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AAS 08-149

ORBIT-NADIR ALIGNED COULOMB TETHER
RECONFIGURATION ANALYSIS

Arun Natarajan∗ and Hanspeter Schaub†

The reconfiguring of a two craft Coulomb tether is studied which is aligned along
the orbit radial direction. The linearized out-of-plane equation of motion is decou-
pled and not influenced by Coulomb forces. Previous research assumes this out-of-
plane motion is controlled with conventional thrusting to keep it within a specified
bound. An analytical solution is developed for the linearized charged out-of-plane
relative motion using Bessel functions for the special reconfiguration case where
the prescribed expansion or contraction rate is constant. Bounds on the initial out-
of-plane oscillation are deduced such that the finial oscillation will remain within
the prescribed limits. These analytical results assist Coulomb tether reconfigura-
tion maneuvers in determining when conventional thrusting must be employed to
dampen out-of-plane motion. Further, an improved reconfiguration strategy is ana-
lyzed where the on/off switches of the constant rate reconfiguration expansion are
smoothed to reduce transient oscillations. This modification is shown to have a min-
imal impact on the predicted out-of-plane motion.

INTRODUCTION

Formation flying of spacecraft using Coulomb forces is a new and emerging field of study. Here,
the electrostatic (Coulomb) charge of spacecraft is varied by active emission of either negative elec-
tric charges (electrons) or positive electric charges (ions). The resulting changes in inter-spacecraft
Coulomb forces are used to control the relative motion of the spacecraft. Due to the drop off of
the electrostatic force with distance, close proximity flying missions are considered with separation
distances ranging up to 100 meters. Coulomb thrusting requires essentially no consumables (fuel
efficiencies ranging up to 1013 seconds), requires very little electric power to operate (often less than
1 Watt), and can be controlled with a high bandwidth (zero to maximum charge transition times are
of the order of milli-seconds). Also, by using this method the thruster exhaust plume contamination
issues with neighbouring satellites commonly encountered with ion engines can be avoided.

The concept of a Coulomb tether formation consists of 2 spacecraft capable of controlling their
electrostatic charge. A conventional physical tether is replaced with the line-of-sight electrostatic
force. The resulting equations of motion are very similar to a regular 2-craft tether system with the
following differences. The Coulomb tether is capable of producing both attractive and repulsive
forces, compared to the tension only forces of the tether. Further, a tether can introduce additional
complicated flexing dynamics, while the Coulomb tether allows for the equivalent tether stiffness
to be tuned through feedback gains. While a regular tether mission typically envisions kilometer
size tethers, the Coulomb tether concept is only practical for relatively short separation distances
ranging up to 100 meters. Sample applications include the deployment of a small sensor from
a mother craft to provide an external monitor, or performing controlled proximity and docking
approach maneuvers.
∗Graduate Student, Virginia Tech, Blacksburg VA 24060.
†Associate Professor, H. Joseph Smead Fellow, University of Colarado, Boulder CO 80309.
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The concept of formation flying using electrostatic propulsion is introduced in References 1, 2
and 3. These pioneering works discussed the static Coulomb satellite formations and the associated
equilibrium charges, but did not address the active stabilization of these formations. The NIAC
report by King et al.3 develops analytical solutions for Hill-frame invariant Coulomb formations.
Here spacecraft are placed at specific locations in the rotating Hill frame with specific electrostatic
charges. As a result, the Coulomb forces perfectly cancel all Keplerian relative orbit accelerations,
thus causing the satellites to remain fixed or static as seen by the constantly rotating Hill frame. The
analytical solutions were found for simple geometries involving 3 to 7 satellites using formation
symmetry. In all these formations one satellite is located at the center of mass of the satellite
formation. The equations of motion representing these Coulomb formations in the Hill frame are
highly coupled and complex non-linear equations. With multiple craft, complex static formations
other than the simple symmetric formations found in Reference 3 are also possible. However,
these complex static formations are non-intuitive and a numerical approach is often needed to find
the constant Hill frame position and charge that result in a static formation. One such numerical
approach using a genetic algorithm is given in Reference 4. In Reference 4, Coulomb formation
shapes involving up to 9 craft are discussed. The necessary conditions for achieving such static
Coulomb formations are determined in Reference 5 using Hamiltonian formulations of the Coulomb
formation dynamics. These Hamiltonian formulations are analogous to the study of equilibrium
conditions of rigid bodies in orbit. The analytical solution for the static charge and their feasibility
for different shapes in two-craft and three-craft formations are discussed in detail in Reference 6.
Romanelli et al.7 show that Coulomb forces can be used to cancel the differential drag due to solar
radiation, J2 effect and atmospheric drag, experienced by craft in a static formation. Note that the
charge is held constant in the above mentioned open-loop static Coulomb formations studies. All
these open-loop static Coulomb formations are found found to be unstable without feedback.

Reference 2 discusses static Coulomb satellite formations and a nonlinear control law which is
capable of bounding the relative motion between two close craft by controlling the semi-major axis
difference. This charge feedback control can also be used to control general orbit element dif-
ferences with guaranteed stability, but not necessarily with asymptotic convergence. Reference 8
presents an open loop stable spinning two craft Coulomb tether. The reconfiguration of this spinning
Coulomb tether in deep space is also discussed, but orbital motion is not considered. A Lyapunov-
based control law for stabilizing a 1D-restricted three-craft Coulomb structure is shown in Ref-
erence 9. The Lyapunov-based control law identifies the required charge products. Real imple-
mentable charge values for each craft are extracted by studying the null space of the charge product
matrix. A control law for avoiding collision between spacecraft in a cluster in free space is proposed
in Reference 10. The proposed control law requires only the separation distance between the craft
and its rate for determining the charge feedback. The control law ensured that no two craft were
within each other’s safety spherical zones of fixed radius.

Studies pertaining to tethered spacecraft formation flying using Coulomb forces include 11, 12
and 13. Reference 11 investigates the regulation of a specific shape and orientation of a static two-
craft Coulomb tether formation aligned along the orbit radial direction. Charge feedback control
laws for asymptotically stabilizing the formation are developed, leading to the first stable virtual
Coulomb structure. Reference 12 studies the reconfiguration of the 2-craft Coulomb tether forma-
tion by forcing the craft to move apart or come closer. An active charge feedback law is introduced
and the linear stability of the coupled separation distance and attitude is evaluated for this time-
variant system. Based on this analysis, stability regions for expanding and contracting the two-craft
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Figure 1 Coulomb Tethered Two Satellite Formation with the Satellites Aligned
Along the Orbit Nadir Direction

formation are established. The present work is a continuation of this investigation of the nadir-
aligned two-craft Coulomb tether. Two specific aspects in the context of reconfiguration are dealt
with, one pertaining to variation of out-of-plane angle and the other pertaining to curtailment of
separation distance oscillation. Reference 13 discusses the reconfiguration problem of a Coulomb
tether aligned along the orbit-normal and along-track directions. For the orbit-normal configuration
the linearized shape dynamics is found to be passively stable, while both in-plan and out-of-plane
orientations decoupled from the charge control and were unstable. The along-track configuration
has the out-of-plane motion decoupled similar to the orbit-nadir aligned case, and requires a hybrid
Coulomb and conventional thrusting control strategy to stabilize the shape.

The present paper focus solely on the charged relative motion for the orbit nadir aligned con-
figuration. Analytical solutions to the out-of-plane motion for constant Coulomb tether reference
length rate cases are explored. This is a typical scenario where a sensor is desired to be deployed
to a specified distance, and the reference separation distance is varied at a fixed rate. However,
engaging this fixed separation rate maneuver requires infinite acceleration at the beginning and end
of the maneuver due to the impulsive change in the desired separation rate. In Reference 12 this
causes noticeable transient tracking errors at the maneuver end points. The feedback control is able
to stabilize these. However, this paper investigates smoothed reference separation rate strategies
with the goal of reducing the resulting tracking error transients.

This paper is organized as follows. First, the analytical solution for the linearized out-of-plane
angle EOM is derived and this is followed by establishing the bounds on the initial out-of-plane
angle. Next the smooth transition function is defined, followed by adapting this function for the
reference length rate problem. Finally, numerical simulations illustrate the results.

PROBLEM STATEMENT

The notation and variables of References 11 and 12 are used in this study as well. The basic
Coulomb tether structure used is shown in Figure 1. The linearized equations of motion describing
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the dynamics of two-craft Coulomb tether reconfiguration are:12

θ̈ +
2L̇ref

Lref
θ̇ + 4Ω2θ = 0 (1a)

ψ̈ +
2L̇ref

Lref
ψ̇ +

2Ω
Lref

δL̇− 2L̇ref

L2
ref

ΩδL+
2L̇ref

Lref
Ω + 3Ω2ψ = 0 (1b)

δL̈+ L̈ref − 2ΩLrefψ̇ − 9Ω2δL− kc
m1

δQ
1
L2

ref

m1 +m2

m2
= 0 (1c)

where in-plane angle ψ and out-of-plane angle θ describe the attitude of the formation, and the δL
is the error is the separation distance between the two crafts. The constant chief orbital rate is given
by Ω =

√
µ/r3

c , where µ is the gravitational coefficient and rc is center of mass position vector.
The parameter kc = 8.99 ·109 Nm2/C2 is the Coulomb constant. Let qi be the individual spacecraft
charges, then Q = q1q2 is the charge product of the 2 craft. The prescribed reference length and its
rate are given by Lref and L̇ref. Finally, the constants m1 and m2 are the masses of the two craft.
The feedback control law is introduced through the charge product variation term δQ and is written
as

δQ =
m1m2L

2
ref(t)

(m1 +m2) kc
(−C1δL− C2δL̇) (2)

where C1 and C2 are the position and velocity gains and the actual commanded charge product is:

Q = Qref + δQ (3)

The reference charge product for a nadir aligned 2 charged craft equilibrium is6, 11

Qref = −3Ω2L
3
ref
kc

m1m2

m1 +m2
(4)

The linearized closed-loop equations in Eqs. (1) are the result of this charge feedback control
law. These EOM reveal that the out-of-plane angle (θ) is decoupled from the in-plane angle (ψ)
and the separation distance error (δL). Hence, the out-of-plane angle can not be actively controlled
by the Coulomb force. For the regulation problem the out-of-plane angle EOM is a time-invariant
second order differential equation that results in a stable simple harmonic oscillation motion for θ.
Whereas, for the reconfiguration problem the EOM is a second order differential equation with time
dependent terms that involve the prescribed reference length (Lref) and reference length rate (L̇ref).
Depending on whether one is expanding (positive L̇ref) or contracting (negative L̇ref) the Coulomb
tether formation, the initial out-of-plane angle oscillations will decrease or increase respectively.
The contracting operation is of particular interest in that it has potential applications in space struc-
ture’s docking operations. These docking operations might require the final angular oscillations
to be with in prescribed limits to satisfy mechanical mating tolerances. The in-plane angle can
be asymptotically controlled by using the Coulomb force. This now leaves the out-of-plane angle
and we are interested in developing certain bounds on the initial out-of-plane oscillation such that
the finial oscillation is within the prescribed limits. This paper investigates analytical solutions for
out-of-plane angle EOM when the reference length rate (L̇ref) is a constant. For the reconfiguration
problem, the user is free to prescribe an appropriate rate of change for the reference length (L̇ref)
within the stable regions discussed in Reference 12.
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ANALYTICAL SOLUTION FOR OUT-OF-PLANE MOTION

The linearized equation of motion for the charged spacecraft out-of-plane angular motion is given
in Eq. (1a) as

θ̈ + 2
L̇ref

Lref
θ̇ + 4Ω2θ = 0 (5)

Note that the spacecraft charges qi do not enter this linearized equation. Only with large out-of-
plane motion does the spacecraft charge begin to have an influence. For a constant reference length
rate (L̇ref), the reference length is written as

Lref(t) = L0 + L̇ref t (6)

where L0 is the initial reference separation distance and t is the time. Substituting Eq. (6) back into
the out-of-plane equation of motion given in Eq. (5) results in

θ̈ + 2
L̇ref

L0 + L̇ref t
θ̇ + 4Ω2θ = 0 (7)

An analytical solution for the equation of motion given in Eq. (7) is obtained by transforming the
equation to the Bessel equation.14 The detailed derivation of the analytical solution using Bessel
functions is presented in the appendix. The analytical solution to the out-of-plane differential equa-
tion in (5) is given by

θ(t) =
1

L0 + L̇ref t

(
A sin

(
2ΩL0

L̇ref
+ 2Ωt

)
+B cos

(
2ΩL0

L̇ref
+ 2Ωt

))
(8)

The arbitrary constants A and B can be evaluated using the initial conditions. Let the initial condi-
tions (i.e. at t = 0) of out-of-plane angle (θ) and its rate (θ̇) be

θ(0) = θ0 (9)

θ̇(0) = θ̇0 (10)

From Eq. (8), the expression for θ at t = 0 can be written as

θ(0) =
1
L0

(
A sin

(
2ΩL0

L̇ref

)
+B cos

(
2ΩL0

L̇ref

))
(11)

Comparing Eq. (9) and Eq. (11) leads to

A sin
(

2ΩL0

L̇ref

)
+B cos

(
2ΩL0

L̇ref

)
= L0θ0 (12)

Taking the time derivative of Eq. (8), the expression for angle rate (θ̇) is written as

θ̇(t) =
−L̇ref

(L0 + L̇ref t)2

[
A sin

(
2ΩL0

L̇ref
+ 2Ωt

)
+B cos

(
2ΩL0

L̇ref
+ 2Ωt

)]
+

2Ω
L0 + L̇ref t

[
A cos

(
2ΩL0

L̇ref
+ 2Ωt

)
−B sin

(
2ΩL0

L̇ref
+ 2Ωt

)]
(13)
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The expression for θ̇(t) at t = 0 is derived from Eq. (13) as

θ̇(0) =
−L̇ref

L2
0

[
A sin

(
2ΩL0

L̇ref

)
+B cos

(
2ΩL0

L̇ref

)]
+

2Ω
L0

[
A cos

(
2ΩL0

L̇ref

)
−B sin

(
2ΩL0

L̇ref

)]
(14)

Again, by comparing Eq. (14) and the initial condition given in Eq. (10), we find

A

[
−L̇ref

L2
0

sin
(

2ΩL0

L̇ref

)
+

2Ω
L0

cos
(

2ΩL0

L̇ref

)]
+B

[
−L̇ref

L2
0

cos
(

2ΩL0

L̇ref

)
− 2Ω
L0

sin
(

2ΩL0

L̇ref

)]
= θ̇0 (15)

Solving equations Eq. (12) and Eq. (15) for A and B yields

[
A
B

]
=

 sin
(

2ΩL0

L̇ref

)
cos
(

2ΩL0

L̇ref

)
−L̇ref
L2

0
sin
(

2ΩL0

L̇ref

)
+ 2Ω

L0
cos
(

2ΩL0

L̇ref

)
−L̇ref
L2

0
cos
(

2ΩL0

L̇ref

)
− 2Ω

L0
sin
(

2ΩL0

L̇ref

)−1[
L0θ0

θ̇0

]
(16)

which leads to the following solutions for A and B:

A =

(
L̇refθ0 + L0θ̇0

2Ω

)
cos
(

2ΩL0

L̇ref

)
+ L0θ0 sin

(
2ΩL0

L̇ref

)
(17)

B = −

(
L̇refθ0 + L0θ̇0

2Ω

)
sin
(

2ΩL0

L̇ref

)
+ L0θ0 cos

(
2ΩL0

L̇ref

)
(18)

Thus, Eq. (17) and Eq. (18) give the expressions for the constants of integration A and B.

The analytical solution given in Eq. (8) can be further simplified into a single trigonometric
function with a phase angle and amplitude. Recall the trigonometric identity

X sin θ + Y cos θ =
√
X2 + Y 2 cos

(
θ − tan−1

(
X

Y

))
(19)

Now, using this trigonometric identity, the analytical expression for θ(t) given in Eq. (8) is rewritten
as

θ(t) =
1

L0 + L̇ref t

√
A2 +B2 cos

(
2ΩL0

L̇ref
+ 2Ωt− tan−1

(
A

B

))
(20)

Therefore, Eq. (20) provides the final form of the analytical solution with constantsA andB defined
in Eq. (17) and Eq. (18).

BOUNDS ON INITIAL OUT-OF-PLANE ANGLE

This section investigate analytical bounds on how much out-of-plane motion will be present at
the end of the Coulomb tether constant expansion or contraction maneuver. With such results it is
possible to predict if conventional thrusting must be employed to reduce the current out-of-plane
motion before engaging the maneuver. By studying Eq. (20), the time varying amplitude of the
out-of-plane angle θ is written as

[θ(t)]amp =
1

L0 + L̇ref t

√
A2 +B2 (21)
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The amplitude expression in Eq. (21) is further simplified by substituting the expressions for A and
B from Eq. (17) and Eq. (18). The simplified amplitude expression in terms of initial out-of-plane
angle θ0 and initial rate θ̇0 is given by

[θ(t)]amp =
1

L0 + L̇ref t

( L̇refθ0 + L0θ̇0

2Ω

)2

+ (L0θ0)2

 1
2

(22)

The analytical solution using Bessel functions and the time-varying amplitude expression holds
good for both expansion and contraction of the separation distance between the two satellites. Ref-
erence 12 discusses that during expansion the out-of-plane oscillations are reduced due to angular
momentum conservation. Therefore, regardless of the initial out-of-plane angle at the beginning of
the expansion, one is guaranteed to have a smaller out-of-plane oscillation at the end of an expansion
operation. The vise-versa is true for contracting the 2-craft Coulomb tether. The initial out-of-plane
oscillation will increase as the satellites are brought closer. We are interested in establishing a bound
on the initial oscillation such that the final oscillations at the end of the contraction will be with in
a prescibed limit. Let the maximum initial out-of-plane oscillation be θ0max while the initial angular
rate is zero. The amplitude expression in Eq. (22) is then rewritten as

[θ(t)]amp =
θ0max

L0 + L̇ref t

( L̇ref

2Ω

)2

+ (L0)2

 1
2

(23)

For the given initial and final separation distances, and the constant rate of change of separation
distance (L̇ref), the total time involved for the contraction operation can be determined. Let this
time be given by tmax. The desired bound on the out-of-plane oscillation amplitude at the end of the
time tmax is given by [θ(tmax)]amp. Inserting these values in Eq. (23) results in

[θ(tmax)]amp >
θ0max

L0 + L̇ref tmax

( L̇ref

2Ω

)2

+ (L0)2

 1
2

(24)

Rearranging Eq. (24) for θ0max gives

θ0max 6 [θ(tmax)]amp
(L0 + L̇ref tmax)√(

L̇ref
2Ω

)2
+ (L0)2

(25)

This inequality given in Eq. (25) establishes the bounds on the initial out-of-plane angle value.
Satisfying this inequality leads to a final out-of-plane oscillation that is less than the permissible
value of [θ(tmax)]amp. If out-of-plane thrusting is only to be employed if the final out-of-plane
motion is larger than a prescribed amount, then Eq. (25) provides a convenient and simple check.

SMOOTHED RECONFIGURATION RATES

Reference 12 presents a charge feedback strategy to reconfigure a nadir-aligned 2-craft Coulomb
tether. Let us first review this reconfiguration control strategy. Recall that the parameter Q = q1q2

be the charge product of the 2 spacecraft. The charge feedback strategy in Reference 12 is given by

Q(t) = Qref(t) + δQ(t) (26)
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Figure 2 Time history of the smooth transition function F (t).

where the reference charge is computed using the equilibrium charge condition for a constant refer-
ence length Lref using:11, 6

Qref = −3Ω2L
3
ref
kc

m1m2

m1 +m2
(27)

and the charge feedback component δQ is determined through

δQ =
m1m2L

2
ref(t)

(m1 +m2) kc
(−C1δL− C2δL̇) (28)

To perform a constant rate nadir-aligned Coulomb tether expansion or contraction, the reference
length rate L̇ref is switched instantaneously from 0 to non-zero at time t0, and back to zero at the
end of the reference maneuver. The system cannot produce these required infinite accelerations with
finite charges, and thus some transient error motion results which the charge feedback strategy must
stabilize. This section investigates how to smooth this on/off transition to minimize this effect.

The function F (t) jumps smoothly from zero to one at the point t = t0 as illustrated in Figure 2.
This function is based on the hyperbolic tangent function tanh (x). To represent a value jumping
up at t = t0, use

F (t) =
1
2

+
1
2

tanh
(
t− t0
σ

)
(29)

The hyperbolic tangent function used in Eq. (29) is a monotonically increasing with the value
approaching −1 as t → −∞ and approaching +1 as t → ∞. A plot of this function is shown
in Figure 2 illustrating the symmetry about the point t = t0. An examination of the figure also
illustrates that the appreciable change in the value of the hyperbolic tangent function occurs while
t lies in the interval (t0 − 16σ) and (t0 + 16σ). In fact, because of the finite precision involved
in computing, the value of hyperbolic tangent function will get rounded off to +1 for values of t
beyond (t0 + 16σ), and to −1 for values of t below (t0 − 16σ). The smoothing time interval can
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Ḟ (t)

Figure 3 Time history of the time derivative of the smooth transition function (Ḟ (t)).

be made as small as desired by choosing an appropriate value of σ. Moreover, t = t0 is a point of
inflection with the value of the function equal to 1/2 . To smooth the drop to zero commanded rate
at the end of the maneuver the function

Fe(t) = 1.0− F (t) (30)

can be used.

The function F (t) is infinitely smooth and differentiable to any order. Note that the derivatives of
all orders will approach to zero near at (t0 ± 16σ). This closely matches the ideal characteristics of
the constant rate function before and after the jump. The time derivative of function F (t) is obtained
using the identity sech2(x) = 1.0− tanh2 (x), as

Ḟ (t) =
1

2σ
sech2

(
t− t0
σ

)
(31)

The derivative of F (t) given in Eq. (31) is plotted in Figure 3. It can be seen from the plot that the
Ḟ (t) reaches its maximum value at t = t0.

The commanded length rate L̇ref around the initial time t0 is now modified to be

L̇ref(t) = F (t) · L̇des (32)

where L̇des is the desired constant expansion or contraction rate. The smoothed reference length
acceleration at any given point of time is given by

L̈ref(t) =
L̇des

2σ
sech2

(
t− t0
σ

)
(33)

The maximum acceleration occurs at t = t0 and is written as

L̈ref(t0) =
L̇des

2σ
(34)
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The change in reference length during this smooth transition is determined by integrating Eq. (32)
over the time period (t0 − 16σ) to (t0 + 16σ). The expression for this change in reference length is
given as

Lref = L̇des

[
1
2
t+

1
2

ln
(

cosh
(
t− t0
σ

))]t0+16σ

t0−16σ

(35)

Next, the time period over which this transition should take place must be determined. In other
words, the value of σ must be determined. The limiting factor for sigma is the maximum available
charge that a spacecraft can safely produce. Consider the nonlinear separation distance equation of
motion given below

L̈ = (2nψ̇ + 3Ω2)L+
kc
m1

Q
1
L2

m1 +m2

m2
(36)

For an ideal equilibrium case, the in-plane angle rate (ψ̇) is zero and the separation distance L will
track Lref. Implementing this ideal one-dimensionally constrained scenario in Eq. (36) results in

L̈ref = 3Ω2Lref +
kc
m1

Q
1
L2

ref

m1 +m2

m2
(37)

Substituting the maximum reference length acceleration from Eq. (34) in to Eq. (37) and approxi-
mating Lref as initial separation length L0 yields

L̇des

2σ
= 3Ω2L0 +

kc
m1

Q
1
L2

0

m1 +m2

m2
(38)

Note, the reference length (Lref(t0)) at maximum reference acceleration (t = t0) is ideally found by
integrating the reference length rate (L̇ref). To avoid the complex integral during the computation of
σ, we are using the initial separation distance L0 with minimal impact on the resulting maximum
acceleration prediction. Similarly, while finding the σ needed at the end of the maneuver, the final
separation distance (Lf ) will be used as an approximation. Let the maximum available charge
product beQmax. Using this information in Eq. (38) and rearranging the equation gives the minimum
σ required as

σmin =
L̇des

6Ω2L0 + 2 kc
m1
Qmax

1
L2

0

m1+m2
m2

(39)

In all following numerical simulations, we will use at least twice this minimum σ, so that our charge
requirement is well with in the limit at any given time.

The reference charge product (Qref) used in this modified reconfiguration feedback control strat-
egy is also slightly different from the one used in Reference 12. Usually, the reference charge
product Qref is calculated by setting the left hand side of the equation Eq. (37) to zero. That is, the
reference length acceleration L̈ref is set to zero. Instead the new reconfiguration control strategy
incorporates the desired reference separation acceleration into the reference charge product compu-
tation. The modified reference charge product is given as

Qref =
L2

ref
kc

m1m2

m1 +m2
(L̈ref − 3Ω2Lref) (40)
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This reference charge product could not be used in Reference 12 because the reference length ac-
celeration (L̈ref) grows to infinity due to the Heaviside step function. The modified Qref reduces the
amount of tracking errors by feed-forward canceling the L̈ref term in the closed-loop equations in
Eq. (1c). However, the reference charge product in Eq. (40) is computed assuming the ideal sce-
nario where the in-plan angle remains zero. Studying the linearized in plane equations of motion
in Eq. (1b) shows that a non-zero L̇ref will cause ψ to become non-zero. Due to the closed-loop
stability we are guaranteed that ψ will remain small and stable. With only line-of sight electrostatic
forces it it impossible to perform this reconfiguration maneuver and maintain ψ zero at all time.
This would required in-plane lateral thrusting which is not available with Coulomb forces.

NUMERICAL SIMULATIONS

In this section, the performance of the smoothed reference length rate transition function and
the new reference charge product is illustrated using simulations. This is followed by numeric
simulations to illustrate the analytical solution of the out-of-plane motion and to verify the final
oscillation predictions.

The Coulomb tether performance with a smoothed reference length rate is simulated in two dif-
ferent manners. First the linearized spherical coordinate differential equations in Eqs. (1) are inte-
grated. This simulation illustrates the expected linear performance of the smoothed reference length
rate and the new reference charge product. Second, the linearized results are compared with those
obtained from integration of the exact nonlinear equation of motion of the deputy satellites given by

r̈1 +
µ

r3
1

r1 =
kc
m1

Q

L3
(r1 − r2) (41a)

r̈2 +
µ

r3
2

r2 =
kc
m2

Q

L3
(r2 − r1) (41b)

where r1 = rc + ρ1 and r2 = rc + ρ2 are the inertial position vectors of the the masses m1 and
m2, while L =

√
(r2 − r1) · (r2 − r1) and µ is the gravitational coefficient. After integrating the

motion using inertial Cartesian coordinates, the separation distance L, as well as the in-plane and
out-of-plane angles ψ and θ, are computed in post-processing using the exact kinematic transforma-
tions.

The first maneuver considered expands the Coulomb tether formation from 25m to 35m in 1.8
days. The simulation parameters used are listed in Table 1. The values of the initial attitude (ψ(0),
θ(0)) and the separation length error (δL(0)), as well as all initial rates, are set to zero. In the re-
configuration simulations in reference 12, the initial tracking errors are due to both initial condition
errors and the sudden jumps in reference length (Lref) rate due to the Heaviside function. In order to
isolate and show that the oscillations due to the latter have been reduced, the initial conditions are
all taken to be zero.

Before running the simulation, the necessary σ values must be computed. Initially, at the start of
the reconfiguration the reference length is 25 m and the maximum available charge on each craft is
5 µC. The minimum required σ is calculated using Eq. (39) as

σ1min = 6.1905

Similarly, the minimum σ value needed at the end of reconfiguration is calculated using the final
separation distance of 35 m as σ2min = 10.70. The following numerical results use σ1 = 15 and

11



Table 1 Input parameters used in orbit-radial reconfiguration simulation with smooth tran-
sition

Parameter Value Units

m1 150 kg
m2 150 kg
kc 8.99× 109 Nm2/C2

Ω 7.2915× 10−5 rad/sec
δL(0) 0.0 m
ψ(0) 0.0 rad
θ(0) 0.0 rad
C1 12Ω2

C2 2.4249Ω

σ2 = 30 which are more than twice the minimum required to avoid charge saturation. The σi
values only determine the required maximum required acceleration of the open-loop feedforward
control components. Using this safety factor of 2 helps avoid charge saturation when the shape error
feedback control component is added.

Figure 4(a) shows the Coulomb tether motion for increasing the separation distance from 25m
to 35m in the linearized spherical coordinates (ψ, θ, δL), along with the spherical coordinates de-
duced from the full nonlinear equations shown as dotted lines. The expansion is done in 1.8 days.
Figure 4(b) also shows the simulation of the same maneuver but, with out the smoothed reference
length transition function. By comparing the two figures it can be concluded that the oscillations
in the in-plane angle (ψ) and separation distance error (δL) are reduced approximately by 10% and
20%, respectively. The in-plane angle is coupled to the separation distance error equation through
the in-plane angle rate (ψ̇), which is not modeled in to the reference charge. This is the reason for
the initial oscillation even though the initial error in the states are zero. The out-of-plane angle (θ) is
constantly zero since it is decoupled from the other two states and its initial states are zero to begin
with. Figure 5(a) shows the spacecraft control charge q1 (on craft 1) for both the linearized and full
nonlinear simulation models. Both are nearly on top of the reference value pertaining to the static
equilibrium at each instant of time. The spikes in control charge observed in the graph are due to
the finite reference length accelerations during the smooth reference length rate transition. Note that
spikes are well within the 5 µC charge saturation level for this example.

In order to illustrate how well the system is tracking the prescribed reference trajectory Lref(t),
the time histories of separation distance L(t) and the time histories of rate of change of separation
distance L̇(t) are shown in Figure 5(b) and Figure 5(c) , respectively. Figure 5(b) shows that the
reference separation distance (Lref(t)) increases linearly until 1.8 days before settling to a constant
value and both the linear and inertial nonlinear simulations track the reference separation distance
perfectly. Figure 5(c) illustrates that the rate of change of the reference separation distance (L̇ref(t))
is a smoothed representation of a discrete step change.

Now, in order to verify and illustrate the analytical out-of-plane motion solution, a maneuver
is considered involving the contraction of the separation distance between the two satellites from

12
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(a) Time histories of length variation δL, in-plane rotation angle ψ, and out-of-plane rotation angle θ
for smoothed reference length rate transition.
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(b) Time histories of length variation δL, in-plane rotation angle ψ, and out-of-plane rotation angle θ
for reference length rate transition using Heaviside function.

Figure 4 Coulomb tether states simulation results for expanding the spacecraft sep-
aration distance from 25 m to 35 m in 1.8 days. The feedback gains are C̃1 = 12 and
C̃2 = 2.4249.

25 m to 15 m in 1.8 days. When the satellite formation is expanded the amplitude of oscilla-
tion decreases due to conservation of momentum. Whereas, while contracting the formation, the
amplitude of out-of-plane oscillation increases due to conservation of momentum. This increased
out-of-plane oscillation has the potential to make the charge control laws developed based on small
angle linearization inaccurate and destabilize the formation. Therefore, it is important to show that
the out-of-plane angle oscillation can be kept sufficiently small during contraction maneuver by
placing bounds on the initial oscillation. Hence, the choice of contraction maneuver for illustrating
the out-of-plane analytical solution.

First, let us calculate the bound on the initial out-of-plane angle (θ) value so that the final oscilla-
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Figure 5 Charge and tether length simulation results for expanding the spacecraft
separation distance from 25 m to 35 m in 1.8 days. The feedback gains are C̃1 = 12
and C̃2 = 2.4249.
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Figure 6 The time histories of the out-of-plane angular motion (θ) using the ana-
lytical solution and by simulating the full nonlinear equation. The initial θ value is
0.06 radians, resulting in the final out-of-plane angular oscillation amplitude of 0.1
radians.

tion will be not exceed 0.1 rad. Using Eq. (22) and substituting the corresponding values gives

θ0max 6 [θ(tmax)]amp
(L0 + L̇ref tmax)√(

L̇ref
2Ω

)2
+ (L0)2

6 0.06 rad (42)

Therefore, the maximum initial out-of-plane angle should not exceed 0.06 rad. Assume that while
starting the contraction maneuver the out-of-plane angle is at its maximum possible value. This
results in setting the initial out-of-plane angle and angle rate as θ = 0.06 radians and θ̇ = 0 rad/sec,
respectively. Except for the smoothing function F (t) being turned off, all other parameters and
initial values are same as the previous simulation.

The out-of-plane angle equation of motion shown in Eq. (5) is the linearized decoupled equation.
As in the previous simulation, we compare its performance with the full nonlinear equation given
by Eq. (41). The simulation results are illustrated in Figure 6. The analytical solution in Eq. (8) of
the linearized equation for the out-of-plane angle (θ) closely follows the actual out-of-plane angle
time history obtained by simulating the full nonlinear equation and error is with in±0.0017 radians.
The amplitude of the oscillation found using the equation Eq. (22) is shown as the bound and the
final out-of-plane angular oscillation amplitude is 0.1 radians as expected.

Recall that the analytical solution for out-of-plane motion and the bound on the initial oscillation
is derived assuming that the reference length rate (L̇ref) is a constant. But, in the subsequent section
the smooth transition function (F (t) is used at the beginning and end of the maneuver. The effect
of this smooth transition function on the out-of-plane angle oscillation prediction is of interest.
Consider the same maneuver of expanding the Coulomb tether formation from 25m to 35m in 1.8
days used in the first simulation. Set the initial out-of-plane angle and rate as θ = 0.1 radians
and θ̇ = 0 rad/sec, respectively. Again, all other parameters and initial values are same as the
first simulation. The out-of-plane motion based on the analytical solution (continuous line) and the
full nonlinear equation simulation with smoothed reference length rates (dashed line) are shown in
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Figure 7. There is no appreciable difference in the out-of-plane motion history from the nonlinear
simulation and the error is with in ±0.0024 radians. It still very closely follows the analytical
solution results in spite of the smoothed reference length rate.
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Figure 7 The time histories of the out-of-plane angular motion (θ) using the analytical
solution and by simulating the full nonlinear equation with smoothed transition rates.

CONCLUSION

The analytical solution for the linearized out-of-plane angle (θ) equation of motion for the ideal
constant rate reconfiguration problem is developed using the Bessel functions. This solution is used
to obtain bounds on the initial out-of-plane angle so that the final out-of-plane angular oscillations
is within the prescribed limit. Numerical simulations of the full nonlinear motion are carried out
comparing the linearized performance predictions to the actual nonlinear system response. Further,
a smooth transition function is used in the beginning and end of the prescribed constant reference
length rate. This eliminates the abrupt increase or decrease of the reference length rate resulting in a
finite acceleration at the points of transition. Simulation results show very good tracking with sub-
stantially reduced transient error motion. The introduction of this smoothing function has negligible
effect on the idealized out-of-plane oscillation during the reconfiguration maneuver considered.
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APPENDIX

This section translates the out-of-plane equations of motion into the form of a standard form of
the Bessel equation. Define a new variable z as follows

z = L0 + L̇ref t (43)
dz
dt

= L̇ref (44)

Substituting this new variable z given in Eq. (43) into Eq. (7), and changing the derivatives with
respect to t (time) to derivatives with respect to z results in

d2θ

dz2
+

2
z

dθ
dz

+ k2θ = 0 (45)

where k = 2Ω
L̇ref

is a constant parameter of this reconfiguration maneuver. The transformed equation
in Eq. (45) is not yet in the standard Bessel equation form and needs one more transformation.
Assume, the out-of-plane angle θ to be of the form

θ = z−
1
2 y(z) (46)

Now, the first and second derivative of θ with respect to z can be written as

dθ
dz

= z−
1
2

dy
dz
− 1

2
yz−

3
2 (47)

d2θ

dz2
= z−

1
2

d2y

dz2
− z−

3
2

dy
dz

+
3
4
yz−

5
2 (48)

Using Eq. (46), Eq. (47) and Eq. (48), the θ equation of motion given in Eq. (45) can be transformed
as

d2y

dz2
+

1
z

dy
dz

+
(
k2 − (1/2)2

z2

)
y = 0 (49)
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The standard form of the Bessel equation given in Reference 14 is as follows

d2y

dz2
+

1
z

dy
dz

+
(
k2 − v2

z2

)
y = 0 (50)

and the complete solution for Eq. (50) when v is non-integral, is given by

y = AJv(kz) +BJ−v(kz) (51)

where A and B are constants whose values can be determined using initial conditions. The Bessel
functions Jv(kz) and J−v(kz) are given by

Jv =
∞∑
r=0

(
(−1)r

(
1
2kz
)v+2r

r!Γ(v + r + 1)

)
(52)

J−v =
∞∑
r=0

(
(−1)r

(
1
2kz
)−v+2r

r!Γ(−v + r + 1)

)
(53)

where Γ(∗) is the Gamma function defined as

Γ(z) =
∫ ∞

0
e−ttz−1dt (54)

By comparing the equation of motion (EOM) given in Eq. (49) and the standard Bessel equation
given in Eq. (50), the analytical solution for the EOM can be written as

y = AJ1/2(kz) +BJ−1/2(kz) (55)

The Bessel function J1/2(kz) can be written using Eq. (52) as

J1/2(kz) =

(
1
2kz
)1/2

Γ(3/2)

{
1− (kz)2

2.3
+

(kz)4

2.3.4.5
− · · ·

}
(56)

The value of the function Γ(3/2) is calculated to be 1
2π

1
2 . Using this value and rearranging Eq. (56),

one arrives at

J1/2(kz) =
(

2
πkz

)1/2{
kz − (kz)3

2.3
+

(kz)5

2.3.4.5
− · · ·

}
J1/2(kz) =

(
2
πkz

)1/2

sin(kz) (57)

Similarly, the expression for the J−1/2(kz) boils down to

J−1/2(kz) =
(

2
πkz

)1/2

cos(kz) (58)

The analytical solution for the out-of-plane angular motion θ can be written by combining Eq. (46),
Eq. (55), Eq. (57) and Eq. (58) as

θ = z−
1
2

(
A

(
2
πkz

)1/2

sin(kz) +B

(
2
πkz

)1/2

cos(kz)

)
(59)
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Substituting back the definitions of z and k in Eq. (59), one arrives at the expression for θ as a
function of time t, which is written as

θ(t) =

(
L̇ref

πΩ

)1/2
1

L0 + L̇ref t

(
A sin

(
2ΩL0

L̇ref
+ 2Ωt

)
+B cos

(
2ΩL0

L̇ref
+ 2Ωt

))
(60)

The term
(
L̇ref
πΩ

)1/2
is a constant and can be absorbed in to the arbitrary constants A and B. There-

fore, Eq. (60) can be rewritten as

θ(t) =
1

L0 + L̇ref t

(
A sin

(
2ΩL0

L̇ref
+ 2Ωt

)
+B cos

(
2ΩL0

L̇ref
+ 2Ωt

))
(61)
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