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Abstract— This paper considers the problem of autonomous
spacecraft control for imaging missions, subject to safety con-
straints. The controller chooses between discrete flight modes
to image a target with different sensor types. The safety con-
straints include maintaining safe battery levels, reaction wheel
speeds, and body rates. The proposed approach applies shielded
deep reinforcement learning (SDRL) to autonomously command
spacecraft flight modes, where the imaging requirements are
communicated to the agent through a finite-state machine
(FSM). The training is done in a target- and orbit-agnostic
manner to create a single artificial neural network that can
operate in a range of conditions. The FSM specifies which
sensor type the agent should use for the next image. Simulation
results based on a spacecraft tasked on Boulder, CO, USA
demonstrate that this approach is effective for commanding
a spacecraft safely while meeting predefined imaging require-
ments. This work also demonstrates how an agent trained on
Boulder is capable of being applied to other Earth-targets as
well as targets on the Moon with similar performance.

I. INTRODUCTION

Autonomy in spacecraft operations has the potential to
reduce operational costs and to make spacecraft more re-
silient to failures [1]. Onboard autonomy is difficult due
to the high-dimensionality of spacecraft states and limited
computation capabilities. Traditional optimization methods
for this problem suffer from state explosion, while machine
learning (ML) approaches lack safety guarantees. This work
proposes using shielded deep reinforcement learning (SDRL)
to avoid the limitations of traditional optimization while
providing safety guarantees for spacecraft autonomy.

Traditional optimization techniques can solve spacecraft
mode planning problems, however, the optimal solutions
are often brittle to initial conditions. JPL’s ASPEN system
tasks spacecraft with Earth-imaging activity plans based on
local search algorithms. When anomalies are encountered,
solutions must be recomputed which can be computationally-
intensive [2]. Work [3] propose using a maximal indepen-
dent set algorithm to schedule non-conflicting actions for
the spacecraft. Although this approach guarantees safety
constraints, it must be recomputed when anomalies are
encountered.
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Deep reinforcement learning (DRL) approaches effectively
handle the state-explosion problem and are robust to initial
conditions [4], [5]. A Monte-Carlo Tree Search (MCTS)
algorithm can solve the satellite activity scheduling prob-
lem, performing almost as well as traditional optimization
techniques at a fraction of the execution time [6]. The risk
of using DRL is that it does not provide safety guarantees.
Work [7] applies an RL algorithm for imaging targets on an
asteroid, but the agent repeatedly crashes into the asteroid to
exploit the reward function.

Recent work in [8] demonstrates that applying a safety
shield to DRL agents provides safety margins during oper-
ations. Furthermore, SDRL is shown to improve the policy
performance and reduce training time for spacecraft oper-
ations [9]. This work applies SDRL to the Earth-imaging
problem where the spacecraft should take images according
to some imaging criteria. A deterministic policy is explored
to shield the ML agent from taking unsafe actions that violate
the safety constraints. The shielded agent is trained on an
Earth-imaging simulation, where the agent is rewarded for
satisfying some predefined imaging criteria.

The novel contribution of this work is applying SDRL
to the spacecraft imaging problem. The performance of the
agent to maintain spacecraft safety states and switch the
image type according to predefined imaging requirements
is studied through high-fidelity numerical simulation. Fur-
thermore, the study investigates how to train an agent to be
both location-agnostic and planet-agnostic. This general so-
lution can be applied to different imaging scenarios without
requiring additional training. With the proposed approach an
agent trained on a single Earth target can be used on another
Earth target or around another celestial object like the Moon
to observe a Lunar surface target.

II. BACKGROUND
A. Markov Decision Process

Sequential decision problems can be formally posed as a
Markov Decision Process (MDP), where an agent chooses
an action based on observing a state and then receives a
reward signal corresponding to the state-action pair [10]. The
solution to an MDP is an optimal policy which selects actions
to maximize the cumulative reward of the decision process.

An MDP is a tuple (S , A, T , R, γ), where S is the
state space, A is the the action space, T is the transition
probability function such that T (s′|s, a) is the probability of
transitioning to state s′ from state s with action a, R is the
reward function such that R(s, a, s′) represents the reward
signal from transitioning into state s′ from state s with



action a, and finally γ is the discount factor, which imposes
the significance of future rewards compared to immediate
rewards. The discount factor also makes the cumulative
expected reward finite for infinite-horizon problems. The
solution to an MDP is a policy π : S → A, which maps
states to actions.

B. Shielded Deep Reinforcement Learning

SDRL is a framework for applying RL algorithms to solve
MDPs while constrained by safety bounds. Shielded learning
techniques use a safety MDP to limit unsafe actions from an
agent with respect to safety requirements [8]. Each state is
a coarse discretization of the spacecraft states bounded by
safety limits. Examples of unsafe states include low battery,
high momentum wheel speeds, or high tumbling rate.

A simple safety MDP is shown in Fig. 1 where s0 is a
safe state, s1 is an unsafe state, sf is the failure state, and
the action space is A = {a0, a1}. The states can transition
probabilistically; in Fig. 1 action a0 in state s1 can transition
to s1 or sf . The transition probabilities, T (s′|s, a), are
selected when constructing the safety MDP.

<latexit sha1_base64="ULceoZBfxJnikKujyxTrvCM4xZY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIUY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpgQ68Qbni1twFyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+3LmndVq9/XK41qHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP+OzjXg=</latexit>

a1

<latexit sha1_base64="V/4MAi9netaLvFxgEC+iZJmHw9k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIUY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpgQ7cQbni1twFyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+3LmndVq9/XK41qHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP+IvjXc=</latexit>

a0

<latexit sha1_base64="eOho1SQycX+8u5+6PvKnGY7pYJU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIUY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQ/cQbni1twFyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+3LmndVq9/XK41qHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP/2bjYk=</latexit>

s0
<latexit sha1_base64="VFbNsGnBZmxznpJ02P+RYr+QnZc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIUY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQ+8Qbni1twFyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+3LmndVq9/XK41qHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP/8fjYo=</latexit>

s1
<latexit sha1_base64="scQXcUnHXw4+9UbgX3ckIyjSlDM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIUY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQ/CQbni1twFyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+3LmndVq9/XK41qHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP0+Cjb8=</latexit>sf

<latexit sha1_base64="ULceoZBfxJnikKujyxTrvCM4xZY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIUY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpgQ68Qbni1twFyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+3LmndVq9/XK41qHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP+OzjXg=</latexit>

a1

<latexit sha1_base64="V/4MAi9netaLvFxgEC+iZJmHw9k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIUY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpgQ7cQbni1twFyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+3LmndVq9/XK41qHkcRzuAcquDBNTTgDprQAgYjeIZXeHOE8+K8Ox/L1oKTz5zCHzifP+IvjXc=</latexit>

a0

Fig. 1: Sample safety MDP with initial state s0 and terminal
state sf .

The safety MDP can be solved by formal synthesis [11],
[12] techniques using temporal logic to define the safety
requirements. Linear temporal logic (LTL) can be used to
mathematically describe the requirement of the final policy
[13]. With the example of Fig. 1, the LTL specification of
this safety game can be simply expressed as (1) which reads,
“always avoid the unsafe state sf”. The solution to this safety
game is used as the shield policy in an SDRL framework.

φ = G(¬sf ) (1)

A post-posed shielded learning framework is shown in Fig. 2,
where the shield checks that the agent’s action aligns with the
safety MDP policy. If the agent’s action violates the shield
policy, the shield overrides it with the safe action.

Fig. 2: Shielded reinforcement learning agent architecture [9]

III. PROBLEM FORMULATION
The problem posed is an autonomous form of the Earth-

observing satellite scheduling and planning problem [14]. For
a spacecraft in Earth-orbit, an agent is to select a sequence
of flight modes such that the spacecraft meets some imaging
requirements while maintaining the spacecraft’s safety. The
action space A = {ai}3i=0 is the following set of spacecraft
modes: Imaging Mode A (a0); Imaging Mode B (a1); Charg-
ing Mode (a2); and Momentum Dumping Mode (a3). The
imaging modes command a nadir-pointing orientation which
aligns the spacecraft body with the Hill frame, pointing the
camera boresight Nadir. An MRP-feedback law from Chapter
8 in [15] is used to control the spacecraft’s reaction wheels.
Both imaging modes are assumed to have the same boresight
direction, and thus the same orientation.

The Charging Mode commands the spacecraft to point
its solar panels in the sun-direction, also using an MRP-
feedback law. The Momentum Dumping Mode commands the
spacecraft to dump reaction wheel momentum greater than a
minimum threshold; this mode is also referred to as reaction
wheel desaturation. The spacecraft uses onboard thrusters
to dump momentum if necessary. In Momentum Dumping
Mode, the spacecraft is oriented such that the solar panels
point away from the sun to differentiate the action from the
Charging Mode.

An image of the target is successfully taken if the space-
craft is in an imaging mode while within the viewing cone of
the target. The minimum elevation viewing angle of the target
is elmin. Although the spacecraft is in each imaging mode for
a continuous time interval, an image is only considered taken
once at the start of the mode. The time elapsed since the last
image of a target was taken is tA for image A and tB for
image B. The counters are set to zero when an image of the
target has been captured. The image counters can be formally
defined in terms of the continuous step-size, tstep, as

tA =

{
tstep, elsc > elmin and a = a0

tA + tstep, otherwise
(2)

tB =

{
tstep, elsc > elmin and a = a1

tB + tstep, otherwise
(3)

The data storage of an image is not considered, however,
imaging modes draw twice as much power from the space-
craft compared to the nominal operational power required.

The imaging requirements for the problem are time-
dependent; a certain amount of time TA and TB should
pass between taking image A and B, respectively. For this
problem, TA ≤ TB , and image type A should be preferred
over B. The preferred image type can be formalized in terms
of the time elapsed since taking image A and B.

apreferred ∈


{a0}, tA ≥ TA

{a1}, tB ≥ TB and tA < TA

{a2, a3}, otherwise
(4)

The agent is considered to have met the imaging requirement
if ai = apreferred.



IV. APPROACH

This work applies an SDRL learning framework to the
spacecraft imaging problem, shielding the spacecraft’s power
level, attitude rate, and reaction wheel spin rate. The safety
states are defined in Table I in terms of the spacecraft stored
charge p, attitude rate |σ̇|, and wheel speed Ω. The shield
policy that solves this safety game can be found in [9].

TABLE I: Safety Shield States

Unsafe State State Boundary
Low Power p < 20%

Saturated Wheel Ω > 0.7Ωmax
Uncontrolled Tumble |σ̇| > 0.01 rad/s

The reward function R(s, a, s′) is formulated such that
the agent receives a maximum cumulative reward of 1 at the
end of an episode if it takes the correct image type with
perfect pointing accuracy at every imaging opportunity. The
spacecraft receives a penalty of -1 if it encounters a failure.
This can occur from the reaction wheels spinning more than
the maximum rate or the battery draining completely. These
failure modes can be generalized with the failure state sf .
The reward function can be formally expressed as

R(s, a, s′) =


f
N · 1

1+ϵ2att
, elsc > elmin and a ∈ {a0, a1}

−1, s = sf

0, otherwise
(5)

where N is the total number of steps that the spacecraft is
within the viewing cone of the target, ϵatt is the attitude error,
and f is a factor corresponding to the image type. This factor
f is defined as

f =

{
1.0 ai = apreferred

0.1 otherwise
(6)

The desired image type following the requirements TA

and TB can be generically defined by a Finite State Machine
(FSM), as shown in Fig. 3. The use of an FSM generalizes
this approach to more than two image types; rather than fol-
lowing a complex set of if-else statements, reactive synthesis
methods can generate an FSM corresponding to requirements
written in LTL [13].

The discount factor of the MDP is γ = 0.99. Although
the discount factor can be set to 1.0 for this finite-horizon
problem, a discount factor less than one helps converge the
value function when the problem is not perfectly Markovian.
When states far in the future are more difficult to predict, a
smaller discount factor makes those states in the far future
negligible. Following a dimensionality reduction, there will
inherently be some non-stationarity in the problem.

V. DIMENSIONALITY REDUCTION

One of the problems in applying RL algorithms to the
real world is selecting an appropriate state space. The true
state space of a spacecraft could include thousands of states
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Fig. 3: FSM that defines the preferred image type, apreferred.
The orange transitions represent taking image A of the
target, blue transitions represent taking image B of the target,
and gray transitions indicate any other action taken. The
transition guards in curly brackets indicate a condition that
must be met for transition.

when including every subsystem, however, not every fea-
ture contains useful information for a particular task. This
is called the curse of dimensionality [16]. Reducing the
dimensionality of the problem can be challenging; if the
dimensionality of the problem is too high, no meaningful
solution can be found, and if the dimensionality is too low,
the model can become overfit to the data.

Another constraint on selecting the state space for RL
algorithms is that the problem must remain Markovian; that
is, the transition probabilities are independent of previous
states, given the present state [17], [18]. This is a signifi-
cant challenge for high-fidelity simulators, since a reduction
of the simulation states will almost guarantee some non-
stationarity to the problem. In reducing the dimensionality
of the problem, the required fidelity of the solution and
implementation period must be considered. This difference
between the problem representation and the true problem is
also known as the simulation gap.

Reducing the MDP state space to a subset of the simula-
tion states is necessary to avoid the curse of dimensionality.
Starting from the reward function in (5)-(6), the state space is
composed of contributing states to the reward function such
as Access Indicator, Spacecraft Mode, and Attitude Error.
These states alone are not Markovian; for instance, the target
access indicator at the next time-step cannot be predicted
only with the current access indicator. Thus, the state space
is expanded further to include states which make the state
space Markovian. Some states depend on themselves at the
previous time step, such as the counters tA and tB , which
is indicated by a self-pointing arrow. The final network of
the observation space is illustrated in Fig. 4 to show the
correlation of states to the reward function.

Note that the selection of these states using expert knowl-
edge can help reduce the dimensionality; for example, the
spacecraft’s relative position and velocity to the target are
just as sufficient to calculate the spacecraft’s access indicator
at the next time-step as would the inertial position and
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Fig. 4: Correlation graph of simulation states that affect the
reward function. States which are approximately dependent
on themselves are highlighted in gold. The approximate
importance is shown by arrow weights.

velocity of both the spacecraft and the target, however,
relative positions require only six states rather than twelve.
Note that the relative position and velocity only give a first-
order approximation.

Using the relative position and velocity of the spacecraft
to the target also makes the problem location-agnostic; an
agent trained with relative coordinates makes the policy
independent of any particular target location. By reducing
the dimensionality this way, a solution to one target location
should also work sufficiently for any other Earth-target
without additional training.

Similarly, the spacecraft’s position and velocity may be
expressed in canonical coordinates which normalize the
trajectory to planets in a two-body regime [15]. The absolute
position r and velocity v are transformed to canonical
coordinates with the transformation in (7)-(8).

rcan =
r

req
(7)

vcan =
v√
µ/req

(8)

The state space of the agent is 12 dimensional, which
includes: spacecraft relative position and velocity to the
target in the SEZ frame, expressed in canonical units; MRP
attitude error 2-norm (ϵatt); attitude rate 2-norm; maximum
wheel speed, normalized to the wheel limit; stored charge,
normalized to the battery limit; minutes elapsed since last
image A of the target; minute elapsed since the last image
B of the target. Note that scaling the parameters to an order
of 1 helps with training due to layer normalization [19].

VI. NUMERICAL SIMULATIONS

A. Spacecraft Environment

The spacecraft is simulated using the Basilisk Astro-
dynamics Software Framework, a high-fidelity spacecraft
simulator [20]. The spacecraft’s selected orbit has almost
exactly 30 minutes of viewing time over Boulder, CO, USA,

and is never in eclipse. The full orbital parameters are shown
in Table II. In addition to the two-body gravitational force,
the spacecraft experiences a disturbance torque of 0.2 mN·m
in a random direction. The dynamics are propagated with 0.5
s integration steps.

TABLE II: Earth Orbit Parameters

a 13,878 km
e 0.00001
i 53.0◦

Ω 115.0◦

ω 5.0◦

f 240.0◦

Epoch 2021 May 04 06:47:49 (UTC)

The spacecraft power and attitude subsystems are mod-
elled in Basilisk with the parameters in Table III. The
momentum wheels draw additional power according to the
wheel speeds, and the imaging modes draw an extra 5W
of power when active. The spacecraft is equipped with
three momentum wheels and three thrusters along the body
axes. The wheel speeds, tumble rate, and battery level are
initialized randomly at the start of each episode.

TABLE III: Spacecraft Attributes

Mass 330.0 kg
Hub Dimensions 1.38 m × 1.04 m × 1.58 m

Wheel Limit 3000 rpm
Battery Capacity 50.0 W·Hr

Nominal Power Draw 5W
Solar Panel Area 0.09 m2

Solar Cell Efficiency 0.20

Each flight-mode action is executed with three-minute
intervals, where the attitude feedback control is executed
with 1.0 s time-steps.

Although the agent is not rewarded for taking images
outside the Boulder viewing cone, it is not penalized for
excess images. Initial results showed the agent switching
modes frequently which made it difficult to interpret the
agent’s strategy. To reduce the mode switching frequency,
the training environment imposes a stochastic failure model
when the agent attempts to switch to a different mode. This
failure model is meant to encompass the risks associated with
frequent mode switching, and also make the agent’s strategy
easier to interpret. Fig. 5 shows the spacecraft’s action history
for an agent trained with mode switching failures and an
agent trained without failures.

B. Training Parameters

The Basilisk simulator is used to create a custom gym
environment for use with the stable-baselines im-
plementation of PPO2 [21]. The agent is trained with a
learning rate of α = 0.00025. The inner layers of the
fully-connected network are of dimension [96,96], with a
hyperbolic tangent activation function. The network is trained
for 5 × 106 time-steps. The network is trained on an AMD

http://hanspeterschaub.info/basilisk/index.html
http://hanspeterschaub.info/basilisk/index.html
https://stable-baselines.readthedocs.io/en/master/modules/ppo2.html
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Fig. 5: Action history of agent trained with and without
mode-switching failures.

Ryzen Threadripper™3960X 24-Core processor @3.8GHz
with 64 GB of memory.

C. Location-Agnostic Agent

An SDRL agent trained on a target at Boulder, CO is
shown operating safely in Fig. 6. The spacecraft starts with
a high attitude error because of the randomly initialized
attitude, but maintains a low attitude error for most of the
episode while performing some momentum dumping ma-
neuvers to counter the external torque. Since the spacecraft
is in sunlight for the entire simulation, it does not need to
stay in sun-pointing mode to keep the battery charged. The
momentum dumping mode does require the spacecraft to turn
away from the sun, showing that the agent makes low-risk
trade-offs when necessary.
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(a) Action history of spacecraft modes
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(d) Rotational Angular Momentum history

Fig. 6: Agent observing target at Boulder, CO, USA. Red
regions indicate when the spacecraft is in the visibility cone.
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Fig. 7: Imaging closeup of spacecraft observing target at
Boulder, CO, USA. Green markers indicate the desired image
type by the FSM.

The spacecraft switches between imaging modes inside
the viewing cone, as highlighted in Fig. 7. This example
shows the agent almost always matching the image type of
the FSM. In the first and third passes of Fig. 7, the agent
captures image B before Image A; although this does not
match the imaging requirements exactly (prioritizing Image
A before Image B), the agent still has time to capture Image
A at least once.

The Boulder-trained agent also performs well when imag-
ing a target on the opposite side of the Earth from Boulder,
in the Indian Ocean. Fig. 8 shows the agent taking the
appropriate image type over the new target, with a similar
imaging behavior to how it performs over Boulder.
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Fig. 8: Imaging closeup of spacecraft observing target in the
Indian Ocean.

Without any changes to the agent architecture, the space-
craft still performs well on the Indian Ocean target although
it was trained on Boulder. The selection of target-relative
coordinates makes the spacecraft agnostic to the target it is
imaging.

D. Planet-Agnostic Agent

The same agent trained on Boulder was also applied to a
Lunar mission. The orbit selected has a 2000 km altitude,
otherwise the same orbit parameters from Table II. Note that
the dynamics only simulate two-body effects.

The spacecraft still performs safely around the Moon
as shown in Fig. 9, dumping angular momentum when
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Fig. 9: Agent observing target on the Moon from Lunar orbit.
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Fig. 10: Closeup of spacecraft observing Lunar target.

necessary and managing the attitude error. The imaging
behavior is still able to meet the FSM image requirements,
shown in Fig. 10.

The selection of canonical coordinates for the state space
allows the agent trained on Earth to be applied to another
two-body system easily, given that it has similar environment
characteristics to Earth. For planets further from Earth, the
solar panels and reaction wheels should be resized according
to the sunlight available and external torque.

VII. CONCLUSION

This work demonstrates a shielded deep reinforcement
learning approach (SDRL) to solving the autonomous Earth
observing satellite commanding. Earth locations are success-
fully imaged while satisfying safety constraints. One of the
limitations of this approach is that the agent only learns the
imaging behavior it was trained on; if the times TA and TB

need to be adjusted, the agent needs to be retrained. Using

SDRL for spacecraft autonomy has a significant advantage
over rule-based autonomy or traditional optimization; this
proposed method allows for agents to learn a behavior
from a restricted set of initial conditions, and still operate
successfully in environments it has not been trained on.
Numerical simulations demonstrate that the neural network
can image targets it was not trained on, as well as operate
about other celestial bodies.
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