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SUN-HEADING ESTIMATION USING A PARTIALLY
UNDERDETERMINED SET OF COARSE SUN SENSORS

Stephen A. O’Keefe⇤ and Hanspeter Schaub†

A comparison of several different methods to estimate the sun direction vector us-
ing a partially underdetermined set of cosine-type coarse sun sensors is presented.
These methods are used in conjunction with a control law to reorient a spacecraft
to a power positive orientation. Coarse sun sensors are commonly used to perform
coarse attitude determination and accurately point a spacecraft’s solar arrays at
the Sun. These sensors are attractive due to their relative inexpensiveness, small
size, and reduced power consumption. This paper presents four methods for accu-
rately solving for the sun direction vector with decreased sensor requirements, the
first is a simple weighted average method, the second and third are variations on a
combination of least squares and minimum norm criteria, and the final leverages
an extended Kalman filter approach. All four methods are combined with a con-
trol law and shown through numerical simulation to be capable of reorienting the
spacecraft from any initially unknown attitude to a power positive state in a mat-
ter of minutes. The extended Kalman filter method is shown to provide the most
accurate estimate of the sun heading direction, but the weighted least squares min-
imum norm solution provides the fastest convergence when no angular velocity
measurements are available.

INTRODUCTION

In recent years there has been a significant increase in interest in smaller satellites as lower cost
alternative to traditional satellites, particularly with the rise of the CubeSat.1 While these small
satellites often use the latest advanced technology in their subsystems, there is a noticeable lag in
the development of attitude control subsystems.2 And due to stringent mass, size, and often budget
constraints placed on these satellites they typically rely on simple sensor hardware such as coarse
sun sensors and magnetometers.

These spacecraft commonly use a number of sun sensors to determine the sun direction vec-
tor in the body frame. High accuracy sun sensors often combine multiple measurements3 or use
charge-couple-devices (CCDs)4 to determine the direction of the Sun. These digital sensors output
a vector observation of the sun direction and two or more such vector observations are combined to
deterministically solve for the true sun direction. Many methods exist for solving such a problem
including TRIAD,5 Davenport’s Q-Method,6 QUEST,7 FOAM,8 and OLAE.9

Alternatively, cosine-type coarse sun sensors (CSS) output a voltage relative to the input light
and are attractive due to their inexpensiveness, small size, and minimal power consumption. These
sensors are often used, in concert with other sensors,10, 11 during deployment to accurately point
the spacecraft’s solar arrays at the Sun to achieve power positiveness or to perform coarse attitude
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determination. Unfortunately, these cosine-type CSS output a scalar measurement, not a vector
observation, and so deterministic methods that rely on multiple vector observation are not usable.

Instead, the sun direction vector must be determined through the use of deterministic single-
point methods or statistical filtering algorithms. A spacecraft’s attitude can generally be determined
geometrically at any particular time if the Sun is simultaneously in the field of view of at least
three cosine-type sensors; a more reliable estimate is found if continuous 4⇡ steradian coverage
is achieved by a minimum of four sensors. Statistical filtering algorithms provide an estimate of
the spacecraft’s attitude based on a collection of measurements over time. In particular, sequential
filtering algorithms process measurements as soon as they are received and are commonly derived
from the Kalman filter12 which produces a statistically optimal estimate for linear systems. The
Kalman filter assumes a linear dynamical system and many variants have been developed for non-
linear systems, the most popular variant is the extended Kalman filter13 (EKF) which linearizes the
nonlinear system about the current estimate.

Because CSS are relatively inexpensive, it is not uncommon for spacecraft to have a multitude of
sensors placed around the exterior to achieve the coverage required for determining the sun direction
geometrically. The addition of so many sensors to the spacecraft is not without hazards. The fields
of view of the CSS can become blocked by other instrumentation, the CSS can interfere with other
payloads, cabling must be routed for all sensors, and extra sensors will require additional testing
time and complexity. The placement of these sensors is generally an iterative process based on
experience and prior designs, but can be optimized through various methods.14, 15

If, however, it is unfeasible to use a large number of CSS or additional instrumentation, due
to budgetary, power, or space constraints, and the spacecraft must still accurately orient its solar
arrays at the Sun following deployment, an alternative method is proposed. The sun direction is
not needed initially to high precision in order for the spacecraft to maneuver to a sun pointing
orientation. In fact, a full three-degree of freedom description is not needed as rotation about the
solar array normal vector will not negatively impact power generation. In this situation lower fidelity
estimates of the sun direction are enough for a control law to begin reorienting the spacecraft using
reaction wheels or thrusters. Therefore, fewer sensors are needed in regions far from the desired
pointing vector and the total number of sensors required can be reduced. Once the spacecraft begins
to reorient, more sensors oriented along the desired alignment axis help to refine the estimate of the
sun direction vector and accurately point the spacecraft’s solar arrays at the Sun. While it may not
be possible to uniquely determine geometrically the location of the Sun direction at each time step
in the underdetermined case, the time histories of measurements from several CSS can be combined
in an estimation filter to determine the sun direction vector. Once the spacecraft is pointing at the
Sun and generating power, more accurate measurement sensors, such as star trackers, can be turned
on to determine the spacecraft’s absolute attitude.

This paper examines using CSS in a partially underdetermined configuration, both solely and in
concert with a rate gyroscope, to orient a spacecraft’s solar arrays at the Sun following deployment
to determine how well low cost sensors can be used to maintain high performance. A comparison
is made between a simple weighted average approach, a least squares minimum norm solution, and
an extended Kalman filter approach which incorporates time histories of measurements into the
estimate. First, a description of the sensors and the spacecraft configuration used are presented.
A basic weighted average (WAVG) method of determining the sun direction unit vector is detailed
followed by least squares minimum norm method (LSMN), a weighted LSMN (WLSMN) method,
and an EKF formulation. Finally, numerical simulation results demonstrating the performance of
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each approach are presented.

COSINE SUN SENSOR MEASUREMENT MODEL

The cosine-type CSS used in this study are composed of photodiodes with a glass cover for
filtering out undesired wavelengths and optionally baffles for restricting the field of view. Assuming
Lambert’s cosine law the solar flux Fi, in W/m2, that impacts the ith CSS due to the direct solar
flux of the Sun F� is given by16

Fdi
= F� (ni · s) + ⌘i (1)

where ni is the unit normal of the ith CSS, s is the unit direction vector form the spacecraft to the
Sun, and ⌘i is zero mean Gaussian noise. The typical unit vector notation ·̂ has been omitted to
avoid confusion later when it is used to denote an estimate.

In practice the output voltage of the ith CSS is assumed proportional to the input flux through the
relation

Vi = Ci (ni · s) + ⌘i (2)

where the proportionality constant

Ci =
Vimax

Fcal
F� (3)

is determined during ground testing using a calibration flux Fcal. Ideally this calibration flux will
equal the flux due to direct sunlight on orbit F�, but any ground-based testing of this calibration
parameter for a particular CSS will have to account for the atmospheric reduction of the solar irra-
diance received. While estimates are available for how much stronger the solar irradiance will be
in space, a CSS algorithm that is insensitive to this calibration parameter will enable significantly
simpler, and thus cheaper, CSS calibration and testing procedures.

Earth Albedo Model

Solar radiation that impacts the Earth is partially absorbed, partially specularly reflected, and
partially diffusely reflected. Cosine-type CSS are sensitive to any light and on orbit the most sig-
nificant light source other than direct sunlight is light from the Sun diffusely reflected by the Earth.
Solar radiation that is absorbed by the Earth and later radiated at infrared wavelengths is easily fil-
tered through mechanical means and the energy due to specular reflectance is generally small and
ignored.17

The sunlight diffusely reflected by the Earth is a function of latitude, longitude, and the ambient
reflectivity of the Earth that varies with ground cover and atmospheric conditions. Again assuming
a Lambertian cosine law, the flux seen by the ith CSS due to the diffuse reflectance of the Earth is
modeled as10

F↵i
=

F�
⇡

Z

A

↵

krABk2
(nA · sE)

✓
nA · rAB

krABk

◆✓
rAB

krABk
· ni

◆
dA (4)

where F� is the solar irradiance in the vicinity of the Earth; A is the surface of the Earth visible to
the spacecraft, (nA · rAB) > 0 and (rAB · ni) � cos (FOVi), that is also illuminated, (nA · sE) >
0; nA is the unit normal of an incremental area on the surface of the Earth; sE is the unit direction
vector from the Earth to the Sun; rAB is a vector from an incremental area on the surface of the
Earth to the body of the spacecraft; and ↵ is the albedo constant of the incremental area.
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(a) Mean reflectivity.
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(b) Standard deviation of reflectivity.

Figure 1: Mean and standard deviation of the reflectivity of Earth as measured by TOMS mission
between 2000 and 2005 used in numerical simulations.

For this work the albedo constant for the Earth is taken from the NASA Total Ozone Mapping
Spectrometer mission data. The data used in this effort were acquired as part of the activities of
NASA’s Science Mission Directorate, and are archived and distributed by the Goddard Earth Sci-
ences (GES) Data and Information Services Center (DISC). Daily measurements on a 5 deg⇥ 5 deg
latitude longitude grid from 2000 to 2005 are used to generate mean and standard deviations for the
reflectivity of Earth. These values are shown, with global coastlines superimposed for reference, in
Figure 1. Bhanderi has shown that the irradiance due to be albedo can be anywhere between 0% and
⇠50% of the incident solar irradiance with maximum albedo not over the poles, but over Greenland
during local summer at noon.18

Using the Earth albedo model, the output voltage of the ith given in Equation (2) is modified as

Vi = Ci

 
(ni · s) +

F↵i

F�

!
+ ⌘i (5)
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Figure 2: Illustration of CSS field of view and flattened peak response.

where the proportionality constant remains as shown in Equation (3).

CSS Measurement Error Sources

Many commercially available photodiodes do not exhibit the precise cosine response modeled
by Equation (1). Commonly, actual voltage measurements Ṽi from photodiodes exhibit a more
flattened peak response approximated by

Ṽi = Vi

✓
1 +

1

2
�

2 � 0.65�4

◆
(6)

where Vi is the ideal output of the ith sensor and � = sin
�
cos�1

Vi

�
. This warping can cause

a difference in the output of a sensor by as much as 8% and is shown in Figure 2. It is usually
calibrated out during ground testing, but is used here to simulate poor or no calibration, a possibility
for small satellite programs with limited ground test funding.

CSS Configuration

The spacecraft used for this study is assumed to be equipped with eight cosine-type CSS in a dual
pyramid configuration. Four sensors with 120 deg edge-to-edge fields of view are arranged on the
+z and �z faces of the spacecraft oriented 90 deg apart and angled 45 deg from the body z axis.
An illustration of this configuration is shown in Figure 3a.

Figure 3b shows the number of CSS to which the Sun is visible for any relation of the Sun with
respect to the spacecraft. This figure takes into account that the fields of view of the CSS are clipped
at the local-horizontal plane by the spacecraft structure and solar panel arrays; a CSS cannot see the
Sun when it is below the local (x, y) plane. A Lambert cylindrical area preserving projection is used
so as to give a fair comparison of the over, uniquely, and underdetermined areas of coverage.

Multiple sensor coverage is provided along, +z, and opposite, �z, the solar array normal direc-
tion with minimal coverage along the equator of the spacecraft. This configuration leaves the sides
of the spacecraft clear for scientific instrumentation and seeks to minimize both the CSS obstruction
due to the solar arrays and the amount of internal cabling necessary for the sensors. For this study it
is assumed if the solar array normal vector is within 30 deg of the sun direction vector the spacecraft
is in a power positive state, generating sufficient power to operate all instrumentation and recharge
batteries.
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(a) Schematic of spacecraft, ✓ = 45 deg.
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(b) CSS coverage map.

Figure 3: Illustration of spacecraft with CSS unit vectors ni for a dual pyramid configuration and
the associated CSS coverage map shown on a Lambert cylindrical projection.
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Figure 4: Criteria used for selecting CSS pyramid angle.

Assuming the solar array normals are aligned with the body z axis and using a dual pyramid
configuration, the angle ✓ between the CSS normal vectors and the body z axis should be between
45 deg and 60 deg. Too small of an angle ✓ < 45 deg results in areas without any sensor coverage
near the x�y horizon. Too large of an angle ✓ � 60 deg results in areas without any sensor coverage
near the ±z poles and 4⇡ steradian coverage by at most two sensors.

For the single-point methods that follow, the optimum angle maximizes the area covered by
three or more sensors; at ✓ = 45 deg, 1.64 sr (13%) of the attitude sphere is covered by three
or more CSS. For the EKF method the optimum angle minimizes the condition number of the
observability Gramian⇤; at ✓ = 54.7 deg the condition number reaches a minimum very close to
unity. Unfortunately, at ✓ = 54.7 deg only 0.44 sr (3.5%) of the attitude sphere is covered by three
or more CSS, whereas at ✓ = 45 deg the impact to observability is not nearly as significant. An
angle of 45 deg is chosen as it is optimum for the WAVG and LSMN methods, does not significantly
negatively impact the observability for the EKF solution, and provides the most redundant coverage

⇤The degree of observability is measured by the closeness of the condition number of the observability Gramian to
unity.
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to help alleviate concerns regarding sensor failures.

SUN HEADING ESTIMATORS

Two classes of sun heading estimators are examined here: deterministic single-point methods
and filtering algorithms. Deterministic single-point methods use sensor measurements available at
a specific time while filtering algorithms combine sensor measurements over a continuous range
of time with a dynamic model to estimate the sun direction. Since the underdetermined case is of
interest here all of the estimators investigated must be capable of producing an estimate of the sun
direction vector when the Sun is only observed by one or two sensors. The first method examined is
a single-point approach based on taking the weighted average of all CSS measurements at a given
time. A more mathematically robust, but also more complicated, single-point method is examined
next which combines a least squares estimate and a minimum norm estimate based on the number of
sensor measurements available. This second method is then expanded to include a weighting matrix
to better reject noise. Finally, a filtering approach based on an extended Kalman filter is developed.

Weighted Average (WAVG) Method

A simple deterministic estimate for the sun direction vector is formed by taking a weighted aver-
age of all the CSS capable of seeing the Sun using

Bŝ =

NP
i=1

Vi
Bni

k
NP
i=1

Vi
Bnik

(7)

where N is the total number of sensors and Vi is the magnitude of the output of the ith sensor given
by Equation (2). The matrix Bŝ contains the body frame B vector components of the best estimate of
the sun heading vector s. Since the weighted average method represents a deterministic approach,
the error of this method is easily calculated for any orientation of the Sun relative to the spacecraft;
the resulting error map is shown in Figure 5.

Figure 5 shows a large band near the equator of the spacecraft in which the error is greater than
30 deg. If the Sun is within this region, it will result in a large estimation error, but even an approx-
imate sun heading estimate provides enough knowledge for a controller to apply the appropriate
rotation rate. The coverage at the poles is more important. The desired attitude of the spacecraft
requires the sun direction vector be aligned with the z axis, and within 19 deg of this axis the error
remains less than 10 deg. Thus, the control becomes more precise near the goal orientation.

This weighted average method is attractive as it is computationally simple, provides an error
measure when only one sensor is seeing the Sun, and is capable of estimating the sun direction
vector to within a few degrees using the configuration described previously.

Least Squares Minimum Norm (LSMN) Method

A more mathematically robust method is the Least Squares Minimum Norm method which com-
bines two methods, least squares and minimum norm, based on the number of CSS measurements
available. When the number of measurements available is equal to or greater than three the least
squares method is used, and when the system is underdetermined the minimum norm criteria is
used.
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Figure 5: Weighted average method error map for any relation of the Sun with respect to the
spacecraft shown on a Lambert cylindrical projection.

Assuming that the flux seen by a CSS due to Earth albedo is treated as noise and the calibration
coefficient Ci is the same for all CSS, the measurement of the ith CSS is modeled as

ỹi = Vi + ⌘i = C (ni · s) + ⌘i (8)

where ⌘i is the measurement error for the ith CSS. Here it is assumed that all CSS have been
calibrated on the ground to have similar output profiles in response to atmospheric sunlight, and C

is the calibration parameter that will scale the CSS performance for space-based operation. This is
written in matrix form for all sensors as

2

64
ỹ1
...
ỹN

3

75 =

2

64
nT
1
...

nT
N

3

75
⇥
Cs

⇤
+

2

64
⌘1
...
⌘N

3

75 (9)

ỹ = Hx+ ⌘ (10)

where ỹ is a vector of measured values, H is a mapping matrix, x is the state vector composed
of the linear combination of the calibration coefficient C and the sun direction vector s, and ⌘ is a
vector of measurement errors. The elegant blending of C and s into a single state quantity leads to
a rigorously linear system. If the number of measurements exceed the dimension of the state vector
and ⌘ = 0, the best estimate of the state is given by the least squares solution19

x̂ =
�
HTH

��1
HT ỹ. (11)

The sun direction unit vector s is then determined from the state vector through a simple normaliza-
tion. Note that this process is thus insensitive to the common calibration parameter C making the
method robust to incorrect modeling of the expected solar irradiance on-orbit. If, however, there are
not enough observations the system is underdetermined and the minimum norm criterion

x̂ = HT
�
HHT

��1
ỹ (12)

is used to determine a unique solution.19
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Figure 6: Least Squares Minimum Norm method error map for any relation of the Sun with respect
to the spacecraft shown on a Lambert cylindrical projection.

The error of the LSMN method is easily calculated for any orientation of the Sun relative to the
spacecraft and is shown in Figure 6. Comparing Figure 5 and Figure 6 it can be seen that the least
squares minimum norm estimate has an error that is equal to or less than the weighted average
method for all orientations and particularly less in regions of two or three sensor coverage. The
LSMN method is slightly more mathematically demanding, requiring the inversion of either a 2⇥ 2
or 3⇥ 3 matrix, but these calculations do not represent a significant computational burden.

Weighted Least Squares Minimum Norm (WLSMN) Method

As noted previously, the CSS used in this study have a field of view of 120 deg. Therefore,
direct sunlight measurements will exhibit a discontinuity as the angle between the normal of the
ith CSS and the sun heading vector increases beyond 60 deg. From Equation (2) it is expected
that the voltage output of the ith CSS taking into account direct sunlight only to be in the range
0.5Ci < Vi  Ci. Contrarily, the voltage output of the ith CSS due to Earth’s albedo can and will
be lower than 0.5Ci.

The Least Squares Minimum Norm method described in the previous section is found in practice
to exhibit poor performance when the ratio between the voltage due to direct sunlight and the voltage
due to Earth’s albedo is large. The weighted least squares solution is given by19

ŝ =
�
HTWH

��1
HTWỹ (13)

and is analogous to the least squares solution in Equation (11). It is found that setting the weights
of the individual CSS equal to their output voltage alleviates the errors seen in the LSMN method
due to low input voltages due to Earth’s albedo and does not impact the nominal error map. This
modified method retains the desirable property of being robust to uncertainties in the solar irradiance
seen on-orbit versus that seen during ground testing.

Extended Kalman Filter (EKF) Method

A common attitude estimation problem involves propagating the state dynamics and correcting
that estimate using a direct measurement of the body’s attitude. Thus, instead of solving the geom-
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etry of the CSS measurement values at any instant in time, a time history of sensor output is used to
correct an estimate of the sun vector being propagated. As noted previously, if the true sun vector
lies in a region where only single sensor coverage exists the estimate is significantly in error. A
filtering approach overcomes these regions of unobservability through the accumulation of multiple
measurements over time. The following section describes the application of a continuous-discrete
extended Kalman Filter to the problem of estimating the sun direction unit vector in the spacecraft
body frame. At first, it is assumed that the angular velocity of the spacecraft ! is determined via a
rate gyroscope.

The continuous-time state dynamics model for a nonlinear system is given by

ẋ(t) = f(x(t),u(t), t) + g(x(t),w(t), t) (14)

with discrete-time measurements given by

ỹk = h(xk) + vk (15)

where x is the state vector, f represents the system dynamics, u is the control input, g is a process
noise function, w(t) ⇠ N(0,Q(t)) is the process noise, ỹk is the measurement vector available at
tk, and vk ⇠ N(0,R) is the measurement noise.

The extended Kalman filter operates as a “predictor-corrector” algorithm where the state and
covariance are first propagated, denoted by a superscript �, using the state dynamics model and then
updated, denoted by a superscript +, when measurements are available. The state and covariance
estimates, x̂ and P̂ , are initialized using

x̂ (t0) = x̂0 (16)

P̂ (t0) = E

�
x̂0x̂

T
0

 
(17)

where E is the expected value operator. The state and covariance are propagated until the time of
the next available measurement using the state dynamics

˙̂x(t) = f(x̂(t),u(t), t) (18)

and the continuous-time Lyapunov differential equation20

˙̂
P (t) = F P̂ (t) + P̂ (t)F T +GQ(t)GT (19)

where
F ⌘ @f

@x

����
x̂(t),u(t)

, G ⌘ @g

@w

����
x̂k,w=0

. (20)

The propagated state x̂�
k and covariance P̂�

k are finally updated with the latest measurement infor-
mation using20

Hk(x̂
�
k ) ⌘

@h

@x

����
x̂

�
k

(21)

Kk = P̂�
k HT

k (x̂
�
k )

h
Hk(x̂

�
k )P̂

�
k HT

k (x̂
�
k ) +Rk

i�1
(22)

x̂+
k = x̂�

k +Kk

⇥
ỹk � h(x̂�

k )
⇤

(23)

P̂+
k =

⇥
I �KkHk(x̂

�
k )
⇤
P̂�
k

⇥
I �KkHk(x̂

�
k )
⇤T

+KkRkK
T
k . (24)

Note that the Joseph form21 of the covariance update equation is used to improve numerical stability.
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State Dynamics For estimating the sun heading vector the state of the system is given by

x =
⇥
C

Bs
⇤

(25)

where C is a gross proportionality constant given by Equation (3) common to all CSS, smaller
individual variations between sensors are assumed to be incorporated into the measurement noise
model, and Bs is the sun direction unit vector in the spacecraft body frame. The proportionality
constant has been included in the state vector because it and the sun direction unit vector appear
as a linear combination in the measurement equation. By imposing a unit length constraint on the
state vector the sun heading estimate can easily be extracted from the state vector assuming the
proportionality constant is nonzero.

The time derivative of the sun direction unit vector is found by solving
Nd
dt

�Bs
�
=

Bd
dt

�Bs
�
+ B! ⇥ Bs+ ⌘

s

(26)

where ⌘
s

is zero-mean Gaussian noise. Assuming for time scales of interest the inertial sun vector
is constant

Nd
dt
�Bs

�
⇡ 0 the state dynamics and process noise functions are written as

f(x,u, t) = C

Bs⇥ B! (27)
g(x,w, t) = �⌘

s

. (28)

Measurement Model Similar to Equation (2) the output voltage of the ith CSS is assumed to be
given by

Vi = C (ni · s) + ⌘i (29)

where the proportionality constant C is included to account for large scale variations across all CSS,
for instance due to improper calibration, and small scale individual variations are treated as noise
and captured in ⌘i. It is also assumed that for this problem the spacecraft is not aware of its position
relative to the Earth and cannot calculate the expected input for each CSS due to Earth’s albedo.
Even though this noise is distinctly non-Gaussian and represents an unmodeled signal the EKF, as
shown later, is still capable of converging. The measurement equation can thus be written as

h(xk) =

2

64
C (n1 · s)

...
C (nN · s)

3

75 (30)

where N is the number of CSS. The discrete-time measurements from the ith coarse sun sensors
are given simply by

ỹik
= Vi. (31)

Update and Propagation Taking the partial derivatives specified in the formulation of the EKF,
specifically those in Equations (20) and (21), results in

F = �
⇥B!

⇤
⇥ , G = � [I]3⇥3 (32)

where [·]⇥ represents the skew-symmetric cross product matrix given by

[�]⇥ =

2

4
0 ��3 �2

�3 0 ��1

��2 �1 0

3

5

11



and

Hk(x̂
�
k ) =

2

64
nT
1
...

nT
N

3

75 . (33)

Examining Equations (32) and (33), it is seen that both the state dynamics and the measurement
equation are linear, thus

ẋ = Fx+Gw (34)
ỹk = Hxk + vk (35)

or

ẋ = � [!]⇥ x� [I]3⇥3 ⌘s

(36)

ỹk =
⇥
nT
1 · · · nT

N

⇤T
xk + ⌘k. (37)

As a result the linearization used in the derivation of the EKF is not necessary and the filter is
identical to a traditional Kalman filter.

Observability Since it has been shown that the system is linear, the observability of the system
is determined using linear systems theory. For a continuous linear time-varying system the observ-
ability Gramian is given by22

M
�
tf , t0

�
=

Z tf

t0

�T (t, t0)H
TH� (t, t0) dt (38)

where the state transition matrix � (t, t0) must satisfy

�̇ (t, t0) = F (t)� (t, t0) (39)

with initial conditions
� (t0, t0) = I. (40)

The system is observable if and only if M (t, t0) is invertible for some t. It is easily shown for any
time history of angular velocities and for any orientation of the sun relative to the spacecraft the
observability Gramian has rank equal to three and is invertible.

This EKF method is attractive as it uses a time history of measurements to improve its estimate
instead of using only measurements from a single point in time. In addition, while the single-
point algorithms discussed previously incorporate only those sensors that report a measurement, by
propagating the state equations the EKF is able to account for sensors that are predicted to have
output but are not registering any input irradiance.

Angular Velocity Estimate

The control used to reorient the spacecraft to a power positive state requires a measure of the
spacecraft’s angular velocity in order to arrest any rates. In addition, while the deterministic single-
point methods do not incorporate the spacecraft’s angular velocity, the EKF method does require
an estimate of the vehicle’s angular rates in order to propagate the system dynamics. Nominally,
the angular velocity of the spacecraft is provided by a rate gyroscope, usually embedded within an
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inertial measurement unit. However, in a power critical situation it may be necessary to turn off
the inertial measurement unit. For this situation, a simple estimate of the vehicle’s angular velocity
vector is developed using the two most recent estimates of the sun direction unit vector.

By taking the cross product of the current and previous estimates of the sun direction vector, an
estimate of the direction of the body angular velocity vector !̄ is determined. This is then scaled by
the angle between the two vectors and divided by the time since the previous sun direction vector
estimate to provide an estimate of the body angular velocity vector.

!̄k =
Bŝk ⇥

Bŝk�1

kBŝk ⇥
Bŝk�1k

cos�1
⇣
Bŝk ·

Bŝk�1

⌘

tk � tk�1

(41)

In Equation (41) Bŝk is the best estimate of the sun direction unit vector in the body frame at time tk.
Note that with this rate estimate formulation it is not possible to estimate the full three-dimensional
! vector as rates about Bŝ are not observable. However, for the purpose of coarse sun pointing
this is not an issue, as such rotations about the sun direction vector will not impact the solar panel
incidence angle or the associated electrical power generation.

Results, shown later, show that even though this method does not provide any new information
it does provide an estimate adequate to achieve a power positive orientation. Because the estimate
of the spacecraft’s angular velocity vector is found through differentiation it is expected the amount
of noise in the estimate will increase. To counteract this, the estimate is conservatively bounded
about each axis and run through a first order low-pass filter. The numerical simulation shown next
assumes maximum initial angular rates of 2.0 deg/sec about each axis so the bound on the angular
rate estimate about each axis is set conservatively at 10 deg/sec which was shown in testing to
provide the best performance.

NUMERICAL SIMULATION

An initially uncontrolled tumbling spacecraft is simulated to demonstrate the performance of the
various methods discussed previously in estimating the sun heading and orienting the spacecraft
in a power positive attitude. The spacecraft is modeled in a 400 km altitude circular orbit with
an inclination of 90 deg starting on 2013 June 1, 00:00 UTC. For this orbit the spacecraft has a
period of approximately 92.5minutes and spends approximately 56.6minutes in view of the Sun
per orbit. The relative positions of the Earth and Sun are simulated using ephemeris from the
NASA Navigation and Ancillary Information Facility (NAIF) SPICE toolkit.23

Spacecraft Parameters

The spacecraft is assumed to have a diagonal inertia matrix given by

[I] =

2

4
10.5 0 0
0 8 0
0 0 6.75

3

5 kg m2
.

Additionally, the spacecraft is assumed to have four reaction wheels and three magnetic torque bars
which are used by the control algorithm. In the spacecraft body frame the spin, or alignment, axes
for these devises are

[Gs] =

2

4
0 0 cos(45�) � cos(45�)

cos(45�) sin(45�) � sin(45�) � sin(45�)
sin(45�) � cos(45�) 0 0

3

5
, [Gt] =

2

4
1 0 0
0 1 0
0 0 1

3

5
.
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Table 1: Control gains used for numerical simulation

[K] [P ] [KI ] c

0.148I3⇥3 Nm 0.9I3⇥3 Nms 0.0001I3⇥3 N�1s�2 0.005 s�1

Each reaction wheel is assumed to have a spin-axis inertia of Js = 0.001 kgm2 and a maximum
torque of 30mNm. The torque bars are assumed to have a maximum dipole of 20Am2.

The spacecraft’s initial true anomaly and attitude are uniformly distributed amongst all possible
values and its initial angular velocity is uniformly distributed about all three axes with a maximum
value of 2.0 deg/sec. Angular rate measurements are simulated at 10.0Hz assuming a Gaussian
distributed constant bias with a standard deviation of 1 deg/hr and white Gaussian noise with a
standard deviation of 0.01 deg/sec.

CSS measurements are simulated at 10Hz and the alignment of each CSS is varied normally about
all three axes by an angle with a standard deviation of 1.0 deg. The warping shown in Figure 2 is
applied to each sensor and the output of each sensor is individually reduced by up to 5%, uniformly
distributed, to simulate on-orbit degradation of sensors.

Control Algorithm

A nonlinear three-axis attitude control is used in the numerical simulation to reorient the space-
craft using redundant reaction wheels.24 This control law is designed for detumbling and continuous
autonomous momentum dumping, and its goal is to orient the spacecraft body frame B with a ref-
erence frame R where the attitude error between the body and reference frames is described using
the Modified Rodrigues Parameter (MRP) set �BR. The reference attitude is assumed time-varying
so the spacecraft must track the angular velocity of the reference frame !r. The control law is given
by

[Gs]us =� [I]
�
!̇r � [!]⇥!r

�
+K�BR + [P ] �! + [P ] [KI ] z

�
�
[!r]⇥ � [[KI ] z]⇥

�
([I]! + [Gs]hs) +L (42)

where �! = ! � !r, K is a scalar gain, [KI ] is a gain matrix, z is the integral term, and [P ] is a
positive definite gain matrix.

The control is proven to be asymptotically stabilizing and guarantees if � converges to zero
so will �!. For further discussion of this control law and its development the reader is referred
to Reference 24. For this numerical simulation the control gains specified in Table 1 are used and
!r = !̇r =

⇥
0 0 0

⇤T . The control is implemented with a deadband of 15 deg; if the sun direction
vector falls within 15 deg of the solar array unit vector the control is turned off.

Of importance to the implementation of this control law is the quantity �BR. The sun vector
estimation algorithm computes a value for the sun direction unit vector in the body frame, not an
attitude error. An error MRP is formed by finding the principal rotation vector necessary to rotate
the sun direction vector Bs to align with the solar array unit vector c expressed in the body frame.
This vector is then used in the definition of the MRP vector

� = ê tan

✓
�

4

◆
(43)
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Figure 7: Statistics from 1000 case Monte Carlo analysis detailing the angular difference between
the true sun direction and the estimate found using various methods with and without rate gyro
measurements. Mean values are shown as solid lines and dashed lines indicate 95th percentile
values. Maximum albedo input for all CSS during a nominal run is shown for comparison.

to create an error MRP. The equation for the error MRP is thus given by

�BR =
Bs⇥ Bc

kBs⇥ Bck tan

✓
1

4
cos�1

�Bc · Bs
�◆

. (44)

Equation (44) can result in a singularity when the denominator Bs ⇥ Bc approaches zero, or the
solar array normal approaches alignment with the sun direction vector. However, as the value of the
denominator goes to zero, so will the quantity Bc · Bs. By simply setting the control to zero when
the quantity Bc · Bs falls below a threshold, or deadband, this issue is avoided.

Results

The angular errors of the sun vector direction vector estimates for a 1000 case Monte Carlo
analysis are shown in Figure 7. All four methods are simulated twice, once with angular velocity
measurements from a rate gyroscope and once without. The maximum value of the CSS input due
to Earth albedo for a nominal orbit is shown for comparison. The total vehicle angular velocity of
the spacecraft is shown in Figure 8. In all plots both the mean and 95th percentile values are shown
as solid and dashed lines, respectively.

All four methods successfully reorient the spacecraft to well below the requirement of 30 degrees,
aligning the solar array unit normal with the sun direction vector. The input due to Earth albedo
is expected to be the largest error source and this correlates well as all four methods show an error
profile with a strong resemblance to the maximum input seen in a nominal orbit due to Earth albedo.
Unlike the other methods, the LSMN method exhibits two large spikes near the beginning and end
of the spacecraft’s time in view of the Sun. The least squares method is known to be sensitive to
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Figure 8: Magnitude of angular rate statistics from 1000 case Monte Carlo analysis for all four
methods with and without rate gyro measurements. Mean values are shown as solid lines and 95th
percentile values as dashed lines.

outliers and the two spikes seen correspond to when the ratio of measured CSS values is large. This
typically occurs when several sensors are pointed directly at the Sun and one or two sensors receive
relatively small input due to Earth’s albedo.

As shown in Figure 7, the EKF and WLSMN methods exhibit the best accuracy both with and
without angular velocity measurements. Within one orbit the two methods converge to an average
error of approximately 3.5 deg with and without rate measurements. The WAVG and LSMN meth-
ods both converge to an average error of approximately 5 deg with and without rate measurements.
The weighted average results correlate well with Figure 5. The average knowledge error seen cor-
responds to an an attitude error of 10 deg and the 95th percentile knowledge error corresponds to an
attitude error of approximately 15 deg which is equal to the controller deadband.

With rate gyroscope measurements three of the four methods are shown to drive the spacecraft’s
angular velocity to the noise level. The LSMN method does show a slightly higher residual angular
rate. As noted previously, the LSMN shows poor performance when the ratio of measured CSS
values is large, which typically occurs when the input due to Earth’s albedo is small. At these times,
the estimate of the sun heading vector often exceeds the 15 deg deadband causing the controller to
actively rotate the spacecraft. Since the initial true anomaly is uniformly distributed for all cases,
these instances of active control cause, in aggregate, the mean angular velocity to be higher than the
noise level. In all cases the angular velocity used in the filter is passed through a 0.1Hz low pass
filter, and this filtering is the reason the angular velocities take a finite time to drop to the noise level.
This filter frequency is selected to reduce the noise in the signal without exciting any unmodeled
structural modes.

Without angular velocity measurements all estimate techniques perform similarly well, in con-
junction with the controller, bringing the vehicle’s angular rates down to approximately 1.0 deg/sec.
In all cases the residual angular velocity is about the body z axis. This is expected as it was noted
earlier that the angular velocity estimate used is unable to observe rates about the sun heading vector
and the goal of the controller is to orient this axis with the body z axis.

Of more practical importance is how fast the algorithms in question can reorient the spacecraft
to a power positive orientation. It is important to note that the spacecraft is estimating the sun
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Figure 9: Time spent converging, i.e. spacecraft solar arrays not pointed within 30 deg of sun vector,
for 1000 Monte Carlo simulation cases with and without angular velocity measurements.

direction vector, and controlling its attitude based on that estimation at the same time, from the start
of the simulation; the control does not wait for estimator convergence to act. Also, in a single orbit
the spacecraft may be required to reorient up to two times: the first time the spacecraft senses the
sun and again when coming out of the shadow of the Earth. While all cases converged to a power
positive orientation, some take longer than others. The total time spent converging, i.e. the amount
of time the solar arrays are not pointed within 30 deg of the sun, for each of the four cases is shown
in Figure 9.

All four methods show similar performance when angular velocity measurements are available
spending less than 3minutes converging. The WLSMN exhibits the lowest maximum time spent
converging, 1.5min, and the WAVG method shows the highest with one case that takes 3min to
converge.

Significantly more variation is seen between the methods when no angular velocity measure-
ments are used. In these cases the larger error in angular velocity of the spacecraft can lead to
slow tumbling when in the shadow of the Earth that must be corrected once CSS measurements are
available again. In addition, the EKF method relies on accurate angular velocity values to propagate
the system equations and errors in the spacecraft’s angular velocity lead to increased convergence
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time. The LSMN and WLSMN methods exhibit the best performance taking at most 5.17min to
converge. The WAVG takes at most 8.5min and the EKF method shows the poorest performance
taking up to 21.17min to converge. With the EKF the errors in the angular velocity delay the con-
vergence of the estimate, however, as the EKF accumulates measurements over time it successfully
converges and drives down the sun pointing error.

CONCLUSIONS

Four methods, WAVG, LSMN, WLSMN, and EKF, for estimating and controlling a spacecraft’s
orientation relative to the Sun using only minimal coarse sun sensors are presented. The first method
uses a simple weighted average calculation, the second and third involve variations on a combination
of least squares and minimum norm criteria, and the fourth incorporates an extended Kalman filter.
The estimation methods are used in conjunction with a nonlinear three-axis controller to point the
spacecraft’s solar arrays at the Sun. All four methods are shown to be capable of successfully
reorienting a spacecraft from any initial orientation in a reasonable time frame despite the presence
of measurement noise. In addition, all methods are robust to uncertainties in the level of solar
irradiance seen on-orbit reducing the complexities and costs of CSS ground-testing prior to launch.

The weighted average method is attractive because it is computationally simple, but it provides
the least accurate steady state sun direction estimate. The least squares minimum norm solution
is shown to be highly sensitive to large scale differences between CSS measurements, caused by
the difference in voltage output for direct sunlight and Earth albedo reflected light, but a simple
weighting scheme, used in the WLSMN method, is shown to alleviate these issues. The EKF
method provides the most accurate estimate of the sun direction vector and utilizes measurements
over time to create a more robust estimate, but takes longer to converge when lacking angular
velocity measurements. Future research will have to evaluate what impact sensor failure has on the
performance of all four methods. Even without angular velocity measurements, all four methods
are shown to bring the spacecraft to a power positive orientation in a timescale much less than one
full orbit thus providing a low cost, low power, coarse sun sensor only solution to reorienting a
spacecraft following deployment.
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