
(Preprint) AAS 20-504

AUTONOMOUS SELECTION OF SPACECRAFT LANDING
LOCATION ON HAZARDOUS SMALL BODIES

Joshua D. Nelson∗ and Hanspeter Schaub†

In recent years, there has been a great deal of research and development per-
taining to the autonomous landing of spacecraft on small bodies, such as asteroids.
The capabilities to identify and avoid large rocks and other hazards on the surface
of small bodies has seen significant improvement, however most modern tech-
niques search for a location on the surface that contains no hazards within a scaled
circular/elliptical footprint. A challenge with this approach is that such accept-
able landing locations may be few and far between, or may not even exist at all,
on asteroids with highly hazardous terrain. This paper proposes the use of a ge-
ometrically conforming footprint to significantly widen possible landing regions.
A technique is formulated as the foundation for an autonomous landing location
selection algorithm that utilizes such a footprint. This technique offers coarse and
fine variations for determining a landing location, both with their own pros and
cons. An algorithm that utilizes this technique is constructed, and preliminary test
results are presented. These results highlight the differences between coarse and
fine variations, and show the current state of the technique to have a 94.3% suc-
cess rate. Finally, improvements and the future development of this technique are
discussed.

INTRODUCTION

Since the turn of the 21st Century, scientific interest in landing spacecraft on small celestial bodies
has been on the rise. To further understand the origin and makeup of the Solar System, spacecraft
are being sent out to these bodies to perform in situ analysis or, more recently, sample extraction
and return. Several missions, such as Rosetta, Hayabusa2, and OSIRIS-REx, have been mounted
where the Entry, Descent, and Landing (EDL) phase is critical to mission success. Missions such
as these have shown that comets and asteroids contain a large amount of hazardous terrain, such as
large rocks and steep slopes, often in the most scientifically interesting regions.1 Due to the long
ground communication delay that is experienced so far from Earth, EDL operations have a limited
real-time human input and thus require a certain level of autonomy. The process of locating a safe
place to land, known as Hazard Detection and Avoidance (HDA), becomes very challenging due
to the abundance of hazardous terrain, especially if the spacecraft must do so autonomously during
descent.

Many studies and developments of HDA focus primarily on hazard detection, which for a long
time has been the deciding factor for successful landings. There are methods that attempt to match
∗Graduate Research Assistant, Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Col-
orado Boulder, Boulder, CO, 80309 USA, Nelson.Joshua@colorado.edu
†Glenn L. Murphy Chair of Engineering, Ann and H.J. Smead Department of Aerospace Engineering Sciences, University
of Colorado, 415 AERO, Colorado Center for Astrodynamics Research, Boulder, CO 80309.

1

identified features on a 2D image to database of known hazards, such as Yu and Cui’s affine invariant
matching algorithm.2 Other methods involve the construction of a Digital Elevation Model (DEM)
with either LIDAR or stereo-vision techniques.3 Recently proposed techniques utilize artificial neu-
ral networks in combination with vision based sensors to identify hazards.4 While the further de-
velopment of hazard detection techniques is of great importance, many of these approaches simply
choose an area that is free of hazards as the landing site. Few have explored landing area selection
criteria beyond the lack of hazards. Wei et al. provide a method for avoiding regions that are closed
environments, such as craters with a flat interior that may otherwise be selected as a safe landing
location.5 Further, Cui et al. propose a safety index method in which hazardous terrain is classified
with varying levels of safety, and fuel consumption and touchdown performance are factored into
an optimization problem for landing site selection.6 However, these methods all contain the same
constraint on their outcome: they search for landing locations that fit a scaled circular/elliptical
footprint.

The use of an elliptical footprint presents a major issue in that such acceptable landing locations
may be few and far between, or may not even exist at all, on asteroids with highly hazardous ter-
rain. Historically, these elliptical footprints were necessary to reduce online computation time and
to account for uncertainties in surface geometry and landing pose. However, recent innovations
in both the hardware and software involved with hazard detection have greatly reduced these un-
certainties.4, 7–9 Alongside the increasing capabilities of space-flight ready CPUs,10 these modern
hazard detection techniques allow the possibility of using geometrically conforming footprints, as
seen in Figure 1, for landing among hazardous terrain.

Figure 1. An elliptical footprint (left) compared to a geometrically conforming footprint (right).

This paper investigates a novel landing technique that utilizes a geometrically conforming foot-
print for landing site selection. This technique is to be used in conjunction with a hazard detection
technique that provides a DEM in which representative 3D models of hazards can be extracted. The
following section produces a method to find the closest landing pose to a desired location, such
that the lander is not intersecting any hazards. Two variants of this method are discussed, and are
labeled as a coarse search and fine search respectively. Next, a numerical algorithm utilizing a di-
mensionally reduced version of this method is developed and then test results are presented. Lastly,
conclusions on the potential of this concept and the future steps in its development are expounded.

2

PROBLEM FORMULATION

Let there be two sets of input convex polyhedra: a set representing the spacecraft lander, and a set
representing the surface in some large box containing the desired landing location, denoted as point
L. Assume both sets are rigid bodies such that all polyhedra within a set maintain a constant pose
relative to each other. The reference frame∗ F : {F , f̂1, f̂2, f̂3} is created for the lander, such that
the frame origin F is located at the geometric centroid of the feet and is co-planar with the bottom
faces of the feet. The third basis vector of frame F will be defined to be orthogonal to the feet plane
and pointed toward the lander (such that the entire lander geometry is in the +f̂3 direction), while
the other two basis vectors will be defined such that F is right-handed, as seen in Figure 2.

f̂1

<latexit sha1_base64="Mr0CxIr0iCv/OjYQkCvTPBHx/Fs=">AAACBXicbVC7SgNBFJ2NrxhfUUubwSBYhV1RtAzaWEYwD8iuYXYymwyZmV1m7gph2dpfsNXeTmz9Dlu/xEmyhSYeuHA4517O5YSJ4AZc98sprayurW+UNytb2zu7e9X9g7aJU01Zi8Yi1t2QGCa4Yi3gIFg30YzIULBOOL6Z+p1Hpg2P1T1MEhZIMlQ84pSAlR78EYHMD2UW5Xnf61drbt2dAS8TryA1VKDZr377g5imkimgghjT89wEgoxo4FSwvOKnhiWEjsmQ9SxVRDITZLOvc3xilQGOYm1HAZ6pvy8yIo2ZyNBuSgIjs+hNxX+9UC4kQ3QVZFwlKTBF58FRKjDEeFoJHnDNKIiJJYRqbn/HdEQ0oWCLq9hSvMUKlkn7rO6d1y/uzmuN66KeMjpCx+gUeegSNdAtaqIWokijZ/SCXp0n5815dz7mqyWnuDlEf+B8/gBbA5le</latexit>

f̂3

<latexit sha1_base64="WmpuvQYaJHA3N7WvIH6nUWtFnXs=">AAACBXicbVC7SgNBFL0bXzG+opY2g0GwCrsa0TJoYxnBPCAbw+xkNhkyM7vMzAph2dpfsNXeTmz9Dlu/xEmyhSYeuHA4517O5QQxZ9q47pdTWFldW98obpa2tnd298r7By0dJYrQJol4pDoB1pQzSZuGGU47saJYBJy2g/HN1G8/UqVZJO/NJKY9gYeShYxgY6UHf4RN6gciDbOsf94vV9yqOwNaJl5OKpCj0S9/+4OIJIJKQzjWuuu5semlWBlGOM1KfqJpjMkYD2nXUokF1b109nWGTqwyQGGk7EiDZurvixQLrScisJsCm5Fe9Kbiv14gFpJNeNVLmYwTQyWZB4cJRyZC00rQgClKDJ9Ygoli9ndERlhhYmxxJVuKt1jBMmmdVb1a9eKuVqlf5/UU4QiO4RQ8uIQ63EIDmkBAwTO8wKvz5Lw5787HfLXg5DeH8AfO5w9eK5lg</latexit>

F

<latexit sha1_base64="8F/feEi6MmmI9QXfqy7u0vNpYY4=">AAAB/XicbVBNSwMxFHxbv2r9qnr0EiyCp7IrFT0WBfFYwW4L7VKyabaNTbJLkhXKUvwLXvXuTbz6W7z6S0zbPWjrwINh5j3mMWHCmTau++UUVlbX1jeKm6Wt7Z3dvfL+ga/jVBHaJDGPVTvEmnImadMww2k7URSLkNNWOLqe+q1HqjSL5b0ZJzQQeCBZxAg2VvK7ochuJr1yxa26M6Bl4uWkAjkavfJ3tx+TVFBpCMdadzw3MUGGlWGE00mpm2qaYDLCA9qxVGJBdZDNvp2gE6v0URQrO9Kgmfr7IsNC67EI7abAZqgXvan4rxeKhWQTXQYZk0lqqCTz4CjlyMRoWgXqM0WJ4WNLMFHM/o7IECtMjC2sZEvxFitYJv5Z1atVz+9qlfpVXk8RjuAYTsGDC6jDLTSgCQQe4Ble4NV5ct6cd+djvlpw8ptD+APn8wfwOJXN</latexit>

ŝ3

<latexit sha1_base64="VPatC7qdJyYJqySjzETtrmoPuts=">AAACBXicbVC7SgNBFJ2NrxhfUUubwSBYhV2NaBm0sYxgHpBdw+xkkgyZmV1m7gph2dpfsNXeTmz9Dlu/xEmyhSYeuHA4517O5YSx4AZc98sprKyurW8UN0tb2zu7e+X9g5aJEk1Zk0Yi0p2QGCa4Yk3gIFgn1ozIULB2OL6Z+u1Hpg2P1D1MYhZIMlR8wCkBKz34IwKpH8rUZFnvvFeuuFV3BrxMvJxUUI5Gr/zt9yOaSKaACmJM13NjCFKigVPBspKfGBYTOiZD1rVUEclMkM6+zvCJVfp4EGk7CvBM/X2REmnMRIZ2UxIYmUVvKv7rhXIhGQZXQcpVnABTdB48SASGCE8rwX2uGQUxsYRQze3vmI6IJhRscSVbirdYwTJpnVW9WvXirlapX+f1FNEROkanyEOXqI5uUQM1EUUaPaMX9Oo8OW/Ou/MxXy04+c0h+gPn8wdy45lt</latexit>

ŝ1

<latexit sha1_base64="H5oSjm06pcNcaT5C8xnKpgz49LY=">AAACBXicbVC7SgNBFL0bXzG+opY2g0GwCruiaBm0sYxgHpBdw+xkNhkyM7vMzAph2dpfsNXeTmz9Dlu/xEmyhSYeuHA4517O5YQJZ9q47pdTWlldW98ob1a2tnd296r7B20dp4rQFol5rLoh1pQzSVuGGU67iaJYhJx2wvHN1O88UqVZLO/NJKGBwEPJIkawsdKDP8Im80OR6Tzve/1qza27M6Bl4hWkBgWa/eq3P4hJKqg0hGOte56bmCDDyjDCaV7xU00TTMZ4SHuWSiyoDrLZ1zk6scoARbGyIw2aqb8vMiy0nojQbgpsRnrRm4r/eqFYSDbRVZAxmaSGSjIPjlKOTIymlaABU5QYPrEEE8Xs74iMsMLE2OIqthRvsYJl0j6re+f1i7vzWuO6qKcMR3AMp+DBJTTgFprQAgIKnuEFXp0n5815dz7mqyWnuDmEP3A+fwBvu5lr</latexit>

L

<latexit sha1_base64="gbVL2Ednu/Hky9rNwDByv60SBCo=">AAAB/XicbVA9SwNBFHwXv2L8ilraLAbBKtxJRMugjYVFBHMJJEfY2+wla3b3jt09IRzBv2CrvZ3Y+lts/SVukis0ceDBMPMe85gw4Uwb1/1yCiura+sbxc3S1vbO7l55/8DXcaoIbZKYx6odYk05k7RpmOG0nSiKRchpKxxdT/3WI1WaxfLejBMaCDyQLGIEGyv53VBkt5NeueJW3RnQMvFyUoEcjV75u9uPSSqoNIRjrTuem5ggw8owwumk1E01TTAZ4QHtWCqxoDrIZt9O0IlV+iiKlR1p0Ez9fZFhofVYhHZTYDPUi95U/NcLxUKyiS6DjMkkNVSSeXCUcmRiNK0C9ZmixPCxJZgoZn9HZIgVJsYWVrKleIsVLBP/rOrVqud3tUr9Kq+nCEdwDKfgwQXU4QYa0AQCD/AML/DqPDlvzrvzMV8tOPnNIfyB8/kD+baV0w==</latexit>

Figure 2. Frame definitions for the lander and surface.

The reference frame S : {S, ŝ1, ŝ2, ŝ3} is defined such that the frame origin S is located at
a corner of the plane that exists directly underneath the surface. The basis vectors are defined
such that entire surface geometry exists in the first octant, assuming the curvature of the asteroid is
locally negligible. The third basis vector of frame S is chosen to be antiparallel to the local gravity
direction, with the other two basis vectors defined such that S is right-handed.

Let this problem be initially cast as the Quadratic Program (QP):

Minimize V (rL/F) =
1

2
rTF/SQrF/S + cTrF/S , (1)

where Q � 0 is the hessian, and c = −QrL is the gradient. This QP is further expanded by
constraints preventing the intersection of the surface and lander polyhedra. From the definitions of
the S and F frames, it is assumed that the f̂3 and ŝ3 directions should be kept close to parallel, such
that the lander does not topple off its feet due to gravity.

The Separating Axis Theorem & Approximate Convex Decomposition

The safety of a selected landing location materializes as the assurance that surface hazards do
not penetrate the lander hull. This assurance is quantified by the non-intersection of the lander and
surface polyhedra. The foundation of the non-intersection constraints comes from the Separating
Axis Theorem11 (SAT); which says that any two convex polyhedra do not overlap if, and only if,
there exists at least one spatial axis where the projections of those polyhedra do not overlap. Let
rC/S be a vector from the S frame origin to the centroid C of a polyhedron, and let rV/C be a
vector from C to any exterior point on the polyhedron, as seen in Figure 3(a). Then for any two
non-intersecting polyhedra h and k, there exists an axis where the projection of rC/S,h − rC/S,k is

∗See table at the end for notation

3

rV/C

<latexit sha1_base64="/vlHaX84RBl54Xm7AXgFvuhvtjo=">AAACA3icbVBNS8NAFHypX7V+VT16WSyCp5pIQb0VevFYwdZCE8pmu2mX7m7C7kYoIUf/gle9exOv/hCv/hK3bQ7aOvBgmHmPeUyYcKaN6345pbX1jc2t8nZlZ3dv/6B6eNTVcaoI7ZCYx6oXYk05k7RjmOG0lyiKRcjpQzhpzfyHR6o0i+W9mSY0EHgkWcQINlby/VBkKh9k3YtWPqjW3Lo7B1olXkFqUKA9qH77w5ikgkpDONa677mJCTKsDCOc5hU/1TTBZIJHtG+pxILqIJv/nKMzqwxRFCs70qC5+vsiw0LrqQjtpsBmrJe9mfivF4qlZBNdBxmTSWqoJIvgKOXIxGhWCBoyRYnhU0swUcz+jsgYK0yMra1iS/GWK1gl3cu616jf3DVqTbeopwwncArn4MEVNOEW2tABAgk8wwu8Ok/Om/PufCxWS05xcwx/4Hz+AH3jmEY=</latexit>

r C
/S

<latexit sha1_base64="BkqsyIbxjKYyUUWgGPTezjPWUzU=">AAACA3icbVC7SgNBFL0bXzG+opY2g0GwirsSULtAGsuI5gHZJcxOZpMhM7PLzKwQlpT+gq32dmLrh9j6JU6SLTTxwIXDOfdyLidMONPGdb+cwtr6xuZWcbu0s7u3f1A+PGrrOFWEtkjMY9UNsaacSdoyzHDaTRTFIuS0E44bM7/zSJVmsXwwk4QGAg8lixjBxkq+H4pMTftZ4+J+2i9X3Ko7B1olXk4qkKPZL3/7g5ikgkpDONa657mJCTKsDCOcTkt+qmmCyRgPac9SiQXVQTb/eYrOrDJAUazsSIPm6u+LDAutJyK0mwKbkV72ZuK/XiiWkk10HWRMJqmhkiyCo5QjE6NZIWjAFCWGTyzBRDH7OyIjrDAxtraSLcVbrmCVtC+rXq16c1er1N28niKcwCmcgwdXUIdbaEILCCTwDC/w6jw5b86787FYLTj5zTH8gfP5A3j+mEM=</latexit>

ŝ1

<latexit sha1_base64="bJ4OVGY1Bsit/zaWG6CCHZdqnB4=">AAACBXicbVC7SgNBFL0bXzG+opY2g0GwCrsSULuAjWUE84DsGmYns8mQmdllZlYIy9b+gq32dmLrd9j6JU6SLTTxwIXDOfdyLidMONPGdb+c0tr6xuZWebuys7u3f1A9POroOFWEtknMY9ULsaacSdo2zHDaSxTFIuS0G05uZn73kSrNYnlvpgkNBB5JFjGCjZUe/DE2mR+KTOf5wBtUa27dnQOtEq8gNSjQGlS//WFMUkGlIRxr3ffcxAQZVoYRTvOKn2qaYDLBI9q3VGJBdZDNv87RmVWGKIqVHWnQXP19kWGh9VSEdlNgM9bL3kz81wvFUrKJroKMySQ1VJJFcJRyZGI0qwQNmaLE8KklmChmf0dkjBUmxhZXsaV4yxWsks5F3WvUr+8ataZb1FOGEziFc/DgEppwCy1oAwEFz/ACr86T8+a8Ox+L1ZJT3BzDHzifP2uZmV0=</latexit>

ŝ3

<latexit sha1_base64="rhLxig4A85ICXhIYxmt0xlALfTw=">AAACBXicbVC7SgNBFJ31GeMramkzGASrsKsBtQvYWEYwD8iuYXYymwyZmV1m7gph2dpfsNXeTmz9Dlu/xEmyhSYeuHA4517O5YSJ4AZc98tZWV1b39gsbZW3d3b39isHh20Tp5qyFo1FrLshMUxwxVrAQbBuohmRoWCdcHwz9TuPTBseq3uYJCyQZKh4xCkBKz34IwKZH8rM5Hn/ol+pujV3BrxMvIJUUYFmv/LtD2KaSqaACmJMz3MTCDKigVPB8rKfGpYQOiZD1rNUEclMkM2+zvGpVQY4irUdBXim/r7IiDRmIkO7KQmMzKI3Ff/1QrmQDNFVkHGVpMAUnQdHqcAQ42kleMA1oyAmlhCquf0d0xHRhIItrmxL8RYrWCbt85pXr13f1asNt6inhI7RCTpDHrpEDXSLmqiFKNLoGb2gV+fJeXPenY/56opT3ByhP3A+fwBuwZlf</latexit>

S

<latexit sha1_base64="iASbE9iJG8ZghVGwx+KMKhOKN5g=">AAAB+HicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoN4CXjwmaB6QLGF20psMmZldZmaFuOQLvOrdm3j1b7z6JU6SPWhiQUNR1U01FSacaeN5X05hbX1jc6u4XdrZ3ds/KB8etXScKopNGvNYdUKikTOJTcMMx06ikIiQYzsc38789iMqzWL5YCYJBoIMJYsYJcZKjft+ueJVvTncVeLnpAI56v3yd28Q01SgNJQTrbu+l5ggI8owynFa6qUaE0LHZIhdSyURqINs/ujUPbPKwI1iZUcad67+vsiI0HoiQrspiBnpZW8m/uuFYinZRNdBxmSSGpR0ERyl3DWxO2vBHTCF1PCJJYQqZn936YgoQo3tqmRL8ZcrWCWti6p/Wb1pXFZqXl5PEU7gFM7BhyuowR3UoQkUEJ7hBV6dJ+fNeXc+FqsFJ785hj9wPn8A4nOTdw==</latexit>

C

<latexit sha1_base64="3F+MlCCN9rOggld9/f7+YickjsY=">AAAB+HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoN4CuXhMwDwgWcLspDcZMrO7zMwKcckXeNW7N/Hq33j1S5wke9DEgoaiqptqKkgE18Z1v5zCxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ARtgw3AruJQioDgZ1gUp/7nUdUmsfRg5km6Es6injIGTVWatYH5YpbdRcg68TLSQVyNAbl7/4wZqnEyDBBte55bmL8jCrDmcBZqZ9qTCib0BH2LI2oRO1ni0dn5MIqQxLGyk5kyEL9fZFRqfVUBnZTUjPWq95c/NcL5EqyCW/9jEdJajBiy+AwFcTEZN4CGXKFzIipJZQpbn8nbEwVZcZ2VbKleKsVrJP2VdW7rt41rys1N6+nCGdwDpfgwQ3U4B4a0AIGCM/wAq/Ok/PmvDsfy9WCk9+cwh84nz/JM5Nn</latexit>

C

<latexit sha1_base64="3F+MlCCN9rOggld9/f7+YickjsY=">AAAB+HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoN4CuXhMwDwgWcLspDcZMrO7zMwKcckXeNW7N/Hq33j1S5wke9DEgoaiqptqKkgE18Z1v5zCxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ARtgw3AruJQioDgZ1gUp/7nUdUmsfRg5km6Es6injIGTVWatYH5YpbdRcg68TLSQVyNAbl7/4wZqnEyDBBte55bmL8jCrDmcBZqZ9qTCib0BH2LI2oRO1ni0dn5MIqQxLGyk5kyEL9fZFRqfVUBnZTUjPWq95c/NcL5EqyCW/9jEdJajBiy+AwFcTEZN4CGXKFzIipJZQpbn8nbEwVZcZ2VbKleKsVrJP2VdW7rt41rys1N6+nCGdwDpfgwQ3U4B4a0AIGCM/wAq/Ok/PmvDsfy9WCk9+cwh84nz/JM5Nn</latexit>

(a) Vector Definitions

Separating
Axis

rV/C,h

<latexit sha1_base64="2AZLLZkXDWaNnm6z9R01Yit/8F8=">AAACBXicbVC7SgNBFL3rM8ZX1NJmMAgWEncloHaBNJYRzAOSNcxOZpMhM7PLzKwQlq39BVvt7cTW77D1S5wkW2jigQuHc+7lXE4Qc6aN6345K6tr6xubha3i9s7u3n7p4LClo0QR2iQRj1QnwJpyJmnTMMNpJ1YUi4DTdjCuT/32I1WaRfLeTGLqCzyULGQEGys99AKRqqyfti7q56OsXyq7FXcGtEy8nJQhR6Nf+u4NIpIIKg3hWOuu58bGT7EyjHCaFXuJpjEmYzykXUslFlT76ezrDJ1aZYDCSNmRBs3U3xcpFlpPRGA3BTYjvehNxX+9QCwkm/DaT5mME0MlmQeHCUcmQtNK0IApSgyfWIKJYvZ3REZYYWJscUVbirdYwTJpXVa8auXmrlquuXk9BTiGEzgDD66gBrfQgCYQUPAML/DqPDlvzrvzMV9dcfKbI/gD5/MHusaY7g==</latexit>

rV/C,k

<latexit sha1_base64="ZGqmm14uM8yvAj88TRrrDiOH0e8=">AAACBXicbVC7SgNBFL3rM8ZX1NJmMAgWEncloHaBNJYRzAOSNcxOZpMhM7PLzKwQlq39BVvt7cTW77D1S5wkW2jigQuHc+7lXE4Qc6aN6345K6tr6xubha3i9s7u3n7p4LClo0QR2iQRj1QnwJpyJmnTMMNpJ1YUi4DTdjCuT/32I1WaRfLeTGLqCzyULGQEGys99AKRqqyfti7q5+OsXyq7FXcGtEy8nJQhR6Nf+u4NIpIIKg3hWOuu58bGT7EyjHCaFXuJpjEmYzykXUslFlT76ezrDJ1aZYDCSNmRBs3U3xcpFlpPRGA3BTYjvehNxX+9QCwkm/DaT5mME0MlmQeHCUcmQtNK0IApSgyfWIKJYvZ3REZYYWJscUVbirdYwTJpXVa8auXmrlquuXk9BTiGEzgDD66gBrfQgCYQUPAML/DqPDlvzrvzMV9dcfKbI/gD5/MHv4WY8Q==</latexit>

ŝ1

<latexit sha1_base64="bJ4OVGY1Bsit/zaWG6CCHZdqnB4=">AAACBXicbVC7SgNBFL0bXzG+opY2g0GwCrsSULuAjWUE84DsGmYns8mQmdllZlYIy9b+gq32dmLrd9j6JU6SLTTxwIXDOfdyLidMONPGdb+c0tr6xuZWebuys7u3f1A9POroOFWEtknMY9ULsaacSdo2zHDaSxTFIuS0G05uZn73kSrNYnlvpgkNBB5JFjGCjZUe/DE2mR+KTOf5wBtUa27dnQOtEq8gNSjQGlS//WFMUkGlIRxr3ffcxAQZVoYRTvOKn2qaYDLBI9q3VGJBdZDNv87RmVWGKIqVHWnQXP19kWGh9VSEdlNgM9bL3kz81wvFUrKJroKMySQ1VJJFcJRyZGI0qwQNmaLE8KklmChmf0dkjBUmxhZXsaV4yxWsks5F3WvUr+8ataZb1FOGEziFc/DgEppwCy1oAwEFz/ACr86T8+a8Ox+L1ZJT3BzDHzifP2uZmV0=</latexit>

ŝ3

<latexit sha1_base64="rhLxig4A85ICXhIYxmt0xlALfTw=">AAACBXicbVC7SgNBFJ31GeMramkzGASrsKsBtQvYWEYwD8iuYXYymwyZmV1m7gph2dpfsNXeTmz9Dlu/xEmyhSYeuHA4517O5YSJ4AZc98tZWV1b39gsbZW3d3b39isHh20Tp5qyFo1FrLshMUxwxVrAQbBuohmRoWCdcHwz9TuPTBseq3uYJCyQZKh4xCkBKz34IwKZH8rM5Hn/ol+pujV3BrxMvIJUUYFmv/LtD2KaSqaACmJMz3MTCDKigVPB8rKfGpYQOiZD1rNUEclMkM2+zvGpVQY4irUdBXim/r7IiDRmIkO7KQmMzKI3Ff/1QrmQDNFVkHGVpMAUnQdHqcAQ42kleMA1oyAmlhCquf0d0xHRhIItrmxL8RYrWCbt85pXr13f1asNt6inhI7RCTpDHrpEDXSLmqiFKNLoGb2gV+fJeXPenY/56opT3ByhP3A+fwBuwZlf</latexit>

S

<latexit sha1_base64="iASbE9iJG8ZghVGwx+KMKhOKN5g=">AAAB+HicbVDLSgNBEOyNrxhfUY9eFoPgKeyKoN4CXjwmaB6QLGF20psMmZldZmaFuOQLvOrdm3j1b7z6JU6SPWhiQUNR1U01FSacaeN5X05hbX1jc6u4XdrZ3ds/KB8etXScKopNGvNYdUKikTOJTcMMx06ikIiQYzsc38789iMqzWL5YCYJBoIMJYsYJcZKjft+ueJVvTncVeLnpAI56v3yd28Q01SgNJQTrbu+l5ggI8owynFa6qUaE0LHZIhdSyURqINs/ujUPbPKwI1iZUcad67+vsiI0HoiQrspiBnpZW8m/uuFYinZRNdBxmSSGpR0ERyl3DWxO2vBHTCF1PCJJYQqZn936YgoQo3tqmRL8ZcrWCWti6p/Wb1pXFZqXl5PEU7gFM7BhyuowR3UoQkUEJ7hBV6dJ+fNeXc+FqsFJ785hj9wPn8A4nOTdw==</latexit>

Ch

<latexit sha1_base64="TowCe5L0E8x73Mh301nggL7LsBw=">AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWZEUHeFblxWtA9oh5JJM21okhmSjFDGfoJb3bsTt/6MW7/EtJ2Fth64cDjnXs7lhIngxnreFyqsrW9sbhW3Szu7e/sH5cOjlolTTVmTxiLWnZAYJrhiTcutYJ1EMyJDwdrhuD7z249MGx6rBztJWCDJUPGIU2KddF/vj/rlilf15sCrxM9JBXI0+uXv3iCmqWTKUkGM6fpeYoOMaMupYNNSLzUsIXRMhqzrqCKSmSCbvzrFZ04Z4CjWbpTFc/X3RUakMRMZuk1J7MgsezPxXy+US8k2ug4yrpLUMkUXwVEqsI3xrAc84JpRKyaOEKq5+x3TEdGEWtdWyZXiL1ewSloXVf+yenN3Wal5eT1FOIFTOAcfrqAGt9CAJlAYwjO8wCt6Qm/oHX0sVgsovzmGP0CfP04slEI=</latexit>

Ck

<latexit sha1_base64="WMxN3PpMQcld3WkO/gUYI77bHYc=">AAAB+nicbVDLSgMxFL2pr1pfVZdugkVwVWZEUHeFblxWtA9oh5JJM21okhmSjFDGfoJb3bsTt/6MW7/EtJ2Fth64cDjnXs7lhIngxnreFyqsrW9sbhW3Szu7e/sH5cOjlolTTVmTxiLWnZAYJrhiTcutYJ1EMyJDwdrhuD7z249MGx6rBztJWCDJUPGIU2KddF/vj/vlilf15sCrxM9JBXI0+uXv3iCmqWTKUkGM6fpeYoOMaMupYNNSLzUsIXRMhqzrqCKSmSCbvzrFZ04Z4CjWbpTFc/X3RUakMRMZuk1J7MgsezPxXy+US8k2ug4yrpLUMkUXwVEqsI3xrAc84JpRKyaOEKq5+x3TEdGEWtdWyZXiL1ewSloXVf+yenN3Wal5eT1FOIFTOAcfrqAGt9CAJlAYwjO8wCt6Qm/oHX0sVgsovzmGP0CfP1LolEU=</latexit>

(r
C

/
S

,h
�

r
C

/
S

,k
)
·ŝ

3

<latexit sha1_base64="SJp6GNuMmYZL7a2/S+JPiOCwh64=">AAACL3icbVDLSsNAFJ3UV62vqEs3g0VQ0Jpo8bErdOOyorWCKWEynbZDZ5IwcyOUkD/xJ/wFt7oXNyLu/Aunj0VtPXDhcM693HtPEAuuwXE+rNzc/MLiUn65sLK6tr5hb27d6ShRlNVpJCJ1HxDNBA9ZHTgIdh8rRmQgWCPoVQd+45EpzaPwFvoxa0rSCXmbUwJG8u2zfS+Qqcr8tHp8c9jN8BGeFHrZAfZoKwLsdQmkA0tnmX/q20Wn5AyBZ4k7JkU0Rs23v71WRBPJQqCCaP3gOjE0U6KAU8GygpdoFhPaIx32YGhIJNPNdPhfhveM0sLtSJkKAQ/VyYmUSK37MjCdkkBXT3sD8V8vkFOboX3RTHkYJ8BCOlrcTgSGCA/Cwy2uGAXRN4RQxc3tmHaJIhRMxAUTijsdwSy5Oym55dLldblYccbx5NEO2kX7yEXnqIKuUA3VEUVP6AW9ojfr2Xq3Pq2vUWvOGs9soz+wfn4B80iosQ==</latexit>

(b) Depiction of Separating Axis

Figure 3. A two dimensional example of the Separating Axis Theorem.

greater in magnitude than rV/C,k + rV/C,h, where rV/C,k is the same direction as the projection,
and rV/C,h is the opposite direction. This can be seen in Figure 3(b) where the separating axis is
shown to be along ŝ3.

While the SAT provides a mathematically reliable method to determine if two polyhedra intersect,
note that it is defined specifically for convex polyhedra. This presents a natural issue, as surface
hazards and spacecraft landers are seldom convex in their geometry. This issue can be avoided by
constructing a convex hull around any non-convex polyhedra. However, this idea has substantial
drawbacks; a convex hull over a highly non-convex polyhedra would result in a large amount of
empty space removed from consideration when fitting two polyhedra together. Thus, a more refined
application of convex hulls can be used in form of a technique known as Approximate Convex
Decomposition12 (ACD). The general idea behind ACD is to subdivide highly non-convex polyhedra
into multiple polyhedra, that are less non-convex than their parent, before applying a convex hull to
each new polyhedra. The number of subdivided polyhedra is determined by the maximum allowable
level of non-convexity, which is parameterized by the user.

For the landing technique being proposed in this paper, the spacecraft lander and surface hazards
are decomposed into convex polyhedra. All convex polyhedra created from the ACD are divided
into two sets; the surface set contains all polyhedra representing the surface hazards, and the lander
set contains all polyhedra representing the spacecraft lander. As for what specific ACD algorithm
to use; many algorithms have been developed around the ACD technique, some of which who focus
on computational speed. Investigation and selection of an ACD algorithm is out of the scope of this
paper, and the following sections assume the decomposition step has already been completed.

Constraint Formulation

The existence of a separating axis between a surface polyhedron k and a lander polyhedron h can
be easily represented with the inequality

(rC/S,h)β − (rC/S,k)β ≥ (rV/C,k)β + (rV/C,h)β, (2)

where the subscript β represents some direction in S and (·)β is the scalar projection of a vector
on β. Testing for a separating axis in only one direction is insufficient, so this inequality must be

4

applied over an encompassing set of directions (such a set is defined in a following subsection).
When testing over a set of directions, the SAT says that the above inequality only needs to be
satisfied in one direction. In fact, this inequality will fail in some other directions, rendering this
problem infeasible. Therefore, Equation (2) must be adjusted in the following way:13

(rC/S,h)β − (rC/S,k)β ≥ (rV/C,k)β + (rV/C,h)β −Di(1− εhk,β), (3)∑
β

εhk,β ≥ 1, (4)

where Di is a scalar big-M coefficient and εhk,β ∈ {0, 1} are activation decision variables. With a
large enough value of Di and with ε = 0, the inequality in Equation (3) becomes always true within
the scope of the problem. Thus, for a value of εhk,β = 1, the separating axis criteria becomes active
along the β direction. As stated previously, the separating axis must exist in at least one direction
for the two polyhedra to not intersect, which is enforced with the inequality in Eq. (4). The value
of Di may be chosen to be infinitely large, however its minimum effective value is the length of the
longest dimension of the surface area containing known hazards.

These constraints are applied between every convex polyhedron in the lander set h and surface
set k (they are not applied between two polyhedra contained in the same set). The centroid positions
of lander set are known and constant in the F frame, however these constraints are evaluated in the
S frame. Thus Equation 3 is modified by

SrC/S,h = SrF/S + [SF]FrC/F,h (5)

where rC/F,h is constant in the F frame and [SF] is a Direction Cosine Matrix (DCM) that rotates
a vector description from F to S . This alteration now adds the position of F relative to S and the
attitude of F relative to S as decision variables to this problem.

The attitude representation chosen for this problem are the Modified Rodriguez Parameters14

(MRP). In order to maintain these constraints as linear, the DCM representation of the MRP must
be linearized about some reference frameR. The DCM form of the MRP linearizes to

[C(σF/R)] =

 1 4σ3 −4σ2
−4σ3 1 4σ1
4σ2 −4σ1 1

 where σF/R =

σ1σ2
σ3

 . (6)

In order to avoid more than a 5% error in the DCM introduced by linearization, rotations defined
by σF/R cannot exceed 20 degrees, or π

36 radians, about each axis. Therefore, this problem does
not consider the surface frame S as the frame these MRPs are linearized about. To ensure that the
f̂3 and ŝ3 directions are kept close to parallel, the angles between the f̂1 and ŝ1 directions and the
f̂2 and ŝ2 directions are constrained to be less than 20 degrees. Therefore, let frame R be some
intermediate frame that relates to S by a rotation of some reference angle θr about the ŝ3 axis,
denoted by the DCM [SR]. To maintain linearity in these constraints, the angle θr is held constant
when solving for a solution. Therefore, this problem is to be solved several times over iterations of
θr, and the solution with the lowest cost is chosen as the final solution.

To enforce the discussed constraints on attitude, the following bounds are added to the problem:

− π

36
≤ σ1 ≤

π

36
− π

36
≤ σ2 ≤

π

36
− π

36
≤ σ3 ≤

π

36
. (7)

5

Note that these bound introduce a double inequality to the problem constraints. In fact, upper and
lower bounds on SrF/S must also be introduced to contain the problem within the known region of
surface hazards. For consistency in the constraints, and since many effective QP solvers operate on
double inequality constraints, an upper bound is added to Equations (3) and (4). First, isolating the
decision variables in Equation (3) to one side of the inequality and expressing the vectors in their
known frame leads to

(SrC/S,k + SrV/C,k)β −Di ≤
(SrF/S + [SR][C(σF/R)]T (FrC/F,h − FrV/C,h)

)
β

−Diεhk,β, (8)

1 ≤
∑
β

εhk,β. (9)

Next, another big-M value, called Dsr, is introduced to Equation (8) as an upper bound. This new
value can be the same as Di; however, if the surface area being considered for landing does not
fully contain all known hazards, then Dsr may be the length of longest dimension of the surface
area being considered. The upper bound for Equation (9) is the number of search directions for a
separating axis, labeled βmax. Therefore, all constraints defined thus far are

SrF/S,min ≤ SrF/S ≤ SrF/S,max, (10)

σF/R,min ≤ σF/R ≤ σF/R,max, (11)

(SrC/S,k + SrV/C,k)β −Di ≤
(SrF/S + [SR][C(σF/R)]T (FrC/F,h − FrV/C,h)

)
β

−Diεhk,β ≤ Dsr, (12)

1 ≤
∑
β

εhk,β ≤ βmax. (13)

Note that Equation (12) exists for every direction being used to test for a separating axis, with
each having a unique decision variable εhk,β . For each pairing of surface and lander polyhedra, let
the lower bound of Equations (12) and (13) form the vector lhk and the upper bound form the vector
uhk. Let there be decision variable vectors x = [SrTF/S σTF/R]T and εhk = [εhk,1 ... εhk,n]T

for q directions in β. Then Equations (12) and (13) become

lhk ≤
[
Σhk Dhk

] [x
εhk

]
≤ uhk, (14)

where lhk,uhk ∈ Rq+1, Σhk ∈ R(q+1)×6, and Dhk ∈ R(q+1)×q. Let the upper and lower bounds
of Equations (10) and (11) be xl and xu respectively. For an example of how these constraints
evolve, let there be two lander polyhedra h ∈ {1, 2} and two surface polyhedra k ∈ {1, 2}. Then
the inequality constraints would be


xl
l11
l12
l21
l22

 ≤

I6×6 0 0 0 0
Σ11 D11 0 0 0
Σ12 0 D12 0 0
Σ21 0 0 D21 0
Σ22 0 0 0 D22



x
ε11
ε12
ε21
ε22

 ≤

xu
u11

u12

u21

u22

 . (15)

6

Recall that every variable in εhk is a binary decision variable and thus, with the constraints de-
fined, this problem becomes cast as a Mixed Integer Quadratic Program (MIQP) in the form:

Minimize V (z) =
1

2
zTQz + cTz, (16)

Subject To l ≤ Az ≤ u, (17)

zi ∈ {0, 1}, (18)

where z ∈ Rn, Q ∈ Rn×n, c ∈ Rn, l,u ∈ Rm, A ∈ Rm×n, and i = 7, ..., n. Let K and H be
the number of polyhedra in the surface set and lander set respectively, and Kq be the sum of the
amount of search directions for each surface polyhedron. Then the dimensions of this problem are
n = 6 +HKq and m = 6 + 2HKq +HK.

Search Directions

The set of directions to search for a separating axis must be encompassing; i.e. for two polyhedra
sufficiently far from each other anywhere in three-space, there must exist at least one valid direction
in the set. An obvious choice for the set are the six basis directions of the S frame. However, while
such a set satisfies the encompassing requirement, it may not provide an ideal result when the two
polyhedra are very close to one other. For example, if a separating axis is only checked along the
basis directions of S , then the case shown in Figure 4(a) would fail, even though the lander is not
intersecting the rock. Think of the separating axis as creating a plane defined by the direction of the
axis, and the most extreme point in the axis direction on the polyhedron. Therefore, using only the
S frame basis vectors as separating axes creates a frame-oriented bounding parallelepiped. Luckily,
a separating axis can be defined in any direction in three-space, and thus the set of search directions
can be chosen freely. Consider a set of search directions defined by the normal vectors that define
the planes of one of the polyhedra, which is also an encompassing set. Since only one separating
axis needs to exist to prove separation, then this new selection of possible axes allows the previously
failed case to pass, as seen in Figure 4(b).

ŝ2

<latexit sha1_base64="pqwrQSnCwBYUwKXhtAP2rq8HxL0=">AAACBXicbVC7SgNBFJ2NrxhfUUubwSBYhd0QULugjWUE84BkDbOT2WTIzOwyc1cIy9b+gq32dmLrd9j6JU6SLTTxwIXDOfdyLieIBTfgul9OYW19Y3OruF3a2d3bPygfHrVNlGjKWjQSke4GxDDBFWsBB8G6sWZEBoJ1gsnNzO88Mm14pO5hGjNfkpHiIacErPTQHxNI+4FMTZYNaoNyxa26c+BV4uWkgnI0B+Xv/jCiiWQKqCDG9Dw3Bj8lGjgVLCv1E8NiQidkxHqWKiKZ8dP51xk+s8oQh5G2owDP1d8XKZHGTGVgNyWBsVn2ZuK/XiCXkiG89FOu4gSYoovgMBEYIjyrBA+5ZhTE1BJCNbe/YzommlCwxZVsKd5yBaukXat69erVXb3SuM7rKaITdIrOkYcuUAPdoiZqIYo0ekYv6NV5ct6cd+djsVpw8ptj9AfO5w9yl5lw</latexit>

ŝ1

<latexit sha1_base64="H5oSjm06pcNcaT5C8xnKpgz49LY=">AAACBXicbVC7SgNBFL0bXzG+opY2g0GwCruiaBm0sYxgHpBdw+xkNhkyM7vMzAph2dpfsNXeTmz9Dlu/xEmyhSYeuHA4517O5YQJZ9q47pdTWlldW98ob1a2tnd296r7B20dp4rQFol5rLoh1pQzSVuGGU67iaJYhJx2wvHN1O88UqVZLO/NJKGBwEPJIkawsdKDP8Im80OR6Tzve/1qza27M6Bl4hWkBgWa/eq3P4hJKqg0hGOte56bmCDDyjDCaV7xU00TTMZ4SHuWSiyoDrLZ1zk6scoARbGyIw2aqb8vMiy0nojQbgpsRnrRm4r/eqFYSDbRVZAxmaSGSjIPjlKOTIymlaABU5QYPrEEE8Xs74iMsMLE2OIqthRvsYJl0j6re+f1i7vzWuO6qKcMR3AMp+DBJTTgFprQAgIKnuEFXp0n5815dz7mqyWnuDmEP3A+fwBvu5lr</latexit>

S

<latexit sha1_base64="DhhWAcR+asPkpcz7hi6aOMs5s10=">AAACUXicbVBNTxsxEJ1dCqWhfB97WRFV6inaRUgtPaFy6QUJRANIJEKz3kli4Y+VPVsRWfkFvba/rKf+lN7qDTmUwEiWn997oxm/slbSc57/SdKVV6trr9ffdDbebm5t7+zuXXnbOEF9YZV1NyV6UtJQnyUruqkdoS4VXZf3p61+/Z2cl9Z842lNQ41jI0dSIEfq4vJup5v38nllz0GxAF1Y1PndbvJ5UFnRaDIsFHp/W+Q1DwM6lkLRrDNoPNUo7nFMtxEa1OSHYb7pLHsfmSobWReP4WzO/t8RUHs/1WV0auSJX9Za8kWt1E8mh9bB1iq/tBCPPg2DNHXDZMTjPqNGZWyzNp2sko4Eq2kEKJyMX8rEBB0Kjhl2Bp5Y2MbERzjDhzNkJx9O2yHhMJ/NZUVmzJMwsFXlZUUa3ViaWYiJxqsT0y6Ws30Org57xVHv+OKoe/Jlkfs6vIMD+AAFfIQT+Arn0AcBBD/gJ/xKfid/U0jTR2uaLHr24UmlG/8AFzy0ZA==</latexit>

(a) The dashed line represents the plane created by the
separating axis in the ŝ1 direction

ŝ2

<latexit sha1_base64="pqwrQSnCwBYUwKXhtAP2rq8HxL0=">AAACBXicbVC7SgNBFJ2NrxhfUUubwSBYhd0QULugjWUE84BkDbOT2WTIzOwyc1cIy9b+gq32dmLrd9j6JU6SLTTxwIXDOfdyLieIBTfgul9OYW19Y3OruF3a2d3bPygfHrVNlGjKWjQSke4GxDDBFWsBB8G6sWZEBoJ1gsnNzO88Mm14pO5hGjNfkpHiIacErPTQHxNI+4FMTZYNaoNyxa26c+BV4uWkgnI0B+Xv/jCiiWQKqCDG9Dw3Bj8lGjgVLCv1E8NiQidkxHqWKiKZ8dP51xk+s8oQh5G2owDP1d8XKZHGTGVgNyWBsVn2ZuK/XiCXkiG89FOu4gSYoovgMBEYIjyrBA+5ZhTE1BJCNbe/YzommlCwxZVsKd5yBaukXat69erVXb3SuM7rKaITdIrOkYcuUAPdoiZqIYo0ekYv6NV5ct6cd+djsVpw8ptj9AfO5w9yl5lw</latexit>

ŝ1

<latexit sha1_base64="H5oSjm06pcNcaT5C8xnKpgz49LY=">AAACBXicbVC7SgNBFL0bXzG+opY2g0GwCruiaBm0sYxgHpBdw+xkNhkyM7vMzAph2dpfsNXeTmz9Dlu/xEmyhSYeuHA4517O5YQJZ9q47pdTWlldW98ob1a2tnd296r7B20dp4rQFol5rLoh1pQzSVuGGU67iaJYhJx2wvHN1O88UqVZLO/NJKGBwEPJIkawsdKDP8Im80OR6Tzve/1qza27M6Bl4hWkBgWa/eq3P4hJKqg0hGOte56bmCDDyjDCaV7xU00TTMZ4SHuWSiyoDrLZ1zk6scoARbGyIw2aqb8vMiy0nojQbgpsRnrRm4r/eqFYSDbRVZAxmaSGSjIPjlKOTIymlaABU5QYPrEEE8Xs74iMsMLE2OIqthRvsYJl0j6re+f1i7vzWuO6qKcMR3AMp+DBJTTgFprQAgIKnuEFXp0n5815dz7mqyWnuDmEP3A+fwBvu5lr</latexit>

S

<latexit sha1_base64="DhhWAcR+asPkpcz7hi6aOMs5s10=">AAACUXicbVBNTxsxEJ1dCqWhfB97WRFV6inaRUgtPaFy6QUJRANIJEKz3kli4Y+VPVsRWfkFvba/rKf+lN7qDTmUwEiWn997oxm/slbSc57/SdKVV6trr9ffdDbebm5t7+zuXXnbOEF9YZV1NyV6UtJQnyUruqkdoS4VXZf3p61+/Z2cl9Z842lNQ41jI0dSIEfq4vJup5v38nllz0GxAF1Y1PndbvJ5UFnRaDIsFHp/W+Q1DwM6lkLRrDNoPNUo7nFMtxEa1OSHYb7pLHsfmSobWReP4WzO/t8RUHs/1WV0auSJX9Za8kWt1E8mh9bB1iq/tBCPPg2DNHXDZMTjPqNGZWyzNp2sko4Eq2kEKJyMX8rEBB0Kjhl2Bp5Y2MbERzjDhzNkJx9O2yHhMJ/NZUVmzJMwsFXlZUUa3ViaWYiJxqsT0y6Ws30Org57xVHv+OKoe/Jlkfs6vIMD+AAFfIQT+Arn0AcBBD/gJ/xKfid/U0jTR2uaLHr24UmlG/8AFzy0ZA==</latexit>

(b) The shape with the dashed/dotted border only passes
the separating axis test with the dashed/dotted line

Figure 4. Comparing the effectiveness of the two search methods.

There are pros and cons to using either of the described search direction sets. The set containing
the basis directions of S is consistent throughout the problem space, and is thus simpler to pre-
process. The negative aspect of this set is potential restrictions it places on two polyhedra that are

7

closely placed together. The set containing the normal directions of a polyhedron’s faces involves
a greater amount of pre-processing, as each pair of polyhedra being compared requires a specific
set of normals. Because the surface hazard polyhedra remain constant in the S frame, they are used
to define these search direction sets. Thus, each polyhedron in the surface set has a unique corre-
sponding search direction set that must be defined in pre-processing. However, these types of search
direction sets provide a more conforming fit between lander and surface polyhedra, which is ideal
in the fine placement of the final landing position. Therefore, the search direction set containing
the basis directions of S is referred to as the coarse searching set, and the sets that contain the face
normal directions of the surface polyhedra is referred to as the fine searching set.

ALGORITHM TO SOLVE FOR THE LANDING LOCATION

The program described in Equations (16-18) is known to be NP-hard15 due to the presence of
integer decision variables. This raises tractability concerns in regards to solving this problem on
board a spacecraft. Fortunately, recent studies16, 17 show tractable results for solving MIQPs on
embedded systems. These techniques use the Branch & Bound (B&B) approach to solve MIQPs
by sub-dividing the problem into a tree of relaxed QP problems which can be searched to find the
optimal solution. The performance of this approach depends heavily on the method used to search
the tree. The following proposes an algorithm for solving this problem with a B&B approach.

Using the B&B approach allows the binary decision variables in this problem to be abstracted
away, and replaced by continuous variables whose value is dictated by the tree of QP problems.
Therefore, Equations (16-18) are restructured to

Minimize V (z) =
1

2
zTQz + cTz, (19)

Subject To
[
l
l̄

]
≤
[
A
Ā

]
z ≤

[
u
ū

]
, (20)

where l̄, Ā, and ū are the continuous representation of Equation (18). For every binary decision
variable in the original problem, there is a row in Ā with a value of 1 at the column corresponding
to that variable. Initially, the upper and lower bounds are l̄ = −τ1 and ū = τ1, where τ is a small
feasibility tolerance. Each successive branch in the tree alters a single set of εhk, choosing one εhk,β
to have its upper and lower bounds changed to l̄ = 1−τ and ū = 1+τ . In context to the problem, this
process begins by deactivating all of the separating axis constraints defined by Equation (12), and
then reactivating one for each combination of surface and lander polyhedra as the tree is explored.
Note that a final solution is only accepted if it is found at the maximum depth of the tree, then
the constraints defined by Equation (13) become unnecessary, and thus can be removed from the
problem. This reduces the dimensionality of this problem such that z, c, l,u ∈ Rn, l̄, ū ∈ Rm,
Q,A ∈ Rn×n, and Ā ∈ Rm×n with n = 6 +HKq and m = HKq.

Note that the theory in the previous section does not provide a means of ensuring that the lander’s
final position has it resting on a surface. As it stands, the formulated problem could result with
the lander floating somewhere above the surface. The development of such a condition will be
touched upon in future work, and the scope of this paper is to show the functionality of the problem
as it stands. To accomplish this, the dimensionality of this problem places a restriction on the ŝ3
direction. Only two discrete levels in this direction are considered: the lower level of the surface,
where point F is restricted to, and the top of the surface hazards. This allows the problem to be
fully tested in the ŝ1 and ŝ2 directions.

8

As stated previously, this algorithm assumes that the surface hazards and lander have already
been identified and decomposed into sets of convex polyhedra {P}. Each polyhedron P in a set
contains a set of vertices {V } and face normal unit vectors {N} that describes the polyhedron. Let
there be two sets of polyhedra denoted with the subscripts k and h, which contain the polyhedra
for the surface and lander respectively. Within a polyhedron, every vertex rV and face normal n̂
is described in the reference frame respective to the polyhedron’s set. Furthermore, this algorithm
is presented using the fine searching set and may be adjusted to use the coarse searching set by
replacing all {N} with the set of positive and negative basis vectors of the S frame.

Algorithm 1: Pre-Processing The Geometry
Input: The surface and lander sets of polyhedra {Pk} & {Ph}, where each polyhedron

contains a set of vertices {V } and face normal unit vectors {N} in their respective
frames.

1 foreach P ∈ {Pk} ∪ {Ph} do
2 rC = 0; j = 0; {ρ} = ∅
3 foreach rV ∈ {V } do
4 rC = rC + rV
5 j = j + 1

6 rC =
rC
j

7 if P ∈ {Pk} then
8 foreach n̂ ∈ {N} do
9 {ρ} ← max

{
n̂ · (rV − rC), ∀rV ∈ {V }

}
10 else if P ∈ {Ph} then
11 foreach i ∈ {1, 2, 3} do
12 {ρ} ← max

{
f̂i · (rV − rC), ∀rV ∈ {V }

}
13 P ← (rC , {ρ})

Before the elements in Equation (17) can be assembled, the values of rV/C and rC (this notation
is truncated from rC/S and rC/F for surface and lander polyhedra respectively) must be found for
each polyhedron, as shown in Algorithm 1. The value of rC is simply the vertex-weighted centroid
of each polyhedron. As previously discussed, rV/C must be the vector from the centroid to the
edge of the polyhedron in the search direction. This value is easier found on a polyhedron from the
surface set, since the search directions are defined in the S frame. As seen on line 9, the largest
projection of the vertices relative to the centroid are found for each search direction vector. These
scalar values are stored in a set {ρ} that aligns with the search direction set. Due to the variability in
attitude between the lander and the surface, rV/C for a lander polyhedron cannot be predetermined
using the search directions. Instead, the set {ρ} is filled with the largest projections in the basis
directions of the F frame.

With the geometry pre-processed, the vectors and matrices in Equations (19) and (20) are con-
structed in the manner depicted in Algorithm 2. Lines 1-4 performs initialization, followed by the
hessian and gradient value assignment. Since this problem is only concerned with minimizing the
distance of rF/S to some objective position r∗F/S in the ŝ1 and ŝ2 directions, the hessian should
only be non-zero (and positive) at the elements Q1,1 and Q2,2. Line 6 implements the upper and

9

lower bounds for rF/S and σF/R, with rF/S,3 having both an upper and lower bound of zero. The
solver is warm started with the vector z0, which contains the objective position. Next, each combi-
nation of surface and lander polyhedra and their corresponding search directions are looped through
to build the constraints defined by Equation (12). In the matrix A, every ith row is the start of a new
polyhedra combination and β iterates through that combination’s search directions. To improve the
readability of lines 16-18, the notation of rα, rσ1 , rσ2 , and rσ3 is defined for vectors rotated from
the F frame to the S frame, such that

[SR][C(σF/R)]TFr =

S r1cθr + r2sθr
−r1sθr + r2cθr

r3

+

S−4r3sθr
−4r3cθr

4r2

σ1
+

S 4r3cθr
−4r3sθr
−4r1

σ2 +

S4r1sθr − 4r2cθr
4r1cθr + 4r2sθr

0

σ3
= Srα + Srσ1σ1 + Srσ2σ2 + Srσ3σ3. (21)

Using this notation, the coefficients in A for σF/R are defined as

Ai+β,4 = n̂ ·
(
rC/F,h,σ1 − rV/C,h,σ1

)
, (22)

Ai+β,5 = n̂ ·
(
rC/F,h,σ2 − rV/C,h,σ2

)
, (23)

Ai+β,6 = n̂ ·
(
rC/F,h,σ3 − rV/C,h,σ3

)
. (24)

This part of the algorithm also includes the construction of the B&B searching tree. For the
overall structure of the tree; every level of depth represents a unique combination of surface and
lander polyhedra, with the choice of εhk,β to activate existing laterally. Starting with the lateral
structure of the tree, a set {γ} is created for each combination of polyhedra. This set contains
groupings of values β and γ for each separating axis search direction, where β is the position of
the search direction in the block in l̄ & ū that represents this polyhedra combination. The value of
γ, seen in line 13, is the signed distance of the lander polyhedron centroid, if the lander was at the
objective position, from the edge of the lander polyhedron in the search direction, assuming that
σF/R = 0. The set {γ} is then sorted in descending order of the value of γ in line 20. This step acts
as a rough heuristic for the order in which the search direction constraint should be explored. Next,
for the depth-wise structure of the tree, a value Γ is determined for each combination of polyhedra
in line 11. This value is simply the distance from the surface polyhedron centroid to the objective
landing position, and is added to the set {Γ} along with the starting position of the block in l̄ and ū
that represents this polyhedra combination and the set {γ}. Then in line 21, the set {Γ} is sorted in
descending order of the value of Γ. The method for ordering the tree laterally is more likely to be
accurate the further the surface polyhedron in question is from the final landing position. Therefore,
assuming that a feasible landing position exists anywhere near the objective position, starting the
tree at the surface polyhedron furthest away from the objective position leads to the shortest number
of iterations until a feasible solution is found.

The branches of relaxed QP problems can be individually solved using any QP solver that operates
on problems in the structure of Equations (19) and (20) with Q � 0 and can be warm started. The
primary motivating factor in choosing a solver for this problem is how well it performs with limited
computing power. The solver chosen for the development of this paper is the OSQP18 solver, which

10

Algorithm 2: Solver Part 1
Input: The surface and lander sets of polyhedra {Pk} & {Ph}, rF/S,1 & rF/S,2 hessian

weights x & y, objective position r∗F/S , position lower and upper bounds rF/S,min &
rF/S,max, big-M values Di & Dsr, reference angle θr, tolerance τ , and max solver
iterations Λ.

1 H = size ({Ph}); Kq = 0
2 foreach P ∈ {Pk} do Kq = Kq + size ({ρ})
3 n = 6 +HKq; m = HKq

4 Q = 0n×n; c = 0n; A = 0n×n; Ā = 0m×n; l = 0n; u = 0n; l̄ = −τ1m; ū = τ1m
5 Q1,1, Q2,2 = x, y; c1 = −Q1,1 ∗ r∗F/S,1; c2 = −Q2,2 ∗ r∗F/S,2
6 A1−6,1−6 = I6×6; l1−3 = rF/S,min; u1−3 = rF/S,max; l4−6 = − π

361; u4−6 = π
361

7 z0 = 0; z0,1 = r∗F/S,1; z0,2 = r∗F/S,2
8 i, j = 7; t = 1; {Γ} = ∅
9 foreach Ph ∈ {Ph} do

10 foreach Pk ∈ {Pk} do
11 Γ = ||r∗F/S − rC/S,k||; {γ} = ∅; β = 1

12 foreach (n̂, ρ) ∈ ({Nk}, {ρk}) do
13 γ = n̂ ·

(
r∗F/S + [SR(θr)]rC/F,h −

(
rC/S,k + ρn̂

))
; {γ} ← (β, γ)

14 rV/C,h = [ρh,1, ρh,2, ρh,3]
T

15 Ai+β,1 = n̂1; Ai+β,2 = n̂2; Ai+β,3 = n̂3
16 Using Equations (22-24)
17 Ai+β,j = −Di; Āt,j = 1; ui+β = Dsr

18 li+β = n̂ ·
(
rC/S,k − rC/F,h,α + rV/C,h,α

)
+ ρ−Di

19 j = j + 1; t = t+ 1; β = β + 1

20 sort ({γ}) ; {Γ} ← (j − 6,Γ, {γ}); i = i+ β

21 sort ({Γ})
22 Execute Algorithm 3 with Q, A, Ā, c, l, u, l̄, ū, z0, {Γ}, τ , and Λ

meets all the requirements and is shown to be robust and efficient enough to operate on low-power
embedded systems.17

Algorithm 3 depicts how the QP solver operates on the searching tree map to obtain a feasible
solution to the problem. The lowest feasible cost value V and its associated solution z∗ are initial-
ized with∞ and z0 respectively. After the QP solver is initialized, the set {T} is created to contain
all active branches of relaxed QPs (the current deepest branch and all previous branches that links
it back to the start of the tree). Every T ∈ {T} contains the solution of the previous branch z
(initialized with z0), the current modification of the vectors l̄ and ū, and the depth µ and lateral ν
position of the current branch. The relaxed QP of the most recently added branch is solved in lines
6-8, using the previous solution for warm starting. If the solution of the relaxed QP is both feasible
and less than the lowest feasible cost value, the first lateral position of the next depth level in {Γ} is
accessed to create a new branch to be added to {T} in lines 13-15. Otherwise, the current branch is
removed from {T}, and is replaced with the next lateral position of its depth level in lines 22-25. If
there are no more lateral positions in the current depth level, the current branch is not replaced and

11

the previous branch in {T} is cycled through.

When the final depth level of the tree obtains an accepted solution, the values of V and z∗ are
updated in line 11 and then the tree searched for a better solution. This process continues until either
the entire tree is searched, or some maximum number of iterations Λ is reached. At that point, the
current values of V and z∗ are returned as the solution of the MIQP.

Algorithm 3: Solver Part 2
Input: The problem matrices Q, A, Ā and vectors c, l, u, l̄, ū, initial solution z0, searching

tree map {Γ}, tolerance τ , and max solver iterations Λ.

1 Initialize the QP solver with Q, c, A∗ =

[
A
Ā

]
, l∗ =

[
l

l̄

]
, u∗ =

[
u
ū

]
2 z, z∗ = z0; V =∞; µ = 1; ν = 1; λ = 0; {T} = ∅; {T} ← (z, l̄, ū, µ, ν)
3 while {T} 6= ∅ do
4 if λ > Λ then return V,z∗
5 λ = λ+ 1
6 (z, l̄, ū, µ, ν)← last element of {T}

7 Update QP solver with l∗ =

[
l
l̄

]
, u∗ =

[
u
ū

]
, and warm start z

8 Run QP solver, set z = solution
9 if QP problem is feasible and 1

2z
TQz + cTz < V then

10 if µ = size
(
l̄
)

then
11 V = 1

2z
TQz + cTz; z∗ = z

12 goto line 17

13 (j,Γ, {γ})← µth element of {Γ}; (β, γ)← 1st element of {γ}
14 l̄j+β = 1− τ ; ūj+β = 1 + τ ; µ = µ+ 1; ν = 1
15 {T} ← (z, l̄, ū, V, µ, ν)

16 else
17 (z, l̄, ū, V, µ, ν)← last element of {T} ; Remove last element of {T}
18 (j,Γ, {γ})← µth element of {Γ}
19 if ν = size ({γ}) then
20 if {T} 6= ∅ then goto line 17 else return V,z∗
21 else
22 (β, γ)← νth element of {γ}; l̄j+β = −τ ; ūj+β = τ
23 ν = ν + 1
24 (β, γ)← νth element of {γ}; l̄j+β = 1− τ ; ūj+β = 1 + τ
25 {T} ← (z, l̄, ū, µ, ν)

Note that the returned solution is not guaranteed to be optimal. The feasible region of this MIQP
is non-convex, and will settle into a valley based on the construction of the searching tree. While
brute force searching through the entire tree will find the optimal solution (if one exists), restrictions
on computation time, controlled with Λ, may cause the algorithm to exit with a sub-optimal solution.

12

NUMERICAL RESULTS

The following results comes from two variations of the algorithm described in the previous sec-
tion; one using the fine searching set, and the other using the coarse searching set. The algorithm
has been implemented in C++ using the Eigen linear algebra library.19 A Python 3.7 script is used
to call and time the algorithm with the appropriate inputs, and to process the resulting data. Note
that the algorithm implementation has not yet been optimized for solve times; the following solve
times are presented for comparison between the fine and coarse searching methods. A MacBook
Pro 2.8 GHz Intel Core i7 with 16 GB of RAM was used to collect this data.

Convex polyhedra were used to hand craft 3D models for both the lander and the surface, and
the dimensions of these models were left unitless for simplicity. The searchable surface area is
constrained to 20 × 20 units in the ŝ1 and ŝ2 directions and contains 17 polyhedra, one of which
extends beyond the 20 unit bounding box. The lander is comprised of 5 polyhedra that fit within
a 2.5 × 2.5 unit box. The values chosen for Dsr and τ are 20 and 1.11 × 10−10, respectively.
Since one surface polyhedron exists partly outside the searchable area, the value of Di is set to 30.
The maximum number of iterations Λ is set dynamically to be one third the number of ε variables.
Finally, the Python script, given an objective landing location, is set to run the solver 18 times over
20◦ intervals of θr for both searching sets.

Trials using this Python script were initially run with hand-picked objective landing locations,
such to stress test the solver algorithm. Three notable trials are presented graphically in Figures 5
& 6 with some more analytic results in Table 1. The solve time marks the total duration of all 18
runs for each searching set, and the objective offset is the final distance from the center of the lander
(point F) to the objective landing location. The first notable result from this data is that the fine
searching set solution is closer to the objective in all three trials. In particular, Trial 1 has a 178.8%
improvement in the fine objective offset over the coarse. Next, Figure 6(c) clearly shows one of
the potential downfalls of the coarse searching set, in which it effectively draws a boundary box
around the surface polyhedron closest to the objective. This behavior of the coarse searching set is
discussed previously in the Search Directions subsection. The last result to note from these trials is
the solve time difference between the two searching sets. Both Trials 1 & 3 see the coarse searching
set solve significantly faster than the fine. However, the fine search time in Trial 2 significantly out
performs that of the coarse. This shows that the potential drawback of the fine searching set, there
being more possible search directions to iterate over, does not solely influence the solve time.

(a) Trial 1 Fine Search (b) Trial 2 Fine Search (c) Trial 3 Fine Search

Figure 5. Solution to three objective locations (marked with an X) using the fine searching set.

13

(a) Trial 1 Coarse Search (b) Trial 2 Coarse Search (c) Trial 3 Coarse Search

Figure 6. Solution to three objective locations (marked with an X) using the fine searching set.

Table 1. Numerical results of the three hand-picked trials.

Trial 1
Fine

Trial 1
Coarse

Trial 2
Fine

Trial 2
Coarse

Trial 3
Fine

Trial 3
Coarse

Solve Time (s) 4.904723 3.916956 4.258778 5.862934 4.145936 2.723373

Objective Offset 0.059947 1.070691 0.218215 0.518254 0.136274 0.172912

Several other hand-picked trials were run that are not presented here. Some notable results from
these trials are that the coarse searching set occasionally returns a solution that is closer to the
objective than the fine searching set, and that the solver has the possibility of failing to return a
solution with the given Λ. These can occur when the objective landing location is within one of
the surface polyhedra. Given unlimited time, the solver will always return a solution, if one exists,
however the limit on solve time is crucial to HDA operations. To further quantify the performance
of this solver with the given setting, a set of 2000 objective landing locations within the bounds of
the surface area were randomly generated from a uniform distribution. This set was run through
the Python script for the solver to produce solve time and objective offset data. Figure 7 provides
a comparison of this data by plotting the signed percent difference of the fine searching set values
relative to the coarse searching set values. Note that trials where one or both of the searching sets
failed to provide a solution are not displayed here.

(a) Solve Time Performance (b) Objective Offset Performance

Figure 7. Percent increase of the fine searching set performance values over the coarse set.

14

This data provides some interesting insights; particularly in the difference of scale between the
two performance measures. Starting with Figure 7(a) which indicates that, when both searching
sets return a solution, the solve time using the coarse searching set is always less than that of the
fine. The hand-picked trials clearly contradict this statement, however those previous results appear
to be the exception, rather than the the norm. Also note that the increased solve time for the fine
searching set is relatively small on average, with a mean of µ = 0.8154%, and is well clustered
below a 5% increase. On the other hand, the objective offset data seen in Figure 7(b) varies widely,
with a deviation of σ = 108.68% off the mean of µ = 34.139%. This behavior is unexpected
since the theory suggests that the fine searching set is more flexible than the coarse, and thus should
not perform significantly worse in finding a solution close to the objective. Further investigation
is required to ascertain the cause of this behavior, however, this data still indicates that the fine
searching set finds a better solution than the coarse on average. Furthermore, this data is put into
perspective when looking at the actual objective offset values for both sets, seen in Figure 8. It is
clear that solutions from both sets are, on average, placed relatively close to the objective landing
location. Finally, of the 2000 random trials, 112 of them see both searching sets fail to find a
solution, 173 see only the coarse set fail to find a solution, and two of them see only the fine set fail
to find a solution. Therefore, using only the coarse searching set shows a 85.9% success rate, while
using the fine set shows a 94.3% success rate.

(a) Coarse Searching Set (b) Fine Searching Set

Figure 8. The objective offset values in each trial for both searching sets.

CONCLUSION & FUTURE WORK

In this paper, a new technique is presented as the foundation for a new Hazard Detection and
Avoidance algorithm. The core idea of this technique is to decompose 3D models of surface hazards
and the spacecraft lander into sets of convex polyhedra, and create an optimization problem with
procedurally generated constraints that prevent the polyhedra from intersecting via the Separating
Axis Theorem. This problem is cast into a Mixed Integer Quadratic Program that minimizes the
distance between a feasible landing location and a desired landing location. Two possible variations
of this MIQP are discussed; one which uses the basis directions of the surface frame as possible
separating axes, and one that uses the face normal vectors of the surface polyhedra, named the coarse
and fine searching sets, respectively. An algorithm that utilizes a Branch & Bound framework to
solve these MIQPs is formulated, and has been tested in a simplified 2D scenario. While the tests
show only a 94.3% success rate, this factor of the algorithm has a lot of room for improvement,
specifically in how the B&B tree is searched. Once refined, the contents of this paper show promise
to be further developed into a technique that can effectively determine a landing pose for a spacecraft
with a geometrically conforming footprint.

15

The future development of this technique will involve the extraction of the required information
from existing hazard identification techniques, and the utilization of trajectory knowledge and the
surface environment when finding a feasible landing pose. Efficient convex decomposition tech-
niques will be investigated and adapted for use on-board a spacecraft. Further constraints for the
presented MIQP will be developed to ensure a stable solution is found with respect to local gravity.
Such a constraint will enable this technique to be used with all six degrees of freedom, by prevent-
ing the solution from floating contactless above the surface proper. The use case of both the coarse
and fine searching sets will be further investigated along with warm starting from previous solu-
tions, such that this technique can be run several times during descent to provide refined guidance
as the lander approaches the surface. Finally, the robustness and efficiency of this technique must
be improved to the standards required for use in future small body missions.

NOTATION

rA/B a vector from pointB to pointA.
N : {O, n̂1, n̂2, n̂3} a frame definition with basis vectors n̂ and originO.

Nr a vector with components expressed in frame N .
σB/N a set of Modified Rodriguez Parameters that represent the rotation from

the N frame to the B frame.
sθ & cθ sin θ & cos θ, respectively.

REFERENCES
[1] N. Serrano, “A Bayesian Framework for Landing Site Selection during Autonomous Spacecraft De-

scent,” 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China,
IEEE, Oct. 2006, pp. 5112–5117, 10.1109/IROS.2006.282603.

[2] M. Yu and H. Cui, “Robust hazard matching approach for visual navigation application in
planetary landing,” Aerospace Science and Technology, Vol. 47, Dec. 2015, pp. 378–387,
10.1016/j.ast.2015.09.028.

[3] S. Woicke and E. Mooij, “A stereo-vision hazard-detection algorithm to increase planetary lander au-
tonomy,” Acta Astronautica, Vol. 122, May 2016, pp. 42–62, 10.1016/j.actaastro.2016.01.018.

[4] P. Lunghi, M. Ciarambino, and M. Lavagna, “A multilayer perceptron hazard detector for vision-
based autonomous planetary landing,” Advances in Space Research, Vol. 58, July 2016, pp. 131–144,
10.1016/j.asr.2016.04.012.

[5] R. Wei, J. Jiang, X. Ruan, and J. Li, “Landing Area Selection Based on Closed Environment Avoidance
from a Single Image During Optical Coarse Hazard Detection,” Earth, Moon, and Planets, Vol. 121,
July 2018, pp. 73–104, 10.1007/s11038-018-9516-2.

[6] P. Cui, D. Ge, and A. Gao, “Optimal landing site selection based on safety index during planetary
descent,” Acta Astronautica, Vol. 132, Mar. 2017, pp. 326–336, 10.1016/j.actaastro.2016.10.040.

[7] M. Perenzoni, D. Perenzoni, and D. Stoppa, “A 64 \times 64-Pixels Digital Silicon Photomultiplier
Direct TOF Sensor With 100-MPhotons/s/pixel Background Rejection and Imaging/Altimeter Mode
With 0.14% Precision Up To 6 km for Spacecraft Navigation and Landing,” IEEE Journal of Solid-
State Circuits, Vol. 52, Jan. 2017, pp. 151–160, 10.1109/JSSC.2016.2623635.

[8] J. Seabrook, M. Daly, O. Barnouin, C. Johnson, A. Nair, E. Bierhaus, W. Boynton, R. Espiritu,
R. Gaskell, E. Palmer, L. Nguyen, M. Nolan, and D. Lauretta, “Global shape modeling using the
OSIRIS-REx scanning Laser Altimeter,” Planetary and Space Science, Vol. 177, Nov. 2019, p. 104688,
10.1016/j.pss.2019.07.003.

[9] Y. Yan, D. Qi, C. Li, M. Yu, and T. Chen, “A Holistic Vision-based Hazard Detection
Framework for Asteroid Landings,” IFAC-PapersOnLine, Vol. 49, No. 17, 2016, pp. 218–223,
10.1016/j.ifacol.2016.09.038.

[10] S. Nakabeppu, Y. Ide, M. Takahashi, Y. Tsukahara, H. Suzuki, H. Shishido, and N. Yamasaki, “Space
Responsive Multithreaded Processor (SRMTP) for Spacecraft Control,” 2020 IEEE Symposium in
Low-Power and High-Speed Chips (COOL CHIPS), Kokubunji, Japan, IEEE, Apr. 2020, pp. 1–3,
10.1109/COOLCHIPS49199.2020.9097637.

16

[11] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge, UK ; New York: Cambridge Uni-
versity Press, 2004.

[12] M. Ghosh, N. M. Amato, Y. Lu, and J.-M. Lien, “Fast approximate convex decomposition using relative
concavity,” Computer-Aided Design, Vol. 45, Feb. 2013, pp. 494–504, 10.1016/j.cad.2012.10.032.

[13] G. Fasano, Solving Non-standard Packing Problems by Global Optimization and Heuristics. Springer-
Briefs in Optimization, Cham: Springer International Publishing, 2014, 10.1007/978-3-319-05005-8.

[14] H. Schaub and J. L. Junkins, Analytical mechanics of space systems. AIAA education series, Reston,
VA: American Institute of Aeronautics and Astronautics, Inc, fourth edition ed., 2018.

[15] G. L. Nemhauser and L. A. Wolsey, Integer and combinatorial optimization. Wiley-Interscience series
in discrete mathematics and optimization, New York: Wiley, 1988.

[16] A. Bemporad and V. V. Naik, “A Numerically Robust Mixed-Integer Quadratic Programming Solver for
Embedded Hybrid Model Predictive Control,” IFAC-PapersOnLine, Vol. 51, No. 20, 2018, pp. 412–417,
10.1016/j.ifacol.2018.11.068.

[17] B. Stellato, V. V. Naik, A. Bemporad, P. Goulart, and S. Boyd, “Embedded Mixed-Integer Quadratic
optimization Using the OSQP Solver,” 2018 European Control Conference (ECC), Limassol, IEEE,
June 2018, pp. 1536–1541, 10.23919/ECC.2018.8550136.

[18] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP: an operator splitting solver
for quadratic programs,” Mathematical Programming Computation, Feb. 2020, 10.1007/s12532-020-
00179-2.

[19] G. Guennebaud, B. Jacob, and others, Eigen v3. 2010.

17

	Introduction
	Problem Formulation
	The Separating Axis Theorem & Approximate Convex Decomposition
	Constraint Formulation
	Search Directions

	Algorithm to solve for the landing location
	Numerical Results
	Conclusion & Future Work
	Notation

