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ATTITUDE STABILIZATION USING NONLINEAR DELAYED
ACTUATOR CONTROL WITH AN INVERSE DYNAMICS
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Morad Nazari∗, Ehsan Samiei∗, Eric A. Butcher†, and Hanspeter Schaub‡

The dynamics of a rigid body with nonlinear delayed feedback control are stud-
ied in this paper. It is assumed that the time delay occurs in one of the actua-
tors while the other one remains is delay-free. Therefore, a nonlinear feedback
controller using both delayed and non-delayed states is sought for the controlled
system to have the desired linear closed-loop dynamics which contains a time-
delay term using an inverse dynamics approach. First, the closed-loop stability is
shown to reduce to a second order linear delay differential equation (DDE) for the
MRP attitude coordinate for which the Hsu-Bhatt-Vyshnegradskii stability chart
can be used to choose the control gains that result in a stable closed-loop response.
An analytical derivation of the boundaries of this chart for the undamped case is
shown, and subsequently the Chebyshev spectral continuous time approximation
(ChSCTA) method is used to obtain the stable and unstable regions for the damped
case. The MATLAB dde23 function is implemented to obtain the closed-loop re-
sponse which is in agreement with the stability charts, while the delay-free case is
shown to agree with prior results.

NOMENCLATURE

D Chebyshev spectral differentiation matrix
J inertia matrix in principal coordinates�u feedback control law
V Lyapunov candidate�x, �y assembled state-space vectors�z meta-state vector / assembled state-space vector for the transformed delayed equations�! angular velocity vector (rad/sec)�� modified Rodriguez parameter set
⌧ time delay (sec)

INTRODUCTION

The stability analysis of spacecraft attitude dynamics with time delay in the feedback is consid-
ered in this study. The existence of time delay in a system would be due to communication delays
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including delays in the measurement,1 or processing delays including delays which occur in the
actuators which is studied in this paper.

The attitude modeling problem depends on the choice of attitude parameters (coordinates) to rep-
resent the orientation of a rigid body relative to an inertial frame. There are several different attitude
parametrizations which can be utilized the governing spacecraft equations, However, for space ve-
hicles it is important to know how to implement the idea of successive Euler angle rotations in the
study. Borrowing ideas from the Eulerian motion, a set of four Euler parameters known as quater-
nions is common in the satellite dynamics analyses. Reduction of the number of Euler parameters
from four to three is possible via utilizing other coordinate sets called Rodriguez parameters (RPs),
also known as Gibbs parameters, or modified Rodriguez parameters (MRPs), where the latest one
is used for the investigations in this paper.

Reaction wheels (RWs) and thrusters are used in different papers to develop tracking control
laws.2, 3 Three types of controllers are used by Hall et al2 to globally asymptotically stabilize the
closed-loop dynamics of spacecraft. Two of the controllers use thrusters for bang-bang control and
RWs to provide the necessary corrections, while the third one uses linear feedback for the RWs and
nonlinear feedback for the thrusters. A method is developed by Tsiotras et al3 for controlling the
spacecraft attitude while tracking a desired power profile. For this purpose, an arbitrary configu-
ration of four or more RWs is used, and the possibility of having singularity for a general wheel
configuration is studied. The implemented torque is decomposed into the null space of the config-
uration and the space perpendicular to the null space. The torque in the null space is employed for
power tracking purposes, and the one perpendicular to the null space is used for attitude control.

Stability analysis of time-delayed systems or delay differential equations (DDEs) is important in
many fields of science. New constructions of Lyapunov-Krasovskii (L-K) functionals have been
developed for the stability analysis of systems with time delay. A modified L-K functional is de-
veloped, in particular, by Chunodkar and Akella4 for spacecraft attitude stabilization with unknown
but bounded delay in the feedback control loop. Exponential stability is obtained for all values of
the time delay within the selected bounds. A velocity-free controller is designed by Ailon et al5 for
attitude regulation of a rigid spacecraft, where the effects of time-delays in the feedback loop are
considered. Then, sufficient conditions for exponential stability are established.

Recently a method has been developed to produce an equivalent system of ODEs known as
Chebyshev spectral continuous time approximation (ChSCTA)6 . ChSCTA can be used for ob-
taining the time response of the DDE system through analysis of the corresponding ODEs rather
than converting the DDE into a map. ChSCTA technique is used by Butcher and Bobrenkov6 to
study the stability of different DDEs including ones with either nonlinearities or multiple delays.
The spectral accuracy convergence behavior of this technique is compared with that of other contin-
uous time approximation (CTA) approaches for constant-coefficient DDEs and it is also shown that
the obtained results are in agreement with those obtained analytically. Bobrenkov et al7 implement
ChSCTA and the Lyapunov-Floquet theory to transform time-periodic DDEs to equivalent constant
coefficient ODE systems. The significant advantage of this method is that the discrete delays can
be sparsely contained in the extended state vector-matrix formulation. Bobrenkov et al8 apply the
method in Ref.7 to the case of DDEs with discontinuous distributed time delay. They further im-
plement their proposed method to the Mathieu equation with discrete and discontinuous distributed
delays with either constant and periodic coefficients.

In this paper, the time delay occurs in the actuators and not in the sensors, where a nonlinear con-
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troller is sought for the controlled system to have the desired closed-loop dynamics. Two strategies
are considered to utilize delayed feedback in applications. First, we consider multi-actuator control
where one actuator is delay-free, while the other one has time delay. This strategy can be applied in
desaturation maneuvers, or in order to create a null space by reorienting RWs or CMGs without an
attitude maneuver. Second, we consider delay stabilization by introducing an intentional time delay
into the actuator in order to stabilize an otherwise unstable closed-loop dynamics without delay.

In the next section the MRP set is introduced, and kinematic differential equations and attitude
dynamics of the rigid spacecraft are given. Later, the stability boundaries are investigated analyti-
cally for the undamped delayed system, while ChSCTA is implemented to obtain the stability charts
of the damped case. For the delayed system, furthermore, MATLAB dde23 function is applied to
obtain the time histories of points arbitrarily picked from the stable and unstable regions. A compar-
ison is made further for the time series obtained for the delayed free case with those in the literature.
The simulation results are provided at the end.

MRPS AND ATTITUDE DYNAMICS MODEL

In terms of quaternions, the MRP set is defined as

�� = �✏
1 + �0 , (1)

where �0 is the scalar part of the quaternions, �✏ = � �1 �2 �3 �T is the vector part, and the
quaternion constraint ∑3

i=0 �2
i = 1 holds. Figure 1 illustrates how the MRP set �� is related to the

principal angle of rotation and quaternions. In the figure, ��S corresponds to the shadow set of MRP
set ��, and keeps the norm of MRP always less than or equal to one in order to avoid singularities in
the system.

The angular momentum vector about point P is expressed as

�HP = J �!, (2)

where �!(t) ∈R3 represents the angular velocity of the body frame with respect to the inertial frame,
and J ∈ R3×3 is the inertia matrix calculated about P . For convenience, all matrices and vectors
in this paper are described in the body frame. The kinetic differential equations of spacecraft (also
known as the Euler’s equations) are based on the reduced form of the angular momentum time
derivative taken in the inertial frame

˙�HP = �LP , (3)

where �LP is the momentum vector about the center of mass P of the spacecraft. Equation (3)
is also valid for either any fixed points in the space, those with constant velocities, or those with
acceleration vectors passing through the center of mass. The point P , nevertheless, is taken here as
the center of mass of the system for attitude realization and analysis of the spacecraft.

Substituting Eq. (2) into (3), and using the transport theorem Euler’s equations can be written as

J ˙�! + !̃J �! = �LP (4)

which are, in fact, the kinetic differential equations of the spacecraft.
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Figure 1. MRP stereographic orientation9

Equations (4) along with the kine-
matic differential equations in terms of
MRPs

˙�� = B(��)�! (5)

specify the governing equations of the
system. The nonlinear matrix B(��) in
Eq. (5) is defined as

B(��) = �(1 − ��T ��)I3 + 2�̃ + 2����T � , (6)

where I3 is the three dimensional iden-
tity matrix.

Consider the attitude dynamics of a
rigid spacecraft as

˙��(t) = 1

4

B(��(t))�!(t)
˙�!(t) = −J−1!̃(t)J �!(t) + J−1�u(t),(7)

where ��(t) ∈ R3 represents the MRP
set, and �u(t) ∈ R3 is the control in-
put analogous to the torque vector �LP

in Eq. (4). The problem is to stabilize the rigid body attitude dynamics using a feedback control law
with a single discrete time delay.

ASSUMING THE DESIRED CLOSED-LOOP RESPONSE AND FINDING THE REQUIRED
CONTROL LAW

The nonlinearities appearing in Eq. (7) may be viewed as perturbation terms after the linear terms
in the equation of motion. There are different approaches for controlling the system with nonlinear
terms included. One method is to assume a linear control law which results in a nonlinear model
for the closed-loop dynamics of the system1, 5 .Another method is to assume a nonlinear control law
which results in a linear model for the closed-loop dynamics of the system9 . This second approach
will be utilized in this section. In particular, an inverse dynamics approach common in robotics
open-loop path-planning problems is utilized here, in which the desired closed-loop response is
given by a set of second order delay differential equations. This approach (without time delay) has
been used in the attitude control problem with both quaternions10 and MRPs9 .

Following the method of nonlinear feedback control which results in a linear second order ordi-
nary differential equation (ODE) in terms of the MRPs for the closed-loop dynamics of the delay-
free case,9 we try to include the time delay into the resulting linear equation. This can transform
the ODE for the closed-loop dynamics into an analogous DDE. For this purpose, the time delay is
assumed to be in the actuators. Hence, we first, following the procedure introduced for the analogue
delay-free system, propose the closed-loop equation of the desired controlled system as

¨�� + P ˙�� +K�� = R��(t − ⌧), (8)
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where P , K, and R are scalars, P and K are preferably positive, and ⌧ is a fixed known time delay.
The reason that Eq. (8) is chosen as the desired closed-loop dynamics is that it is a well-known
decoupled DDE with a single point delay,11 and its stability regions can be obtained analytically
for the undamped case. In addition, for the damped case, there are some numerical approaches
developed in the literature6, 7 to acquire stability diagrams.

Figure 2 gives the schematic block diagram of the system with time delay in the actuators (as
opposed to the case where time delay exists in the measurements1), where the output can be any of
the state vectors of the system or a combination of them. As will be seen, the only way to have time

Figure 2. The schematic block diagram of the system with the time delay in
one of the actuators

delay in all terms including the MRP set �� is that the kinematic differential equation of the MRPs
include delay terms of ��, since this approach does not apply to the case of having time delay in the
feedback controller, and hence, time delay must only be assumed in the actuators. Two strategies
are considered to utilize delayed feedback in applications. First, we consider multi-actuator control
where actuator (1) is delay-free with gains P and K, while actuator (2) has time delay with gain R
as shown in the block diagram in Fig. 2.

Lemma 1 Based on the desired closed-loop dynamics for the delay-free case,9 for the delayed
system problem, we assume that the desired closed-loop system is

¨��(t) + P ˙��(t) +K��(t) = R��(t − ⌧), (9)

where P and K are positive scalars and R is a scalar. The body angular acceleration vector ˙�! can
be simplified to

˙�! = −P �! − ��!�!T + � 4K

1 + �2
− !2

2

� I3� �� + 4B−1R��(t − ⌧). (10)

Proof 1 Differentiating both sides of the first equation in (7) and substituting the result back into
Eq. (9) yields

¨�� + P ˙�� +K�� = 1

4

B � ˙�! + P �! +B−1( ˙B�! + 4K��)� = R��(t − ⌧). (11)

Knowing that B−1 always exists for � < 1 with � ∶= ������, Eq. (11) becomes 9

˙�! + P �! +B−1( ˙B�! + 4K��) = 4B−1R��(t − ⌧). (12)
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Taking the time derivative of matrix B in Eq. (6)

˙B = �− ˙��T �� − ��T
˙��� I3 + ˙�̃ + 2 ˙����T + 2�� ˙��T (13)

˙��T = 1

4

�!T �(1 − �2)I3 − 2�̃ + 2����T � (14)

On the other hand,

�̃2 = ����T − �2I3 = ����T − ��T ��I3 (15)

Taking the time derivative of both sides of Eq. (15) we obtain

�̃ ˙�̃ + ˙�̃�̃ = ˙����T + �� ˙��T − � ˙��T �� + ��T
˙��� I3 = B, (16)

and calling

A ∶= �̃ ˙�̃, AT ∶= ˙�̃�̃ (17)

Eq. (16) can be written as

A +AT = B. (18)

Furthermore,

A −AT = ���
0 �2�̇1 − �1�̇2 �̇1�3 − �1�̇3

�̇2�1 − �2�̇1 0 �̇2�3 − �̇3�2
�̇3�1 − �3�̇1 �̇3�2 − �3�̇2 0

��� = ˙����T − �� ˙��T = C. (19)

Equations (16) and (19) can be solved for A and AT

�̃ ˙�̃ = A = 1

2

(B + C) = ˙����T − 1

2

� ˙��T �� + ��T
˙��� I3,

˙�̃�̃ = AT = �� ˙��T − 1

2

���T
˙�� + ˙��T ��� I3, (20)

Also note that

BT = �1 + �2�2B−1 (21)

As is shown in Eq. (13), ˙B�! has a term ˙�̃�! which is the hardest term to calculate. But, Eq. (14)
implies that

�! = 4B−1 ˙�� = 4BT

(1 + �2)2 ˙��. (22)

Hence

˙�̃�! = ˙�̃
4BT

(1 + �2)2 ˙�� =
4

(1 + �2)2 �(1 − �)2 ˙�̃ ˙�� − 2 ˙�̃�̃ ˙�� + 2 ˙�̃����T
˙��� (23)
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first term of which inside the brackets is zero. According to Eq. (15),

2

˙�̃ �����T � ˙�� = 2 ˙�̃ ��̃2 + ��T ��I3� ˙�� = 2 � ˙�̃��� ��̃ ˙��� + 2 ���T ��� � ˙�̃ ˙��� = 2 � ˙�̃�̃� ��̃ ˙��� . (24)

Equation (23) can thus be written as

˙�̃�! = 4

(1 + �2)2 �−2 ˙�̃�̃ ˙�� + 2 ˙�̃�̃�̃ ˙��� = 8

˙�̃�̃

(1 + �)2 (−I3 + �̃) ˙�� = −
2

˙�̃�̃

1 + �2
(I3 + �̃) �!. (25)

However, substituting for ˙�̃�̃ from Eq. (20) into Eq. (25) we obtain

˙�̃�! = − 2

1 + �2
��� ˙��T − 1

2

���T
˙�� + ˙��T ��� I3� (I3 + �̃) �!

= 2

1 + �2
�−�� ˙��T + ��T

˙��I3� (I3 + �̃) �!
= 1

2 (1 + �2){(�2 − 1)!2�� + (1 + �2)(��T �!)�! − 2(�2!2)�� −
(1 + �2)(��T �!)!̃��}, (26)

where ! ∶= ���!��.
Other terms in Eq. (13) are easier to find

˙��T �� = ��T
˙�� = 1

4

��TB�! = 1

4

(1 + �2)(��T �!), (27)

2

˙��(��T �!) = 1

2

�(1 − �T )I3 + 2�̃ + 2����T � (��T �!)�!
= 1

2

(1 − �2)(��T �!)�! − (��T �!)!̃�� + (��T �!)2��, (28)

and

2�� ˙��T �! = 1

2

���!T �(1 − �2)I3 − 2�̃ + 2����T � �!
= 1

2

(1 − �2)!2�� + ���!T !̃�� + (��T �!)2��. (29)

Substituting Eqs. (26), (27), (28), and (29) into Eq. (13) yields

˙B�! = −2(��T �!)!̃�� + 2(��T �!)2�� − 1

2

(1 + �2)!2�� + (1 − �2)(��T �!)�!. (30)

Substituting Eq. (30) into Eq. (12) yields

˙�! = −P �! − 1

(1 + �2)2 [−2(1 − �2)(��T �!)!̃�� + 2(1 − �2)(��T �!)2��
−1
2

1 + �2(1 − �2)!2�� + (1 − �2)2(��T �!)�! + 4K(1 − �2)�� + 4(��T �!)�̃!̃��
−2(1 − �2)(��T �!)�̃�! + 4(��T �!)2�2�� − (1 + �2)!2�2�� + 2(1 − �2)(��T �!)2�� +
8K�2��] + 4B−1R��(t − ⌧) (31)
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The term 4(��T �!)�̃!̃�� in Eq. (31) is expressed as

− 4(��T �!)�̃2�! = −4(��T �!)(����T − ��T ��I3)�! = −4(��T �!)2�� + 4(��T �!)�2�!. (32)

Substituting Eq. (32) into Eq. (31) yields

˙�! = −P �! − 1

(1 + �2)2 [(��T �!)2��(2 − 2�2 + 2 − 2�2 − 4 + 4�2)
+(��T �!)�!(1 − 2�2 + �4 + 4�2) + !2��(−1

2

+ �4

2

− �2 − �4) +
K��(4 − 4�2 + 8�2)] + 4B−1R��(t − ⌧)

= −P �! − 1

(1 + �2)2 ��!(�!T ��)(1 + �2)2 − 1

2

(1 + �2)2!2�� + 4K(1 + �2)��� +
4B−1R��(t − ⌧)

= −P �! − ��!�!T + � 4K

1 + �2
− !2

2

� I3� �� + 4B−1R��(t − ⌧). (33)

The proof is, therefore, complete. �
Equation (9) is written in the state-space form as

�x1 = ��, �x2 = ˙��, �x = � ��
˙�� � (34)

˙�x = � ˙��
¨�� � = � 03 I3−KI3 −PI3

�� ��(t)
˙��(t) � + � 03 03

RI3 03
�� ��(t − ⌧)

˙��(t − ⌧) � . (35)

Although, according to Eqs. (35) and (9), 6 DDEs are sufficient to acquire the dynamics behavior
of the closed-loop system, in order to include the plots for the time histories of the control signals
(�u), as well, the system and the controller are modeled by 9 simultaneous DDEs in the MATLAB
dde23. Considering the second equation in (7) and Eq. (10) the following nonlinear relation for�u(t) is obtained

�u(t) = !̃(t)J �!(t) − JP �!(t) − J ��!(t)�!(t)T + � 4K

1 + �2(t) −
!2(t)
2

� I3� ��(t) +
4J

1

(1 + �2(t))2BT (t)R��(t − ⌧), (36)

where Eq. (21) is used to obtain the expression for the controller.

It is instructive to compare our controller with the standard MRP-based control law9 using the
Lyapunov function

V (�!) = 1

2

�!TJ �! + 2K ln

�
1 + ��T ��� . (37)

Taking the derivative along the trajectory and forcing it to be negative semidefinite as

˙V = �!T �J Bd
dt
�! +K��� = −�!TP �! (38)
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the corresponding asymptotic stabilizing control law9 for regulation control is obtained as

�u(t) = !̃(t)J �!(t) −P �!(t) −K��(t). (39)

However, the resulting closed-loop dynamics

J
Bd
dt
�! +P �! +K�� = �0, (40)

where the superscript B indicates the time derivative with respect to the body frame, is not linear due
to the nonlinearities in Eq. (5). However, the inverse dynamics based control law given in Eq. (36)
which has additional quadratic terms compared to the Lyapunov based control law in Eq. (39) does
in fact lead to a linear closed-loop dynamics.

In order to further analyze the closed-loop dynamics in Eq. (8), the time is nondimensionalized
as

t∗ = t

⌧
,

d

dt
= dt∗

dt

d

dt∗ =
1

⌧

d

dt∗ ,
d2

dt2
= dt∗

dt

d

dt∗ �
1

⌧

d

dt∗� =
1

⌧2
d2

dt∗2 (41)

Using the transformation Eq. (41) in Eq. (8), the latter becomes

��′′ + ⌧P ��′ + ⌧2K�� = ⌧2R��(t∗ − 1), (42)

which, considering the fact that P and K are scalars, can be written as three second order scalar
DDEs

�′′i + ¯P�′i + ¯K�i = ¯R�i(t∗ − 1), i = 1,2,3 (43)

where prime and double prime “ ′ ”and “ ′′ ”represent for the first and second derivatives of the
dimensionless parameter �i with respect to t∗, respectively, and ¯P = ⌧P , ¯K = ⌧2K, and ¯R = ⌧2R.
Introducing the state-space variables in a similar manner as what we had in Eq. (34) for each i

z1 = �i, z2 = �′i. i = 1,2,3 (44)

Equation (42) can then be written in the state-space form

�z′ =A�z(t∗) +B�z(t∗ − 1), (45)

where

�z = � z1
z2
� , A = � 0 1− ¯K − ¯P � , B = ¯R� 0 0

1 0

� (46)

Two methods, an analytical approach and a numerical approach based on ChSCTA, are further
implemented to study the stability of the closed-loop system. The analytical approach only applies
to the time delay problem (45) for ¯P = 0 which can be referred to as the undamped case.
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Analytical Investigation for the Undamped Case

Setting ¯P = 0 in Eq. (42), its corresponding characteristic equation can be written as

s2 + ¯K − ¯Re−s = 0. (47)

Since unstable systems have eigenvalues with positive real parts, s must be set equal to 0 and i! to
obtain stability boundaries. If one sets s = 0 Eq. (47) yields the divergence stability boundary as

¯K = ¯R, (48)

while setting s = i! for ! ∈R, and separation of the real and imaginary parts yield

−!2 + ¯K − ¯R cos! = 0,
¯R sin! = 0. (49)

Second equation in (49) yields

sin! = 0, or ¯R = 0. (50)

Solving Eqs. (50) and (49) simultaneously yields the flutter (Hopf) stability boundaries as

D =D1 ∪ D2, (51)

where

D1 = �( ¯K, ¯R)� ¯R = 0, ¯K > 0� ,
D2 = �( ¯K, ¯R)� ¯K − ¯R(−1)n = n2⇡2� , n = 0,1,2,� (52)

This stability chart for the undamped case with straight lines, which is shown in Fig. 3 is known
as the Hsu-Bhatt-Vyshnegradskii stability chart in the literature.11

Corollary 1 The trivial solution of the DDE (43) is exponentially asymptotically stable if and only
if there exists an integer n1 ≥ 0 such that either

¯R > 0, ¯R < ¯K − (2n1)2⇡2, and

¯R < − ¯K + (2n1 + 1)2⇡2 (53)

or

¯R < 0, ¯R > − ¯K + (2n1 + 1)2⇡2, and

¯R > ¯K − (2n1 + 2)2⇡2, (54)

Proof 2 Since the divergence boundary ¯K = ¯R is delay independent,12 for the system without the
time delay Eq. (49) becomes

s2 = ¯R − ¯K (55)

which results in the stable behavior for 0 ≤ ¯R < ¯K for the undamped system. Hence the region
inside the triangle △CDE is stable. On the other hand, by crossing through the divergence and
Hopf stability boundaries the number of unstable characteristic exponents (↵) increases by one and
two, respectively (see Fig. 3). Since inside △CDE is stable with ↵ = 0, starting from a point
inside this triangle, if we cross through segment CD (which is the Hopf stability boundary) towards
outside of that triangle, the parameter ↵ increases by 2, which means that we are in the unstable
region. Now if we move from a point on this unstable region towards inside△DFG by crossing the
segment DF , ↵ decreases by 2 again and becomes zero which implies that inside △DFG is also
stable. The same strategy can be followed for the other triangles. �
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Figure 3. Hsu-Bhatt-Vyshnegradskii stability chart in ¯K − ¯R plane for ¯P = 0

obtained analytically.

The first set of conditions given in the Corollary 1 (Eq. 53) gives the stable triangles above the ¯R
axis, while the second set (Eq. 54) produces the stable triangles below that axis. Figure 3 represents
the stability chart obtained analytically in the ¯K − ¯R plane. The intersections of the first three
consequent pairs of lines given in the set D2 in Eq. (52) are obtained analytically and represented
in Fig. 3 along with the crossing points of the lines with the ¯K axis.

ChSCTA Method for the Damped Case

For the case ¯P ≠ 0, the characteristic equation is

s2 + ¯Ps + ¯K − ¯Re−s = 0, (56)

which, after setting s = j! and separating real and imaginary parts, yields

−!2 + ¯K − ¯R cos! = 0
¯P! + ¯R sin! = 0. (57)

It can be seen that the flutter stability boundaries for this case do not remain as straight lines.
However, like the undamped case, the ¯K = ¯R line can be seen to still correspond to the divergence
(fold) instability. We now describe a numerical method used to investigate the stability of this case.

Chebyshev collocation points can be introduced as the projections of the equispaced points on
the upper half of the unit circle onto the horizontal axis, mathematically8

ti = cos i⇡
N

. (58)

11



where N is the number of the selected points on the semicircle. In the ChSCTA method, the interval[x(t−⌧), x(t)] is broken into N =m−1 subintervals lengths of which are determined based on the
positions of Chebyshev collocation points, where m is the number of Chebyshev collocation points.
The scaling factor 2

⌧ is then used to project the interval [−1,1] onto [t − ⌧, t]. The Chebyshev
meshing points can be obtained by dividing the interval [t − ⌧, t] into segments [ti, ti−1], (i =
1,2,�,N), as8

✓i = ⌧

2

�cos�i ⇡
N
� − 1� (59)

as illustrated in Fig 4, where ⌧ = 1 after the transformation made in Eq. (41).

Figure 4. Chebyshev collocation points8

A Chebyshev spectral differentiation matrix D is defined as

D00 = 2N2 + 1
6

= −DNN , Djj = − tj

2(1 − t2j) , j = 1,2,�,N − 1
Dij = ci(−1)i+1

cj(ti − tj) , i ≠ j, i, j = 0,1,�,N, ci = � 2, i = 0,N
1, otherwise

(60)

Now, if equation of motion is written in the state-space form as in Eq. (45), then based on the
definition for the augmented vector �Y

�Y = � �zT (t0) �zT (t1) �zT (t2) � �zT (tN) �T , i = 0,1,�,N (61)

where t0 = t and tN = t − ⌧ from Fig. 4, then Eq. (45) can be written as

˙�Y = A �Y , (62)

where6, 7

A = � A 0 � 0 B
2
⌧ [D]q+1,mq � , (63)

where, again, ⌧ = 1, and

Dmq×mq =Dm×m ⊗ Iq×q, (64)
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Figure 5. Stability chart in ¯K − ¯R plane (Right) for ¯P = 0,1,2,3,4 obtained
analytically for ¯P = 0 and numerically using ChSCTA for ¯P > 0. The ∗ and● shown represent the points simulated in Figs. 11 and 12, while ▲ and �
represent the points simulated in Figs. 9 and 10, respectively.

and only rows of D between q + 1 and mq are taken into account. Based on the left half-plane
analysis, the real parts of the eigenvalues of the matrix A in Eq. (63) determine the stability of the
system such that if all eigenvalues of matrixA have negative real parts then system is asymptotically
stable.

ChSCTA is applied to produce the Figs. 5, 6, and 7 using 85 Chebyshev collocation points in
the 50 × 50 meshgrid. The second strategy is delay stabilization of an otherwise unstable system.
The small region magnified in Fig. 5 illustrates how the added delay term stabilizes an otherwise
unstable system when K < 0. The behavior of the system in the ¯K − ¯R plane is plotted in Fig. 5
for different values of ¯P which can be referred to as the damping of the system (43). As mentioned
before, the stability boundaries do not remain as straight lines for the damped cases except for the
¯R = ¯K divergence boundary which remains straight. Figure 6 shows the stable region in the ⌧ −R
diagram for P =K = 4 (Left), and for P = 3 and K = 1 (Right). Referring to this figure, the system
is unstable for R > 1 when P = 3 and K = 1. In order to find the proper values of ¯P and ¯K which
stabilize the system for some ¯R > 1 (which corresponds to R > 1 for ⌧ = 1), the stability is studied
in the ¯K − ¯P space in Fig. 7, with ¯R = 2 (Left) and R = 6.5 (Right), using 85 Chebyshev collocation
points in a 50 × 50 meshgrid. As can be inferred from these plots, for ¯P = ¯K = 4 the MRPs of the
system are in the stable region when ¯R = 2.

It should be noted that if system is just barely stable, then a small error or uncertainty in the
system parameters could push the system over the stability boundary. Hence, it is often desired
to design systems with some margin of error. The relative stability is compared with the stability
boundary for ¯P = 1, for instance, in the ¯K − ¯R plane as shown in Fig. 8. For the relative stability
boundary in the figure, the spectral abscissae are assumed to be equal to −0.01, −0.05, −0.07, −0.1.

SIMULATION RESULTS

In this section, in order to verify the stability charts, and to study the effect of the proposed
controller on the system, using MATLAB dde23, the time histories for arbitrarily picked stable
and unstable points are produced for the time delayed system. Time histories of the system are

13



Figure 6. ⌧ −R plot for the closed-loop equation of the controlled system (42),
S stable, U unstable; P = K = 4 (Left); P = 3, K = 1 (Right) obtained numer-
ically using ChSCTA. The ∗ and ● shown represent the points simulated in
Fig. 11.

further obtained for the delay-free system to compare with the literature.

In order to depict delay stabilization caused by the intentional time delay added to the system,
for a negative value K = −2, simulations are performed for the non-delayed system as well as the
delayed system with R = −4 and ⌧ = 1 sec. The corresponding results shown in Figs. 9 and 10 agree
with the stability chart given in Fig. 5.

Two points, one from the stable region shown with ∗ and the other one from the unstable region
shown with ●, are arbitrarily picked for which time series are plotted in Figs. 11 and 12. These time
histories are consistent with the regions of stability and instability shown in Figs. 5, 6, and 7 for
different pairs of parameter planes. The state-space form of Eq. (8) without transformation does not
differ significantly from Eq. (35). Since the angular velocity response is also studied, the state-space
vector �y contains the angular velocity vector �!

˙�y = ���
03 I3 03−KI3 −PI3 03

03 03 −PI3

��� �y(t) +
���

03 03 03

RI3 03 03

03 03 03

��� �y(t − ⌧) + �f(�y) (65)

where �y = � ��T
˙��T �!T �T , as mentioned before, and the nonlinear terms are

�f(�y) =
�����������

03

03−f ��!�!T + � 4K
1+�2 − !2

2 � I3� �� + 4B−1R��(t − ⌧)
�����������
. (66)

First, for the same values as in the delay-free case, and the stability chart for the Eq. (8) is to be
provided in the R − ⌧ plane. The time series shown in Fig. 11 approve the stability of the angular
velocity and the MRPs of the closed-loop controlled delayed system with the initial parameter values
given in Table 1 using the aforementioned control law (36) for R = 2 and ⌧ = 0.5 sec. However,
according to Fig. 6, the satellite attitude is expected to be unstable for R > 4, and the predictable
unstable behavior is shown in Fig. 12 for the same time delay as that in Fig. 11.
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Figure 7. ¯K− ¯P plot for the closed-loop equation of the controlled system (42),
S stable, U unstable, ¯R = 2 (Left); ¯R = 6.5 (Right) obtained numerically using
ChSCTA. The ∗ and ● shown represent the points simulated in Fig. 11.

Figure 8. Relative (black) and absolute (gray) stability charts in ¯K − ¯R plane
(Right) for ¯P = 1. The spectral abscissae for the relative stability bound-
aries are −0.01 (solid line), −0.05 (dashed dotted line), −0.07 (dotted line), −0.1
(dashed line).
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Figure 9. Time series for the unstable spacecraft attitude parameters, ¯P =
4, ¯K = −2, ¯R = 0 without time delay indicated by ▲ in Fig. 5; MRPs (Left);
angular velocity (Right). Solid (–), dashed (- -) and dotted (.) lines represent
for the first, second and third components of each vector, respectively. Initial
conditions are the same as those given in Table 1.

Figure 10. Time series for the stable spacecraft attitude parameters, P = 4,
K = −2, R = −4, and ⌧ = 1 indicated by � in Fig. 5; MRPs (Left); angular velocity
(Right). Solid (–), dashed (- -) and dotted (.) lines represent for the first,
second and third components of each vector, respectively. Initial conditions
are the same as those given in Table 1.

In order to verify the reliability of the simulations provided to obtain the time responses of the
system, we further, by setting R = 0, investigate the delay-free problem corresponding to Eqs. (9)
and (36), and compare the results with those obtained by Schaub and Junkins9 for the parameter
values provided in Table 1 for P = 3 and K = 1, where the two sets of simulations are found to be
identical as illustrated in Fig. 13. In this figure, the time responses for the components of the attitude
vector ��(t), the angular velocity vector �!(t), and the control �u(t) are shown for the system given
by Schaub and Junkins.9 It should be mentioned here that the norm of the MRP set was always less
than one, and hence, there was no need to switch to the shadow set in the simulations. It can be seen
that the aforementioned control law results in asymptotic stability of the system in a fairly small
neighborhood of the origin ��y = � ��T

˙��T �!T �T = �0�.
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Table 1. Parameter values9

Parameter Value

J diag[ 30 20 10 ] kg.m2

��(t0) � −.3 −.4 .2 �T
�!(t0) � .2 .2 .2 �T

CONCLUSIONS AND FUTURE WORK

In this paper, a nonlinear delayed control law has been introduced to acquire the desired closed-
loop dynamics of a typical rigid spacecraft. As opposed to authors’ other work1 where the time
delay is considered in the measurements, the time delay here has been assumed to be in the ac-
tuators. Two strategies are considered. In the first strategy, one actuator is delay-free, while the
other one has time delay. Delay stabilization is another strategy, where intentional time delay is
introduced into the actuator in order to stabilize the closed-loop dynamics which would be unstable
without delay. The stability boundaries are obtained analytically for the undamped delayed closed-
loop system which is known as the Hsu-Bhatt-Vyshnegradskii stability chart, where the stability
regions appear as triangles in which the number of unstable characteristic exponents is zero. Sta-
bility boundaries, however, do not remain as straight lines, for the damped system, nor can they be
investigated analytically, and hence ChSCTA has been implemented instead to obtain the stability
boundaries for the damped case. MATLAB dde23 has been applied further to obtain the time
histories of the system which have been in agreement with the stability charts. Finally, in order to
verify the controller, the time series obtained for the controlled delay-free system are compared to
those in the literature.

This work hopes to be a first step toward further understanding the following important issues.
First, the control gains P and K are selected arbitrary in this study. In control design, it is usually
important, however, to design the gains of the closed-loop dynamics for specified performance such
as critical damping. Second, unmodeled external torques due to effects such as atmospheric drag or
bearing friction can cause steady state errors which should be eliminated or diminished by adding
an integral feedback term. We are also looking into ways to extend the method introduced in the
present work to do the attitude tracking problem.
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Figure 11. Time series for the stable spacecraft attitude parameters, P = 8,
K = 16, R = 8, ⌧ = 0.5 sec for the stable location indicated by ∗ in Figs. 5, 6,
and 7; MRPs (Top-Left); angular velocity (Top- Right); Euclidean norm of the
assembled satellite attitude vector ���T , �!T �T (Bottom). Solid (–), dashed (-
-) and dotted (.) lines represent for the first, second and third components
of each vector, respectively. Initial conditions are the same as those given
in Table 1.

Figure 12. Time series for the unstable spacecraft attitude parameters, P = 8,
K = 16, R = 26, ⌧ = 0.5 sec for the unstable location indicated by ● in Figs. 5,
6, and 7; MRPs (Top-Left); angular velocity (Top-Right); Euclidean norm of
the assembled satellite attitude vector ���T , �!T �T (Bottom). Solid (–), dashed
(- -) and dotted (.) lines represent for the first, second and third components
of each vector, respectively with initial conditions given in Table 1.
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Figure 13. Time history of �� (first row, left), �u (first row, right), and �! (third
row) with dotted lines (.) representing the norms, and solid lines (–), dashed
dotted lines (-.), and dashed lines (- -) representing the first, second and third
components of each vector, respectively, as compared to �� (second row, left)
and �u (second row, right) given by Schaub and Junkins9 .
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