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SHADOW SET CONSIDERATIONS FOR MODIFIED RODRIGUES
PARAMETER ATTITUDE FILTERING

Stephen A. O’Keefe∗and Hanspeter Schaub†

Rigid body attitude estimation algorithms have been previously formulated using
Modified Rodrigues Parameter (MRP) attitude sets. MRP attitude estimation al-
gorithms are attractive because they have been shown to have equal accuracy to
and faster initial convergence than similar quaternion based filters and they avoid
the quaternion constraint problem. These algorithms make use of the fact that
MRP sets are not unique. Two possible MRP sets can describe a particular orien-
tation, and singularity avoidance can be performed by switching between the orig-
inal MRP set and the alternate set, known as the shadow set. Unfortunately, the
non-uniqueness of MRPs can lead to significant attitude estimation errors through
improper calculation of the measurement residual. The present work examines
the details required for proper implementation of a MRP attitude estimation algo-
rithm, specifically the technical details of when and how to switch to and from the
MRP shadow set when calculating the measurement residual.

INTRODUCTION

Attitude estimation is often performed using an extended Kalman filter (EKF) with quaternions
as the attitude measure.1, 2 Quaternions lend themselves well to attitude estimation as they represent
a redundant, nonsingular attitude description with globally nonsingular kinematics, elegant suc-
cessive rotation expressions, and rigorously linear kinematic differential equations. However, the
quaternion unit norm constraint complicates matters and has led to extended discussions of attitude
estimation and constraints.3, 4, 5

Usually, an error quaternion is estimated for each measurement assuming small angles such that a
three-component representation may be used. This error quaternion is then combined with a quater-
nion propagated using state dynamics to arrive at a measurement updated attitude estimate. This
method is used in both the Multiplicative EKF (MEKF), which is thoroughly discussed in Refer-
ence 6 and Reference 7, and the Additive EKF (AEKF).8, 9, 10 A more recent approach, proposed by
Zanetti, Majji, Bishop and Mortari, involves a Lagrange multiplier formulation to solve for all four
components of the error quaternion.11

Other attitude parameterizations can be used in Kalman filtering assuming that appropriate strate-
gies are employed to avoid singularities. Examples of other parameterizations include Euler an-
gles,12, 13 Rodrigues parameters,14 and Modified Rodrigues Parameters (MRPs). MRPs are of par-
ticular interest as they are a minimal three parameter attitude set which are nonsingular for any
rotation other than multiples of 2π. Schaub and Junkins15 note they are not unique; two MRP sets
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exist to describe a particular orientation, and the second set, known as the shadow set, is nonsingu-
lar for non-zero rotations. Therefore, singularity avoidance can be performed by switching between
the two MRP sets. Further, both MRP sets obey the same differential equations making for easy
implementation.

MRPs have been used to develop globally stabilizing feedback control,16 optimal attitude con-
trol,17 and sliding mode control for maneuvers.18 They were first explored as an attitude estima-
tion parameterization in 1996.19 Lee and Alfriend present an additive divided difference filter using
MRPs, but do not discuss the transformation of the covariance matrix when switching to the shadow
MRP set.20 Cheng and Crassidis propose using MRPs in a particle filter and they mention that MRP
switching may cause discontinuities of the covariance, but do not provide an appropriate covari-
ance mapping, although it is not actually required in their particle filtering approach.21 Jizheng,
Jianping, and Qun also note the covariance estimate experiences a discontinuity at the point where
the MRP is switched to the shadow set and propose a first order covariance mapping.22 Karlgaard
and Schaub provide a first order covariance mapping for use in an EKF, and additionally provide
first- and second-order transformations suitable for use in Divided Difference Filters (DD1, DD2).23

Furthermore, they show an MRP EKF to have equal accuracy to and faster initial convergence than
quaternion filters with slightly faster numerical evaluation and vastly simpler coding implementa-
tion.

The present work examines the details required for proper implementation of this algorithm,
specifically the technical details of when and how to switch to and from the MRP shadow set. A
review of MRPs is presented, followed by the derivation of an EKF which utilizes MRPs complete
with an appropriate first-order analytical covariance mapping to be used when switching the MRPs
to or from their shadow set. Next the technical issues of the non-uniqueness of MRPs with regard
to the calculation of the measurement residual are examined. Finally, numerical simulation results
demonstrating these issues and the performance of the MRP EKF are presented.

MODIFIED RODRIGUES PARAMETERS

The Modified Rodrigues Parameter vector σ is defined in terms of the principal rotation elements
as

σ = ê tan

(
Φ

4

)
(1)

where ê is the principal rotation axis, and Φ is the principal rotation angle.15, 24 By examining
Equation (1) it can see that the MRP attitude description goes singular when Φ→ ±360 deg.

Because the sets (ê,Φ) and (ê,Φ′), where Φ′ = Φ− 2π, describe the same orientation the MRP
shadow set can be derived as

σS = − σ

σTσ
= ê tan

(
Φ− 2π

4

)
. (2)

Note that one set of MRPs corresponds to a principal rotation Φ ≥ 180 deg and the other to Φ ≤
180 deg, so while the original MRP set approaches the singularity the shadow set approaches zero.
Thus, the singularity can easily be avoided by switching between the original and shadow MRP
sets. While arbitrarily switching between σ and σS is mathematically valid, it can be seen that a
computationally convenient switching point is when ‖σ‖ = 1 which corresponds to Φ = 180 deg.
In practice, the exact point when ‖σ‖ = 1 does not need to be determined as the MRP attitude
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measure is still mathematically well defined for ‖σ‖ > 1, instead simply perform switching when
‖σ‖ > 1.

Both sets of MRPs satisfy the differential equation

σ̇ =
1

4

[(
1− σTσ

)
[I3×3] + 2 [σ]× + 2σσT

]
ω =

1

4
[B(σ)]ω (3)

where ω represents the body angular velocity and [σ]× is the skew-symmetric cross product matrix
given by

[σ]× =

 0 −σ3 σ2
σ3 0 −σ1
−σ2 σ1 0

 .
MRP KALMAN FILTER FORMULATION

A common attitude estimation problem involves propagating the state dynamics using the inertial
angular velocity vector, sensed via a rate gyroscope, and correcting that estimate using a direct
measurement of the body’s attitude, via a star tracker, three-axis magnetometer, or other generic
attitude sensor.1, 2 The discrete-time attitude measurements are incorporated through the use of a
continuous-discrete extended Kalman Filter, as defined in Reference 25.

A commonly used approximation for rate gyroscope measurements assumes the gyroscope dy-
namics follow Farrenkopf’s approximation26

ω = ω̃ − ωb − ηω (4)

ω̇b = ηωb
(5)

where ω̃ represents the sensed angular velocity, ω the true angular velocity, ωb the measurement
bias, and ηω and ηωb

unbiased uncorrelated random noise vectors. It follows that the state dynamics
are given by

ẋ = f(x) + g(x,η) (6)

where x = [σ,ωb]
T represents the state vector, η = [ηω,ηωb

]T ∼ N(0,Q) represents the process
noise vector, and

f(x) =

[
1
4 [B(σ)] (ω̃ − ωb)

03×3

]
(7)

g(x,η) =

[−1
4 [B(σ)]ηω
ηωb

]
. (8)

Thus, the continuous-time propagation equations are given by Equation (6) and the Lyapunov dif-
ferential equation25

Ṗ = FP + PF T +GQGT (9)

where P represents the state covariance matrix, and

F ≡ ∂f

∂x

∣∣∣∣
x=x̂

=

[1

2

(
σ̂ω̂T − ω̂σ̂T − [ω̂]× + σ̂T ω̂I

)
−1

4
[B(σ̂)]

03×3 03×3

]
(10)

G ≡ ∂g

∂η

∣∣∣∣
x=x̂,η=0

=

[
−1

4
[B(σ̂)] 03×3

03×3 I3×3

]
(11)
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where σ̂ represents the current best estimate of the attitude MRP and ω̂ = ω̃ − ω̂b represents the
current best estimate of the body angular velocity.

The attitude sensing device dynamics are assumed to take the form

σ = σ̃ − δσ (12)

where σ represents the true MRP attitude, σ̃ represents the measured MRP, and δσ ∼ N(0,R) is
the measurement error, not the attitude estimation error. Using the measurement equation

h(xk) = σ̂k (13)

these discrete-time measurements can be incorporated into the state estimate using the update equa-
tions given by

x̂+
k = x̂−k +Kk [σ̃k − σ̂k] (14)

P+
k =

[
I −KkHk(x̂

−
k )
]
P−k

[
I −KkHk(x̂

−
k )
]T

+KkRkK
T
k (15)

where x̂−k and x̂+
k are the propagated and measurement corrected state estimates at time tk, re-

spectively, and P−k and P+
k are the propagated and measurement corrected covariance estimates,

respectively. Note the conventional Kalman filter covariance update equation is replaced with the
Joseph formulation to improve numerical stability.27 The Kalman gain matrix is given by

Kk = P−k H
T
k (x̂−k )

[
Hk(x̂

−
k )P−k H

T
k (x̂−k ) +Rk

]−1
(16)

where

Hk(x̂
−
k ) ≡ ∂h

∂x

∣∣∣∣
x̂−k

=
[
I3×3 03×3

]
. (17)

If after propagating using Equation (6) or performing an update using Equations (14) and (15)
‖σ‖ > 1 the MRP attitude set is switched to the shadow set. The shadow set transformation of the
state vector is given by

xS =

[
−
(
σTσ

)−1
σ

ωb

]
. (18)

Decomposing the covariance matrix into submatrices

P =

[
Pσσ Pσωb

P T
σωb

Pωbωb

]
where Pxx is the covariance matrix of x and Pxy is the cross-correlation matrix between x and y,
the mapping of the covariance matrix to the shadow set is given by23

P S =

[
SPσσS

T SPσωb

P T
σωb
ST Pωbωb

]
(19)

where
S = 2σ−4σσT − σ−2I3×3

and σ2 = σTσ.
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MRP SHADOW SET CONSIDERATIONS

Of particular interest here is the computation of the measurement residual yk, the difference
between the measured σ̃k and estimated attitude σ̂k at time tk, which has not previously been
discussed in detail.

yk = σ̃k − σ̂k (20)

Because the quantities σ̃k and σ̂k represent MRP attitude descriptions it might appear Equation (20)
should be evaluated using the MRP direct addition formula

yk =

(
1− σ̂Tk σ̂k

)
σ̃k −

(
1− σ̃Tk σ̃k

)
σ̂k + 2 [σ̃k]× σ̂k

1 + σ̃Tk σ̃kσ̂
T
k σ̂k + 2σ̂Tk σ̃k

(21)

or [C(yk)] = [C(σ̃k)] [C(σ̂k)]
T where

[C(σ)] = I3×3 +
8 [σ]2× − 4(1− σTσ) [σ]×

(1 + σTσ)2
.

This would yield the true attitude estimation error, not just the numerical difference of MRP values
as in Equation (20). However, the Kalman filter is formulated using matrix math, and thus should
be evaluated as such.

As discussed earlier, due to the non-uniqueness of MRPs, there are always two MRP sets to
describe the same orientation. This can become an issue if ‖σ̃‖ or ‖σ̂‖ is near 1.0. For example,
if σ̃ = [1, 0, 0] and σ̂ = [−1, 0, 0], which represents the same physical orientation as σ̃S , both σ̃
and σ̂ describe the same attitude and thus the measurement residual should be [0, 0, 0]. However,
Equation (20) will result in a measurement residual of [2, 0, 0] and the update equation given by
Equation (14) will apply a correction when none is needed, thus degrading the estimate of the
attitude.

To avoid this issue in practice, a new approach is proposed where the measurement residual is
calculated a second time using

y′k = σ̃Sk − σ̂k (22)

where σ̃Sk is evaluated using Equation (2). The value of yk or y′k with the smaller magnitude is then
used in Equation (14) and estimation continues. Figure 1 illustrates graphically the situation where
‖y′k‖ < ‖yk‖ and Algorithm 1 provides pseudocode for the proposed algorithm.

Algorithm 1 Proposed measurement residual algorithm.

1: yk = σ̃k − σ̂k
2: if ‖σ̃k‖ > 1

3 then
3: y′k = σ̃Sk − σ̂k
4: if ‖y′k‖ < ‖yk‖ then
5: yk = y′k
6: end if
7: end if

Performing this additional calculation at every time step does not represent a significant compu-
tational burden, however, an issue does develop when ‖σ̃k‖ → 0. Here the shadow set ‖σ̃Sk ‖ → ∞
and is ill-defined. Note that in this scenario the magnitude of the original MRP set ‖σ̃k‖ is always
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‖σ‖ = 1 Surface

Region where ȳ must
be considered

1 2 3

‖σ̃S‖ > 3

σ̃

σ̂

σ̃S ‖σ̃‖ < 1
3ȳ

y

Figure 1: Illustration of possible measurement residual and region where y′ must be considered.

less than the magnitude of the shadow MRP set ‖σ̃Sk ‖ and there is no need to evaluate Equation (22).
For this reason a bound must be placed on when to evaluate Equation (22). Both σ̃ and σ̂ are always
constrained to have a magnitude less than or equal to 1, which implies

‖yk‖ ≤ 2.

Therefore, if the magnitude of the measured MRP’s shadow set σ̃Sk is greater than 3 the value of y′k
must always be greater than yk

‖σ̃Sk ‖ > 3 −→ ‖yk‖ < ‖y′k‖

and y′k need not be calculated. By applying Equation (2) it is evident that

‖σ̃Sk ‖ > 3 −→ ‖σ̃k‖ < 1/3.

Thus, a conservative bound on when the calculation of y′k can be ignored is when ‖σ̃k‖ < 1/3.
Therefore, when 1/3 < ‖σ̃k‖ < 1, as illustrated in Figure 1, the check described above should be
computed.

RESULTS

A simple numerical simulation is presented here to illustrate the performance of the non-singular
MRP EKF and highlight certain implementation details. In the following results the proposed
method applies Algorithm 1 where two yk values are computed. The matrix math method uses
Equation (20) for a single yk evaluation. Finally, the direct addition case applies Equation (21) to
compute the true attitude estimate orientation error.

In this simulation the uncontrolled tumbling motion of a small spacecraft is modeled. The space-
craft is assumed to have principle inertia values of I1 = 4 kgm2, I2 = 4 kgm2, and I3 = 3 kgm2.
The initial attitude of the spacecraft is given by σ(t0) =

[
0.3 0.1 −0.5

]
. The initial angular

velocity is given by ω(t0) =
[
−0.2 0.2 −0.192

]
deg/s. These initial conditions are chosen as

they quickly illustrate the issues with calculating the measurement residual as will be shown.

Attitude measurements are simulated at 0.2 Hz. These measurements are corrupted by white
Gaussian noise with a standard deviation of 20 arcsec. Angular rate measurements are simulated at
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Figure 2: Results of simulation illustrating importance of checking y′k. The proposed method fol-
lows Algorithm 1 where two yk values are computed. The matrix math method uses Equation (20)
for a single yk evaluation. The direct addition case uses Equation (21) to compute the true attitude
estimate orientation error.

2.0 Hz, assuming a constant bias of ωb =
[
−1.0 2.0 −3.0

]
deg/hr and white Gaussian noise with

a standard deviation of 0.001 deg/s..

The initial attitude estimate is σ̂ =
[
0.0 0.0 0.0

]
and the initial angular rate bias estimate

is ω̂b =
[
0.0 0.0 0.0

]
. The initial variance of the attitude estimate is set to 0.175, the initial

variance of the angular rate bias is set to 0.005 rad2/s2, and the initial covariances are set to zero.
The angular rate process noise variance is set to 5× 10−5 rad2/s2 and the angular rate bias process
noise variance is set to 1× 10−16 rad2/s2. The measurement error variance is set to 0.01 rad2/s2.

Figure 2 shows both the time history of the attitude estimate and the principal rotation error of
the estimate for the first 10 min of the simulation. An example of when ‖y′k‖ < ‖yk‖ can be seen
at 7.42 min. The value of the measured and estimated MRP attitudes along with other relevant
estimator quantities are listed in Table 1. As can be seen, simply calculating the vector difference

Table 1: Values of estimator quantities, and their magnitudes, at t = 7.4 min in the numerical
simulation.

σ̃ σ̃S σ̂ yk y′k

0.054 867 −0.054 890 −0.054 792 0.109 659 −0.000 087
0.993 141 −0.993 543 −0.992 450 1.985 591 −0.000 892
−0.101 273 0.101 314 0.101 665 −0.202 938 −0.000 371

0.999 797 1.000 203 0.999 147 1.998 945 0.000 970
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Figure 3: Results of numerical simulation showing convergence of estimate.

between σ̃k and σ̂k results in a spuriously large error in the attitude estimate, whereas by using the
shadow MRP set of the measured attitude the measurement residual is very close to zero.

The results of running the simulation for 200 min are shown in Figure 3. The rate gyroscope
biases and their associated estimated covariances are shown in Figure 3b for the proposed method,
and can be seen to quickly converge to the noise level. As shown in Figure 3a, the MRP EKF quickly
converges to an error less than 1 deg in just over 1 min using the check in Equation (22) despite the
relatively slow attitude measurement update rate. The same filter run without the y′k check does
converge, but takes much longer to do so and exhibits several large spikes with errors on the order
of 20 deg. The applied 20 arcsec attitude measurement noise about all three axis corresponds to an
attitude error of 0.038 deg which agrees well with the resulting attitude estimate.

CONCLUSIONS

The details associated with switching to the and from MRP shadow set in the context of a MRP
based extended Kalman filter for attitude estimation are discussed. It is shown analytically and with
numerical simulation that when calculating the measurement residual the fact that there are two
valid MRP representation for any one attitude is important to remember and consider. Calculating
the measurement residual using the attitude measurement MRP shadow set does not represent a
significant computational burden; however, issues arise when ‖σ̃‖ → 0. A conservative bound of
‖σ̃‖ ≥ 1/3 has been established for when to check the value of y′. The MRP EKF provides a
globally nonsingular attitude estimation algorithm with a minimal attitude representation, but care
must be taken when switching attitude estimate to and from the MRP shadow set.
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