac-
curacies and resolutions. Moreover, similar to satel-
lite radar altimetry, there is a growing demand for
a monitoring facility rather than a few individual
satellite missions. Studies into next-generation grav-
ity field missions tend to focus on low-low satellite-
to-satellite tracking £s7). Indeed, the accuracy
gain that is potentially achieved by lasesT over a
GRACE-type radio link is far larger than the expected
future improvements in gradiometry technologies.
The keyGRACE-type SST observable is the inter-
satellite distance and relative velocity in a leader-
follower configuration at near-polar inclination. This
type of observable inherently suffers from the weak-
ness that it is mainly sensitive along the line-of-sight,
i.e. in North-South direction. This was demonstrated
by the very first release of @RACE map, cf. Figure
2, which clearly demonstrated a sensitivity towards
East-West features in the Earth’s gravity field. Note, N
for instance, the weak presence of Andes or Rocky )
Mountains in the map.
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Figure 3. lllustration of a general spacecraft formation with out-
of-plane relative motion.

2 Feasibility of formation flyingina  Js

e — gravity field
mzmnﬁﬂgmi';mfm,ﬂm 2.1 Equations of relative motion

Let us adopt the following formation flying nota-
Figure 2. GRACE first light: map of gravity field effect on inter-  tion. A set of deputy satellites are to fly about a
satellite baseline. chief location as shown in Figure 3. This location

could be an actual spacecraft, or simply a reference

The observable approximates the along-track point. The inertial chief position vector is., while

gravity gradient terni/,,.. This is a relatively weak  p is the deputy relative position vector. The rotating
term. Its spectral content is approximately one half Hill frame O = {ey, e;, e,-} is defined withe, be-
of the radial gravity gradient teri,,. More im- ing along the chief orbit radiak; being along the
portantly, the directional sensitivity of the observable chief orbit plane normal, aney, completing the right
also translates into a non-isotropic error behaviour. handed coordinate system. The angular rate of the



Hill frame (chief motion) isf. The deputy position
vectorp is then expressed in the Hill frame through

@)

The general linearized equations of motion of a
deputy satellite with respect to a chief is given by
Schaub and Junkins (2003):

(@]

p=(z,y,2)"

:'16—}-29'4—2739.—90(9'2—;2):% (2a)
j+Gy=a, (@)

. .2 M . ..7

22(0 +2T§)x9210a2 (2c)

wherey is the gravitational constant afd,, a,,, a)
are non-Keplerian forces acting on the deputy satel-
lite. They could be due to atmospheric drdggrav-
itational oblateness effects, or control thrusters.
Many missions consider formations where the
chief motion is essentially circular with a near zero
eccentricitye. In this case the chief raté is con-
stant and equal to the mean orbit rate= /u/r3.
The equations of motion simplify to the well-known
Clohessy-Wiltshire (CW) equations (Clohessy and
Wiltshire, 1960):

I+ 2n2 = a, (3a)
j+n2y = a, (3b)
5 —2ni —3n’z=a, (3¢)

These equations are sometimes also referred to as

Hill's equations. Eqg. (3) has been used extensively in
spacecraft formation flying mission analysis and con-
trol research. They are reasonable as longasg, 2)

are small compared to the chief orbit radits In-
stead of using rectilinear local coordinatasy, z),

the relative motion can also be expressed through
the curvilinear coordinate§&6, y, ér), (Schaub and
Junkins, 2003):

7000 + 2n67 = ay (4a)
j4niy=a,  (4b)
67 — 2nr.660 — 3n26r = a. (4c)

Note that Eqgs. (4) are algebraically equivalent to the
CW equations, but provide greatly improved mod-
eling accuracy. This is achieved by interpreting the
relative motion coordinates differently. Thecoor-
dinate is now interpreted as a difference in orbit radii,
while thex coordinate is interpreted as difference in
argument of latitud@. Such cylindrical coordinates

will closely match the relative motion for near circu-
lar chief motion. Along track motions have the nat-
ural bending that leader-follower formations would
exhibit.

Often it is convenient to work in non-dimensional
states.  Let(u,v,w) (x,y,2)/r. be non-
dimensional deputy relative position coordinates. If
the true anomaly is used as the independent angle
instead of time, then the general first order equations
of motion are given through:

w20 = (5a)

v v = ay, (5b)

w’ — 2vv" — _Sw = Qy (5¢)
1+ ecosf

Many further forms of the relative motion have
been developed. Schweighart and Sedwick (2002)
developed an extension to the CW equations which
includes linear.J; oblateness perturbations in the
equations of motion. Humi and Carter (2003) have
shown solutions with special forms of quadratic drag.
An excellent survey of relative motion state transition
matrices is found in (Carter, 1998).

2.2 First order analytical solutions

If the chief motion can be modeled as circular, then
the CW equations can be solved analytically. As-
suming no perturbations or thrusting is present£

ay = a, = 0), all possible deputy relative motions
can be expressed in closed form (Schaub and Junk-
ins, 2003):

z(t) = —2Apsin(nt + ) — %ntzoff +zor (6a)
y(t) = By cos(nt + () (6b)
z(t) = Ag cos(nt + a) + zof (6¢c)

Note that the out-of-plane motion is decoupled from
the in-plane motion. The integration constants can be
expressed in terms of initial conditions through:

1 7 .
Ay = E\/zg—i—(on—l—Snzo)Q (7a)
1 r
By = i+ ()2 (7b)
a = arctan TR (7¢)
B —(3nzp + 240)
8 = arctan (—yo) (7d)
Yo
2.
Zoff = g(:v0+2nzo) (7e)
Top = @ (79
n



These equations are very convenient to explore whatsecular growth term to be zero, we find that the initial
possiblenatural and unforced formation shapes are Cartesian coordinate conditions must satisfy
feasible. For example:

—If By = 0, a purely in-plane relative motion %o +2nz =0 ®
is achieved which is always a 2:1 ellipse (the Thjs first order approximation ofa = 0 assumes
CartWheel-mode); that the chief is circular and that the relative orbit ra-

— If By = V/3A,, the relative motion is circular with  dius p is small compared to the chief orbit radits
radius2A, (theLisA-mode); However, this condition can be applied at any point

— If By = 24,, one achieves elliptical motion with  within the orbit. If the chief motion has a small but
a circular cross-section in the local horizon plane non-zero eccentricity, then the first order bounded
eg-ey, (the TechSat21-mode). relative motion constraint is written as (Schaub and

The latter two configurations also require eithes Junkins, 2003; Inalhan et al., 2002):

pgora=pg+m.
If the chief motion is not circular, then the solution
in Eq. (6) is no longer valid. Even small amounts it the initial time is set at perigee. Ify is set at

of eccentricity can produce modeling errors compa- apogee, then the constraint is (Schaub and Junkins,
rable to those produced hy, gravitational pertur- 2003):

bations or atmospheric drag. Carter (1998) presents

an analytical solution to the linearized relative mo- i0(2 —3e)z =0 (10)
tion where the true anomaly is used as the inde-

pendent variable. However, this solution does not These conditions are not valid at any other orbit
provide that elegant geometrical insight the classi- point.

cal CW solution provides. In (Schaub, 2004) the If the gravitational/, perturbation is present, then
first order(u, v, w) non-dimensional relative motion  all orbits experience short and long period perturba-
is expressed in terms of orbit element differences. tions. Only the ascending nodke argument of peri-
This analytical relative motion solution is valid for apsisv and initial mean anomaly/, will experience
chief motions of any eccentricity, but also uses true secular drift. Their mean rates are given by (Schaub,
anomaly as the independent variable. The orbit ele- 2004; Schaub and Alfriend, 2001):

ment difference based solution is written in terms of

(ﬂo(? + 36)2() =0 (9)

sftat_ic offsets an_d sinusoidal components, and has a an _ _€(a, e)ncosi (11a)
similar geometric structure as the analytical CW so- dt
lution. Even for highly eccentric chief motions, the dv  e(a,e) 2.
first order out-of-plane relative motion is still decou- & - 4 " (5c0s%i — 1) (11b)
pled from the in-plane motion. dM

FO = €(a47 e)nn (3cos?i — 1) (11c)

2.3 Bounded relative motion constraints

To avoid having the formation drift apart, bounded with ¢(a,e) = 3.J5(req/a(l — eQ))2 and where) =
relative motion solutions are sought. If no pertur- /72 s an eccentricity measure. The distange
bations are present, then the nonlinear bounded rel-is garth's equatorial radius. Note that onlye and
ative motion constraint is simply that all orbit peri- ; control the secular drift rate of the remaining three
ods must be equal. This is equivalent to requiring orhit elements. This drift could be compensated for
that the semi-major axis differencés be zero. This  py thrusting. However, this will quickly consume a
bounded motion constraint is valid for both circular |ot of fuel. Schaub and Alfriend (2001) introduce
and eccentric orbits, as well as small and large rela- the concept off,-invariant relative orbits. Here the
tive orbit dimensions. relative orbit geometry is designed such that while
The orbit element constraida = 0 can be ap- | orhits are still drifting, on average, they will drift

by taking a first order expansion. An equivalent ap- re|ative drift rates are set to zero:

proach is to look at the analytical CW solution in
Eq. (6). The only secular growth occurs in the along 80 = 6w+ My = 0 (12)
track direction through the-3/2ntzqx term. For this 50— 0 (13)



The first condition guarantees no in-plane drift and tractionVV between the forces. The scalar range ac-

leads to the orbit element constraint equation celerationy can be obtained from the observed range
sa Jba? 1 rate by numerical differentiation. To extract the grav-
= = 377(4 +3n)(1 4 5cos?i)on (14) itational information, one should further correct for
a 2 1eqn the relative velocity terms at the right of (16b).
The second conditions controls the out-of-plane drift. Gradiometry from satellite formations. Al-
It yields the orbit element constraint ternatively, when dividings - e by the baseline, one
Ui o obtains the in-line gravity gradient in the baseline
on=—-tanid 15 S . . .
1 g o (15) directioneVe, with V' the gravity gradient tensor.

By choosing either a difference in eccentricity, incli- With the baseline close to along-track direction, this
nation, or semi-major axis, the other two orbit ele- Observable is mainly;,. Again, one should cor-
ment differences are then dictated through the con- réct for the relative velocity terms at the right hand
straints in Egs. (14) and (15). Note that in or- side of (16b). Moreover, one has to account for
der to have either a difference in eccentricity or in- @ linearization error in the approximatior,, ~
clination, a non-zero difference in semi-major axis (Va2 = Va)/(z2 — 21).

is required. This is a departure from the Keple- In a satellite formation, the baseline performs a
rian bounded relative motion results. For near-polar full revolution in the Hill frame©, i.e. the direc-
chief motions, the/,-invariance constraints resultin  tion e rotates once every orbital revolution. Thus the
very large along track relative orbit dimensions. To Observed gravity gradiemtV’e contains projections
avoid this, the 2 constraint in Eq. (15) is typically ~ Of several tensor components;, i,j € {z,y, z}.
dropped and any out-of-plane secular drift will have The gravity gradient tensdr” transforms under a ro-
to be compensated for through thrusting (Schaub tation of the coordinate frame @V R, in which
and Junkins, 2003). When designitfg-invariant R denotes the rotation matrix. Let us consider one
relative orbits, the motion is typically described in Satellite pair only in the simplest formation, namely
mean element space, cf. (Schaub and Alfriend, 2001;the 2:1-ellipse in the orbital plane. Now assume a
Brouwer, 1959). To map between the osculating time-variable rotatiorv about they-axis, such that
(instantaneous) orbit elements and the mean orbitthe two satellites are always on the nefaxis. The
elements (long period and secular terms removed), coplanar gradients,., V..., V-. project onto the ob-
the Brouwer-Lyddane theory can be used (Lyddane, Servable as follows:

1963; Brouwer, 1959). ) ) 5
Vyrgr = cos” aVy, + 2 cos asinaV,, + sin” aV,,
3 Gravity mapping from satellite forma-

tions The observabl&’,,,.. (= eV e) contains the required

gravity observable already. However, if one wants to
Future low-low sst missions, whether formation fly- disentangle the 3 contributing tensor components in
ing or not, will most likely employ laser technol- the Hill frame, 3 independent intersatellite distances
ogy for the intersatellite link. Bender et al. (2003) need to be tracked. With 3 different anglesone
discuss heterodyne laser interferometry, whereaswould have 3 simultaneous equations of the above
McGuirk et al. (2002) discuss atomic interference. kind, leading to an instantaneous determination of
Differential accelerometry seems feasible at a level v/, V,. and V... This can either be realized by
of 1072ms~2/yHz. Over a baseline of 1km  a CartWheel of 3 satellites, measuring in a triangle,
this would translate already into gradiometry at the or by 6 satellites, measuring along the spokes of the
10~% E/v/Hz level. The baseline length immediately wheel, cf. figure 4. The spokes configuration may be

scales into the error level. easier to realize at the cost of more satellites. The
The range ratg between two satellites is the pro- intersatellite links in the triangular formation are de-
jection of the relative vectorial velocity on the line- pendent. Technologically that may be more demand-
of-sight unit vectote, e.g. (Rummel et al., 1978): ing, but it has the added benefit that the required ori-
o entations are better constrained.
p = p-e (16a)

1 Gradiometry of out-of-plane  components

=p = p-et-(p-p—p?) (16b) (Vay, Vyy, Vyz) can only be achieved through

P non-coplanar satellite configurations. A relative

Using Newton’s equations, the vectorial acceleration inclination of the formation w.r.t. the orbit plane can
differencep equals the difference in gravitational at- be represented by a rotatidty, (3). Along the same



Figure 4. Potential coplanar configurations for measuring the in-
planeV.s, Vz, andV,, simultaneously: triangle edges (left) or
spokes (right).

lines of arguing as above it can be demonstrated that

all gravity gradient tensor components will generally
project onto a particula¥,.,,. To disentangle this

projection, 6 instantaneous intersatellite distances

toring mission.
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