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HYBRID CONTROL OF ORBIT NORMAL AND
ALONG-TRACK 2-CRAFT COULOMB TETHERS

Arun Natarajan∗ and Hanspeter Schaub†

The dynamics and stability of a charged two craft formation with nomi-
nal fixed separation distance (Coulomb tethers) is studied where the cluster
is aligned with either the along-track or orbit normal direction. Unlike the
charged 2-craft formation scenario aligned along the orbit radial direction,
a feedback control law using inter-spacecraft electrostatic Coulomb forces
and the differential gravitational accelerations is not sufficient to stabilize
the Coulomb tether length and the formation attitude. Therefore, a hybrid
feedback control law is presented which combines conventional thrusters and
Coulomb forces. The Coulomb force feedback requires measurements of sep-
aration distance error and error rate, while the thruster feedback is in terms
of Euler angles and their rates. This hybrid feedback control is designed
to asymptotically stabilize the satellite formation shape and attitude while
avoiding plume impingement issues. The effects of differential solar drag on
the formation and the ability of the controller to withstand this disturbance
is also studied.

INTRODUCTION

Using inter-vehicle electrostatic Coulomb forces for satellite formation flying is a rela-
tively new and emerging concept. Pioneering work in developing this Coulomb formation
flying concept is presented in references 1, 2, 3. Coulomb formation flying works on the
principle that by controlling the charge of the spacecraft the inter-craft Coulomb forces can
be changed, which in turn can be used to control the relative motion of the spacecraft. With
high Isp fuel efficiencies1,2 ranging between 108 − 1013 seconds and low Watt-level power
requirements, this method of propulsion is considered to be virtually propellantless. The
other advantage of this method over conventional thrusters includes clean propulsion with-
out thruster plume contamination issues with neighboring satellites. However, the Coulomb
propulsion method also has certain inherent limitations. The Coulomb electrostatic force
magnitude is inversely proportional to the square of the separation distance, resulting in
the increase of the nonlinear coupling of spacecraft equations of motion. Additionally, the
Coulomb force effectiveness is diminished in a space plasma environment due to the pres-
ence of charged plasma particles. The electric field strength drops off exponentially with
increasing separation distance. The severity of this drop is characterized using the Debye
length.4,5 For low earth orbits (LEO), the Debye length is of the order of millimeters to
centimeters, making the Coulomb formation flying concept impractical at these low orbit
altitudes.6 At high to geostationary orbit (GEO) altitudes the plasma environment is hotter
and less dense. As a result the Debye length is much larger and varies between 100-1000
meters depending on the solar activity cycles. Further, the electrostatic charging data of the
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SCATHA spacecraft7 confirms that spacecraft can charge at least to kilovolt levels in GEO
environments, and that the spacecraft charge can be actively controlled through charge
emission devices. Thus, Coulomb formation flying concept appears to be feasible at GEO.
The currently flying CLUSTER spacecraft also use active charge control.8 However, the
charge emission is applied to zero out the spacecraft potential and not to control relative
motion.

References 9 and 10 introduce the concept of a Coulomb tether. Here a conventional
mechanical tether cable connecting two crafts is replaced by an electrostatic force which
acts as a virtual tether. Conventional tethers are limited to tensile forces whereas Coulomb
tethers allow both tensile and compressive forces. However, while traditional spacecraft
tether missions consider very large separation distances of multiple kilometers, the Coulomb
tether concept is only viable for separation distances up to about 100 meters because of the
electrical field strength drop off. Reference 9 studies the stabilization of the simple nadir-
aligned static 2-craft Coulomb tether structure. Compared to the previous works on static
Coulomb structures,2,11,12,3 Reference 9 is the first study to introduce a charge feedback
law to stabilize a charged spacecraft cluster to a specific shape and orientation. Coulomb
forces are inter-spacecraft forces and cannot control the inertial angular momentum of the
formation. Hence, stability characteristics of orbital rigid body motion under a differential
gravity field is applied to a Coulomb tethered two-spacecraft system to develop an active
charge feedback control. With this control the spacecraft separation distance is maintained
at a fixed value, while the coupled formation gravity gradient torque is exploited to stabilize
the tether attitude about the orbit radial direction. Further, reference 10 investigates the
reconfiguring of a nadir-aligned 2-craft Coulomb tether formation by forcing the craft to
move apart or come closer using the Coulomb force and again using the gravity gradient to
stabilize the formation orientation relative to the orbit radial direction. Gravity gradient
rigid satellites or conventional tethers have only bounded stability along the orbit radial di-
rection.13 Similarly, mechanical tether deployment studies in references 14 and 15 develop
length rate laws that guarantee only bounded stability for attitudes. In comparison, the
feedback control laws for the Coulomb tether regulation problem in reference 9 and recon-
figuration problem in reference 10 guarantee asymptotic stability for separation distance
and in-plane angle. This asymptotic stability is achieved by exploiting the charged relative
motion of the spacecraft and varying the separation distance (virtual tether length).

Similar to the study of rigid axially symmetric body under the influence of the gravity
gradient torque, we know that there are two other relative equilibriums of the charged
2-craft problem other than the orbit radial or nadir direction. These are along the orbit
normal and the along-track direction12 shown in Figure 1. In particular, zero tension is
required between the two crafts aligned with the along-track direction to maintain the static
unperturbed formation. On the other hand, repulsive forces are required to maintaining
the cluster along the orbit normal direction. It is worth noting that both zero tension and
compression cases considered are not possible with conventional cable tethers.

This paper studies the stability of a two craft formation about along-track and orbit-
normal relative equilibrium configurations. A feedback control law is introduced to asymp-
totically stabilize both the shape and orientation of this cluster. While the charged 2-craft
formation aligned along the orbit radial direction could stabilize the cluster using only
Coulomb forces, this study will investigate a hybrid feedback control strategy where both
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Figure 1 Static Coulomb Tether Formation Aligned with Along-Track Direction.

conventional thrusters and Coulomb forces are used. The goal is to use the thrusters as
little as possible and make the Coulomb forces provide the bulk of the actuation require-
ment. However, to employ small-force thrusters like ion-engines in close proximity to other
spacecraft, great care must be taken that the thruster exhaust plume does not impinge on
the neighboring craft. These plumes can be very caustic and cause damage to on-board
sensors. The control strategy must be designed such that the thruster is never directed at
the 2nd craft.

The formation is studied at GEO where the Debye lengths are large enough to consider
Coulomb spacecraft missions. Reference 6 establishes that the differential solar drag is
the largest disturbance acting on a Coulomb formation at GEO. Therefor, the effects of
differential solar drag on the formation and the ability of the controller to withstand this
disturbance is also studied.

CHARGED RELATIVE EQUATIONS OF MOTION

Along-Track Configuration

This section derives the equations of motion of a 2-craft Coulomb tether which is nomi-
nally aligned with the along-track direction ôθ of the orbit or Hill frame O : {ôr, ôθ, ôh, }
shown in Figure 1. This derivation closely follows the derivation of the equations of motion
for crafts aligned along the orbit radial direction that is given in detail in Reference 9. Fig-
ure 1 illustrates a static 2-craft formation in the orbit velocity direction with a separation
distance of Lref. Let Q = q1q2 be the charge product of the spacecraft charges qi. The
reference charge product Qref required to maintain this static formation can be computed
using the Clohessy-Wiltshire-Hill’s equations13,16,17 for charged spacecraft. The analytical
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Figure 2 (3-1) Euler Angles Describing the Coulomb Tether Orientation
for the Along-Track Relative Equilibria

expression of Qref for the along-track equilibrium is written as11

Qref = 0 (1)

The required relative equilibrium charge is zero because this Coulomb thether configura-
tion is equivalent to a lead-follower spacecraft formation. As a consequence the necessary
Coulomb tether tension is zero. However, this static equilibrium is unstable, similar to
a rigid rod being unstable if aligned with ôθ. The separation distance instability can be
stabilized by continuously varying the charges and generating positive or negative tension
within the Coulomb tether.

Of interest are the coupled separation distance dynamics and the orientation of the
Coulomb tether. Consider the perturbed satellite 1 position (x1, y1, z1) relative to the
equilibrium position. The Coulomb tether is only a 1-dimensional structure and thus only
requires the (3− 1) Euler angles (ψ, φ) to define its orientation relative to the orbit frame
O. The virtual Coulomb structure body frame B : {b̂1, b̂2, b̂3, } is defined such that B = O
for zero ψ and φ angles, while b̂2 tracks the tether heading. Rotations about b̂2 (θ) can
be neglected with point mass assumption of the crafts. The Euler angles are illustrated in
Figure 2. Following the same steps as in reference 9, the differential equation of motion for
the charged separation distance is given by

L̈ = 2Ωψ̇L+
kc

m1
Q

1
L2

m1 +m2

m2
(2)

Next the separation distance equations of motion are linearized about small variations in
length δL and small variations in the product charge term δQ. The fixed reference separation
length Lref is determined by the mission requirement. The reference charge product term
for this along-track configuration is known to be zero from Eq. (1).

L = Lref + δL (3a)
Q = Qref + δQ (3b)
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Note that these developments treat the required changes in the charge product δQ as the
control variable. Substituting these L and Q definitions into Eq. (2) and linearizing leads
to

δL̈ = (2ΩLref)ψ̇ +
(
kc

m1

1
L2

ref

m1 +m2

m2

)
δQ (4)

Note that this relationship is coupled to the angular in-orbit-plane rate ψ̇. In order to
obtain an expression for this, a stability analysis using the gravity gradient is employed.
The derivation of the expression for angular perturbation closely follows the derivation
given in reference 9 for the orbit radially aligned Coulomb tether. The linearized attitude
dynamics of the Coulomb tether body frame are written along with the separation distance
equation as:

φ̈+ Ω2φ = 0 (5a)

ψ̈ + 2
Ω
Lref

δL̇− 3Ω2ψ = 0 (5b)

δL̈− (2ΩLref)ψ̇ −
(
kc

m1

1
L2

ref

m1 +m2

m2

)
δQ = 0 (5c)

Note that the out-of-plane angle φ is decoupled from the separation distance error δL and
in-plane angle ψ. Further, the linearized φ motion is that of a marginally stable linear
oscillator.

ôh

ôθ

ôr
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Figure 3 (2-1) Euler Angles Describing the Coulomb Tether Orientation
for the Orbit Normal Relative Equilibria

Orbit Normal Configuration

The derivation of the equations of motion for a 2-craft Coulomb tether along orbit normal
direction follows the same steps as those of the along-track equilibrium. The analytical
expression for the orbit normal relative equilibria charge product Qref is written as11

Qref = q1q2 = Ω2L
3
ref

kc

m1m2

m1 +m2
(6)
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Note that Qref > 0, which requires a repulsive Coulomb force to establish this charged
equilibrium. A physical structure in this orientation must compensate for compressive
forces, a task conventional tethers are incapable off.

Again, consider small deviations about the equilibrium position and let the (2− 1) Euler
angles (θ, φ) represent the tether body frame B attitude with respect to the orbit frame O.
Here the axis b̂3 tracks the orientation of the orbit-normal tether configuration. The Euler
angles are illustrated in Figure 3. Note these angle definitions reflect rotations about the
same body axes b̂i as in the along-track description. However, their zero values are offset
by 90 degrees to reflect the different nominal tether orientation.

The differential equation for the separation distance is given by

L̈ = −Ω2L+
kc

m1
Q

1
L2

m1 +m2

m2
(7)

We can observe that the separation distance differential equation in Eq. (7) is decoupled
from both the orientation angles θ and φ. The above equation can be further linearized
using Eqs. (3) and the Qref definition in Eq. (6) to

δL̈ = −(3Ω2)δL+
(
kc

m1

1
L2

ref

m1 +m2

m2

)
δQ (8)

The differential equation for Euler angles can be obtained similar to the along-track devel-
opment. The linearized attitude dynamics of the Coulomb tether are written along with
the separation distance equation as:

φ̈− Ω2φ− 2Ωθ̇ = 0 (9a)

θ̈ − 4Ω2θ + 2Ωφ̇ = 0 (9b)

δL̈+ (3Ω2)δL−
(
m1 +m2

m1m2

kc

L2
ref

)
δQ = 0 (9c)

Note both the out-of-plane angles θ and φ are coupled, while the charged separation distance
error dynamics is uncoupled in this linearized formulation. Also, one can observe from
Eq. (9c) that the separation distance error (δL) is already marginally stable even with out
any feedback control through the charge product error term (δQ).

HYBRID FEEDBACK CONTROL DEVELOPMENT

Along-Track Configuration

In this section, we look into the stability of the linearized along-track equations of motion
given Eq. (5) and develop a hybrid feedback control law which stabilizes the system. Reading
Eq. (5) it is clear that the out-of-plane angle φ is fully decoupled from the in-plane angle
ψ and separation distance error δL. The equation of motion for the out-of-plane angle φ
represents a stable simple harmonic oscillator. Next, consider the coupled in-plane angle ψ
and separation distance error δL equations of motion given in Eq. (5b)–(5c). The charge
on the craft can be used to control the separation distance since they cause an electrostatic
force along the relative position vector. The charge product variation δQ is treated as the
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control variable and the feedback control law is defined as

δQ =
m1m2L

2
ref

(m1 +m2)kc
(−C1δL− C2δL̇) (10)

Here C1 and C2 are the position and velocity gains, respectively. Thus, the closed loop
equations of motion for the coupled ψ and δL system are written as

ψ̈ + 2
Ω
Lref

δL̇− 3Ω2ψ = 0 (11a)

δL̈− (2ΩLref)ψ̇ + C1δL+ C2δL̇ = 0 (11b)

The in-plane angle ψ is coupled with the δL in the form of a driving force (2 Ω
Lref

δL̇). Hence
we select the gains C1 and C2 using the Routh-Hurwitz stability criterion to asymptotically
stabilize both δL and ψ. The characteristic equation for the equations given in Eq. (11) is

λ4 + C2λ
3 + (C1 + Ω2)λ2 + (−3C2Ω2)λ+ (−3C1Ω2) = 0 (12)

In order to ensure asymptotic stability, the real parts of the roots of this characteristic
polynomial should be negative definite. The constraints on the gains that will guarantee
negative definite roots can be identified by constructing a Routh table and are found to be

C2 > 0 (13a)

C1 + 4Ω2 > 0 (13b)

−12C2Ω4

C1 + 4Ω2
> 0 (13c)

There are no real values for gain C1 and C2 that will satisfy all three conditions given in
Eq. (13). Hence, the coupled system can not be stabilized with only the Coulomb forces.
In addition to the Coulomb forces, we require some thrust forces acting on both satellites
along the b̂1 axis that stabilizes the in-plane angle ψ. These thrust forces can be modeled as
an equal and opposite force with magnitude F1. The thrust force magnitude is the second
control variable with ψ feedback and it is defined as

F1 =
m1m2

m1 +m2
Lref(K1ψ) (14)

where K1 is the in-plane angle feedback gain. These forces will introduce a net torque in
the ψ equation and the modified coupled equations of motion are written as

ψ̈ + 2
Ω
Lref

δL̇+ (K1 − 3Ω2)ψ = 0 (15a)

δL̈− (2ΩLref)ψ̇ + C1δL+ C2δL̇ = 0 (15b)

The characteristic equation for the equations given in Eq. (15) is

λ4 + C2λ
3 + (C1 +K1 + Ω2)λ2 + (C2K1 − 3C2Ω2)λ+ (C1K1 − 3C1Ω2) = 0 (16)
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The constraints on the gains to ensure asymptotic stability are found using the Routh table
to be

C2 > 0 (17a)

C1 > −4Ω2 (17b)

K1 > 3Ω2 (17c)

The constraints given in Eq. (17) guarantee asymptotic stability, but we need other criteria
for fixing their values to yield a satisfactory performance. One way of looking at the problem
is to consider the δL equation without the ψ̇ term. For ease of discussion, let us rewrite the
position and velocity gains in terms of scaling factors n1 and α1 as

C1 = n1Ω2 > −4Ω2 (18)
C2 = α1

√
n1Ω (19)

The δL equation without the ψ̇ term is critically damped with α1 = 2. The value of α1

needs to be altered for achieving near critical damping for the complete δL equation with
the ψ̇ term. The in-plane angle gain is also rewritten in terms of a scaling factor n2 as

K1 = n2Ω2 > 3Ω2 (20)

The natural frequency of the ψ and δL equations are
√
n2 − 3Ω and

√
n1Ω, respectively. If

n1 and n2 are chosen in such a way that these frequencies match, then the δL̇ term in the ψ
equation will act as a defacto damping term and vise versa for the δL equation. The value
of n2 is chosen as 6 as this results in a setting time of about 1 day (1 cycle). For this fixed
value of n2, the root locus for the coupled δL and ψ equations is studied for a range of α1

values in the vicinity of α1 = 2 with n1 varying from 0.1 to 20. Based on visual observation
of the root locus plots the scaling factors are chosen to be α1 = 2.3 and n1 = 2.97. Figure. 4
shows the root locus plot for n2 = 6 and α1 = 2.3, with n1 varying from 0.1 to 20.

Real Axis

Imaginary Axis

n = 0.1

n = 10

Figure 4 Root Locus Plot for Along-Track Configuration with n2 = 6 and α1 = 2.3.
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Figure 5 Figure Illustrating the Thrusters Along b̂1 and b̂3 Axes for
Along-Track Configuration.

As discussed earlier the equation of motion for the out-of-plane angle φ represents a simple
harmonic oscillator. This out-of-plane angle can be asymptotically stabilized by using an
equal and opposite thrust force on both the satellites along the b̂3 axis. The thrust force
magnitude F3 is the third control variable with φ̇ feedback and it is defined as

F3 =
m1m2

m1 +m2
Lref(K2φ̇) (21)

where K2 is the out-of-plane angle feedback gain. These forces will introduce a net torque
in the φ equation and the modified equations of motion are written as

φ̈+ Ω2φ+K2φ̇ = 0 (22)

Critical damping is achieved withK2 = 2Ω. Figure 5 illustrates the thrusters in action along
the b̂1 and b̂3 axes for the along-track configuration. For satellite 1, the thrusting force F1 is
acting along the positive b̂1 direction and force F3 is acting along the negative b̂3 direction.
It is vice-versa for satellite 2. Note all thruster forces are directed in orthogonal directions
to cluster line of sight vector (b̂2). This avoids any potential plume exhaust impingement
issues.

Orbit Normal Configuration

Unlike the along-track configuration, the equation of motion of the separation distance
error δL are decoupled from the angles in the orbit normal configuration. The equations of
motion of the two out-of-plane angles θ and φ are coupled instead. Therefore, the linearized
Coulomb forces can be used to stabilized only the separation distance and some thrust force
is needed to stabilize the angles. From Eq. (9c), it is clear that without the charge product
variation (δQ) term the δL equation of motion about the charged orbit-normal equilibrium
represents a stable simple harmonic oscillator. In order to make δL equation of motion
asymptotically stable a separation distance error rate (δL̇) feedback through the control
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variable δQ is sufficient. But here we will also introduce a separation distance error (δL)
feedback which will enable us to control the natural frequency and thereby the settling time.
The feedback control law is given as

δQ =
m1m2L

2
ref

(m1 +m2)kc
(−C1δL− C2δL̇) (23)

where C1 > −3Ω2 and C2 > 0 are the position and velocity feedback gain, respectively.
Now, the closed loop separation distance error equation is written as

δL̈+ (3Ω2 + C1)δL+ C2δL̇ = 0 (24)

Fixing C2 = 2
√

3Ω2 + C1 makes the separation distance equation critically damped.

The coupled out-of-plane angles can be stabilized by using thrust forces on both the
satellites. One set of equal and opposite forces with magnitude F1 act along the b̂1 axis.
The other set of forces with magnitude F2 act along the b̂2 axis. The feedback control law
for the thrust force magnitudes are defined as

F1 =
m1m2

m1 +m2
Lref(K2θ) (25)

F2 =
m1m2

m1 +m2
Lref(K1φ+K3φ̇) (26)

where K1 and K3 are the angle and angle rate gains for φ, and K2 is the angle gain for
θ. It should be noted that the thrust forces F1 and F2 stabilize the out-of-plane angles θ
and φ, respectively. Further, these forces too only act orthogonal to the line of sight vector
of the 2 craft, thus avoiding plume impingement issues. These forces introduce torque into
the angular equations of motion and the augmented coupled closed loop equations are

φ̈− 2Ωθ̇ + (K1 − Ω2)φ+K3φ̇ = 0 (27a)

θ̈ + (K2 − 4Ω2)θ + 2Ωφ̇ = 0 (27b)

The characteristic equation of the coupled equations of motion given in Eq. (27) is

λ4 +K3λ
3 + (K1 +K2 − Ω2)λ2 + (K2K3 − 4K3Ω2)λ

+(K1K2 − 4K1Ω2 −K2Ω2 + 4Ω2) = 0 (28)

The characteristic equation with roots having negative real parts will guarantee asymptotic
stability. The constraints on the gains that will result in the characteristic equation given
in Eq. (28) to have negative define roots, can be established with Routh-Hurwitz criterion.
The constraints on the gains are

K1 > Ω2 (29a)

K2 > 4Ω2 (29b)
K3 > 0 (29c)

Before we proceed to establish the value of the gains, it is important to note that with out
the φ̇ feedback the characteristic equation would have been

λ4 + (K1 +K2 − 2Ω2)λ2 + (K1K2 − 4K1Ω2 −K2Ω2 + 4Ω2) = 0 (30)
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and one can come up with gains that will only guarantee marginal stability, but not conver-
gence. This justifies the use of angle rate (φ̇ ) feedback for achieving asymptotic stability.

The gains values are fixed in such a way that they guarantee near critical damping. The
gains K1 and K3 are rewritten in terms of scaling factors n and α as

K1 = nΩ2 > Ω2 (31)
K3 = α

√
(n− 1)Ω (32)

In the φ equation of motion, α = 2 guarantees critical damping if one ignores the θ̇ term.
For fixed values of K2 > 4Ω2, the root locus for the coupled θ and φ equations is studied for
a range of α values in the vicinity of α = 2 with n varying from 1.1 to 10. Based on visual
observation of the root locus plots the gain K2 is chosen to be 5Ω2 and the scaling factors
are chosen to be α = 2.5 and n = 2.7. Figure. 6 shows the root locus plot for K2 = 5Ω2

and α = 2.5, with n varying from 1.1 to 10.

 

Real Axis

Imaginary Axis

n = 10

n = 1.1

Figure 6 Root Locus Plot for Orbit Normal Configuration with K2 = 5Ω2

and α = 2.5

NUMERICAL SIMULATION

This section presents numerical simulations of the along-track and orbit normal Coulomb
tether formations to illustrate the performance and stability of the presented hybrid feed-
back control strategy. The Coulomb tether performance is simulated in two different man-
ners. First the linearized spherical coordinate differential equations are integrated. This
simulation illustrates the linear performance of the charge control. Second, the linearized
results are compared with those obtained from the exact nonlinear equation of motion of
the deputy satellites given by

r̈1 +
µ

r31
r1 =

kc

m1

Q

L3
(r1 − r2) (33a)

r̈2 +
µ

r32
r2 =

kc

m2

Q

L3
(r2 − r1) (33b)
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where r1 = rc + ρ1 and r2 = rc + ρ2 are the inertial position vectors of the the masses
m1 and m2, while L =

√
(r2 − r1) · (r2 − r1). The gravitational coefficient µ is defined as

µ ≈ GMe. After integrating the motion using inertial Cartesian coordinates, the separation
distance L, as well as the corresponding angles are computed in post-processing using the
exact kinematic transformation. Finally, the robustness of the control laws is illustrated in
the presence of differential solar perturbation. For all cases the cluster center of mass is
assumed to be a GEO orbit.

Along-Track Configuration

The along-track Coulomb tether with a separation distance of 25 meter is simulated first.
The input parameters are given in Table 1. The initial separation distance error (δL) is set
to 0.5 meter and the Euler angles are set to ψ = 0.1 radians and φ = 0.1 radians. All initial
rates are set to zero through ψ̇ = δL̇ = φ̇ = 0. As discussed in the previous section, the gain
values are chosen based on studying the root locus plot to be C1 = 2.97Ω2, C2 = 3.9637Ω,
K1 = 6Ω2 and K2 = 2Ω.

Table 1 Input Parameters Used in Along-Track Simulation

Parameter Value Units

m1 150 kg
m2 150 kg
Lref 25 m
kc 8.99× 109 Nm2

C2

Qref 0 µC2

Ω 7.2915× 10−5 rad/sec
C1 2.97Ω2

C2 3.9637Ω
K1 6Ω2

K2 2Ω
δL(0) 0.5 m
ψ(0) 0.1 rad
φ(0) 0.1 rad

Figure 7(a) shows the Coulomb tether motion in both linearized spherical coordinates
δL, ψ and φ (continuous line), and the full nonlinear spherical coordinates (dashed lines).
It shows that the nonlinear simulation closely follows the linear simulation, validating the
linearizing assumptions. The charge feedback law augmented with the thrust forces (using
angle and angle rate feedback) ensures the convergence of all states to zero. Figure 7(b)
illustrates the control charge on a single spacecraft for both linearized and full nonlinear
simulation models. The reference charge pertaining to static equilibrium for along-track
formation is zero and control charges are converging to this value. Note that the deviation
from the value of reference charges is small, justifying the charge linearization assumptions
used. The magnitude of the control charges is in the order of micro-Coulomb which is easily
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realizable in practice using charge emission devices. Figure 7(c) gives the thrusting force
that is required to stabilize the angles. Again, the dashed lines represent the full nonlinear
model and the continuous lines represent the linearized model. The thrust forces can be
generated using conventional thrusters. In the body fixed coordinates, the crafts are aligned
along the b̂2 axis and the thrust forces F1 and F2 are acting along the b̂1 and b̂3 directions,
respectively. Thus, the thrusting always takes place at an axis that is perpendicular the
craft orientation, thereby avoiding plume impingement issues.

Orbit Normal Configuration

The orbit normal Coulomb tether is also simulated with a separation distance of 25 meter
like the along-track configuration. The same spacecraft parameters and nominal separation
distance are used as in Table 1. The initial separation distance error, initial Euler angles
and gains are given in Table 2. Figures 8(a) , 8(b), 8(c) show the tether motion (spherical
coordinates), charge on a single craft and thrust forces, respectively. Again, the dashed lines
depicting the full nonlinear model closely follow continuous lines depicting the linearized
model. It can be observed from Figure 8(a) that the separation distance error is critically
damped and the out-of-plane angles φ and θ asymptotically go to zero. The thrust forces
F1 and F2 are acting in the b̂1 and b̂2 direction with the Coulomb tether aligned along the
b̂3 direction. Thus, plume impingement problems are avoided.

Table 2 Input Parameters Used in Orbit Normal Simulation

Parameter Value Units

Qref 6.9304× 10−13 µC2

C2 2
√

3Ω
K1 2.7Ω2

K3 3.2596Ω
K2 5Ω2

δL(0) 0.5 m
θ(0) 0.06 rad
φ(0) 0.04 rad

Differential Solar Perturbation

At GEO, differential solar drag is the largest disturbance acting on the Coulomb for-
mation. Hence, full nonlinear model simulation for both along-track and orbit normal
configuration are carried out including the effects of solar drag to study the ability of the
controller to withstand this disturbance. The inertial acceleration vector rs due to the
effects of solar radiation pressure is given as

rs =
−CrAF

mc

r
||r||3

(34)
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Figure 7 Simulation results for two crafts aligned along the along-track
direction with a separation distance of 25m.
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Figure 8 Simulation results for two crafts aligned along the orbit normal
direction with a separation distance of 25m.
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where r is the position vector from the sun to the orbiting planet in AU, m is the mass of
the spacecraft in kg, A is the cross section area of the spacecraft that is facing the sun in
m2. The constant F = 1372.5398 Watts/m2 is the solar radiation flux, c = 2.997× 108 m/s
is the speed of light, and Cr = 1.3 is the radiation pressure coefficient.

The simulation is carried out over a period of 3 days and the Sun’s position is assumed to
be fixed with respect to the Earth fixed inertial coordinates. As shown in Figure 9, the solar
rays are assumed to be making an angle of 23o27

′
with respect to the earth’s equatorial

plane to account for the earth’s axial tilt. The craft are modeled as cylinders with radius
of 0.5 m, height of 1 m and mass of 150 kg. For craft 1, the cylindrical surface is constantly
facing the sun resulting in a square cross section area of 1 m2, where as for craft 2, it is the
circular cross section (0.25π m2)of the top of the cylinder that is facing the sun.

Figure 10(a) shows the time histories of the spherical coordinates δL, ψ and φ for along-
track Coulomb tether formation with differential solar drag. The coupled states δL and ψ
no longer asymptotically converge to zero, but they are still bounded. The in-plane angle ψ
oscillates with maximum amplitude of ±0.05 radians and the separation distance error δL
oscillations are negligible. The out-of-plane motion φ settles with a constant steady state
offset. This offset can be explained by looking at the linearized φ equation of motion. The φ
equation is decoupled and with a constant external torque due to the differential solar drag,
will result in a steady state offset. Let the constant inertial acceleration vector along the ôh

direction due to solar drag for satellites one and two be rs1(3, 1) and rs2(3, 1), respectively.
The total constant force acting on the satellite formation along the ôh direction is

Fs = m1rs1(3, 1) +m2rs2(3, 1)

The resulting torque due to this force is given by

Ts =
m1

m1 +m2
L(m1rs1(3, 1))− m2

m1 +m2
L(m2rs2(3, 1)) (35)

The linearized φ equation for along track configuration (Eq. (5a)) can be modified to incor-
porate the constant torque given in Eq. (35) as

φ̈+ Ω2φ =
1

m1+m2
L(m2

1rs1(3, 1)−m2
2rs2(3, 1))

m1m2
m1+m2

L2
(36)

From Eq. (36), the analytical expression for steady state offset in the presence of differential
solar drag can be written as

φ =
(m1/m2rs1(3, 1)−m2/m1rs2(3, 1))

LΩ2
(37)

For the linearized model the offset was calculated to be −0.0255 radians and it is very
close to the offset observed for the full nonlinear model. Figures 10(b) and 10(c) give the
spacecraft charge and thrust force time histories, respectively.

Figure 11(a) shows the performance of orbit normal Coulomb tether in the presence of
differential solar drag. Again, it can be observed that the states are bounded. On close
observation of the figure one can come to the conclusion that the separation distance error
(δL) is oscillating about an offset at steady state. The linearized separation distance error
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Figure 9 Figure Illustrating the Orientation of the Cylindrical Craft
and the Sun’s Position

(δL) is decopled from the angles and constant differential solar drag acting on the formation
results in a steady state offset for δL. The analytical expression for this steady state δL
offset can be derived for the linearized model as

δL =
(m1rs1(3, 1)−m2rs2(3, 1))

3m1Ω2
(38)

Thus, the linearized model offset for δL is −0.2125 m. The observed steady state offset in
the figure is close to this value and the oscillations can be explained due to the second order
coupling of the separation distance error (δL) with the angles. The oscillations in the δL
result in the oscillations of the spacecraft charge value around the reference charge value,
as seen in Figures 11(b). Figures 11(c) shows the thrust force time histories.

CONCLUSION

A 2-craft Coulomb tethered structure aligned along the orbit normal or along-track di-
rection cannot be stabilized with only a charge feedback law. But, both Coulomb tether
configurations can be stabilized with a hybrid control of Coulomb forces and conventional
thrusters that stabilize the separation distance and orientation respectively. The control
charges needed are small in the order of micro-Coulombs and realizable in practice. The
thrusting forces required are in the order of micro-Newtons and the thrusting is always done
orthogonal to the Coulomb tether axis, thus avoiding plume exhaust impingement problems.
For the along-track configuration the separation distance and in-plan angle are coupled and
unstable without feedback. An interesting result is that for the orbit-normal configuration
the separation distance is decoupled and marginally stable even without charge feedback,
while the orientation has to be feedback stabilized. Numerical simulations of the full nonlin-
ear motion are carried out to illustrate the results and compare the linearized performance
predictions to the actual nonlinear system response. Finally, the robustness of the controller
to withstand differential solar drag is illustrated through simulations.
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Figure 10 Simulation results for two crafts aligned along the along-track
direction with constant differential solar perturbation.
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Figure 11 Simulation results for two crafts aligned along the orbit
normal direction with constant differential solar perturbation.
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