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HYPERSPHERE STEREOGRAPHIC ORIENTATION PARAMETERS

Jeff Mullen∗ and Hanspeter Schaub†

Hypersphere Stereographic Orientation Parameters (HSOP) are a new attitude pa-
rameter set that encompasses both the Modified Rodrigues Parameters (MRP) and
Asymmetric Stereographic Orientation Parameters (ASOP). MRPs and ASOPs are
a minimal attitude parameter set derived by projecting a four dimensional Euler
Parameter (EP) attitude description onto a three dimensional hyperplane through
a point residing on a unit norm constraint surface. HSOP generalize MRPs and
ASOPs by having the projection plane intersect the origin and be normal to the
projection point, but allow the projection point to be arbitrarily placed on the EP
unit hypersphere constraint surface. This paper presents the general mapping from
HSOPs to EPs, to the direction cosine matrix, to the shadow set descriptions, as
well as derives the HSOP kinematic differential equation and singularity condition.
A remarkable truth is presented where the HSOP differential kinematic equations,
as well as the shadow set coordinate mapping, have the same algebraic form as
the MRPs. Thus, the HSOPs can exploit the same elegant control formulations
that make use of particular algebraic MRP differential equation properties. The
attitude control performance with HSOP is different due to the different singular
natures of these new coordinates.

INTRODUCTION

Euler Parameters (EPs), also referred to as quaternions, are a non-singular set of four attitude
coordinates which are constrained to a unit norm. The first analytical mapping from EPs to Mod-
ified Rodrigues Parameters (MRPs) is performed by Wiener in his 1962 dissertation,1 where he
discovered a singularity at the 360o rotation. In Reference 2, Marandi and Modi exploit the non-
uniqueness property of the MRPs by formulating a non-singular minimal attitude description. Shus-
ter also mentions the MRPs in his well-known survey of attitude parameterizations, and gives the
parameters the name Modified Rodrigues Parameters.3 Tsiotras points out that the MRPs can be
viewed as the result of a stereographic projection of the EP constraint unit hypersphere onto a three-
dimensional projection hyperplane.4, 5 He also discovers that the natural logarithm function forms
an elegant attitude cost (Lyapunov) function in terms of MRPs which leads to linear MRP feedback
with nonlinear stability.

Schaub and Junkins6 further develop this work by showing that the MRP stereographic projection
description discovered by Tsiotras can be expanded to describe general families of attitude param-
eters called the Stereographic Orientation Parameters (SOPs). In particular, Reference 6 present
the sub-group of Symmetric Stereographic Orientation Parameters and shows that the MRPs and
Classical Rodrigues Parameters are a sub-set of this family. Later on Southward et. al.7 develop the
full kinematic properties of they Symmetric Stereographic Orientation Parameters by allowing the
projection point to be placed anywhere on the scalar EP coordinate axis within the EP constraint
hypersphere. These Symmetric Stereographic Orientation Parameters are expressed algebraically
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in terms of a scalar projection point coordinates and yield minimal set attitude coordinates where
the singularity can occur at any desired orientation within 0o < Φ < 360o. In contrast, the Asym-
metric Stereographic Attitude Parameters (ASOPs) of Reference 6 place the projection point at ±1
along one of the vector EP coordinate axes. This leads to an interesting behavior where singularities
are only encountered if a pure rotation about a particular principle body axis is performed. Fur-
ther, a +180o rotation may lead to a singular attitude description, but a -270o rotation (exact same
orientation) is non-singular. Only a -630o in the negative direction leads to a singular description.
The non-symmetric nature of the singular rotations and their dependency of the path to a particular
orientation, lead to the name asymmetric SOPs.

Other recent attitude coordinates that relate to the MRPs include the Higher Order Rodrigues
Parameters.8 Here higher order Cayley transforms are used to develop attitude coordinates which
grow infinitely large at multiples of 360o. These Higher Order Rodrigues Parameters are convenient
to develop minimal sets of attitude coordinates where the differential equation can be made arbitrar-
ily linear through the use of higher order Cayley transformations. Hurtado uses the MRPs to create
inner and outer parameters for attitude representations, and presents new Cayley-like transforma-
tions.9

This paper investigates a sub-family of attitude coordinates called the Hypersphere Stereographic
Orientation Parameters (HSOPs) which contains both the previous MRPs (particular set of Symmet-
ric Stereographic Orientation Parameters) and the ASOP, allowing for all this work to be combined
into a single, minimal attitude parameter description. HSOPs allow the projection point to lie at any
point on the EP unit hypersphere constraint. Thus, depending on the choice of the project point,
these attitude coordinates can display a singular behavior similar to that of the ASOP. The attitude
of a spinning body can be described singularity-free with a minimal three-parameter coordinate set
as long as the body is not spinning about a particular combination of principal body axes. Or, the
HSOP coordinates can be chosen such that their singular behavior matches that of the MRPs where
a particular 360o degree rotation about any body axis leads to a singular description. When different
attitude coordinates are combined into a more general family of parameters, such as the joining of
Classical Rodrigues Parameters and MRP into Symmetric Stereographic Orientation Parameters in
Reference 7, the result is often a more complex set of algebraic equations. This paper investigates
how a general projection point on the surface of the EP constraint hypersphere complicates the
associated HSOP differential kinematic equations and their mapping to the shadow set.

This paper is organized as follows: Section II describes the geometry and algebra of a general
stereographic projection. Section III provides the analytical mapping between HSOPs from EPs, the
direction cosine matrix, as well as the derivation of the shadow sets, kinematic differential equation,
and singularity condition. Section IV discusses how the HSOPs can be employed in attitude control
strategies.

GENERALIZED STEREOGRAPHIC PROJECTIONS

The four EP attitude coordinates are expressed as a 4x1 matrix:

β =


β0

β1

β2

β3

 (1)
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Here each βi represents an EP coordinate, and the magnitude of this stack is β · β = 1. In terms
of the principal rotation angle Φ and principal rotation axis ê = (e1, e2, e3), the EP coordinates
are expressed as: β0 = cos(Φ/2) and βi = ei sin(Φ/2) with i = 1, 2, 3. Geometrically, the EP
constraint β · β = 1 defines the surface of a four-dimensional unit hypersphere upon which all EPs
must lie.10

Generalized Stereographic Orientation Parameters (SOPs) are a minimal coordinate representa-
tion of a particular orientation. These generalized parameters are obtained by projecting the four-
dimensional EP attitude description (β) onto a three-dimensional hyperplane as illustrated in Figure
1. The coordinates of this intersection point form the SOPs. This section presents first the general
stereographic mapping of the unit constraint surface onto a general projection hyperplane. This sec-
tion considers the particular mapping where the projection point a is constraint to the hypersphere
surface.
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Figure 1. General Stereographic Orientation Parameter Geometry

The projection point a, for now, is a general location. The projection hyperplane is defined by
the normal of a − p0, where p0 is the closest hyperplane point to a. Therefore, in order to solve
for general SOPs, the line formed between the projection point and any EP attitude description is
projected onto the hyperplane. The projection of β onto the hyperplane is the intersection point k.

The vector equation for the line between the points a and β in n-dimensional space is:

L = a + t(β − a) (2)

where t is a free scalar parameter which can describe any point on this line. The generalized equation
for a plane in space with the normal vector a− p0 that crosses through point p0 is:

P = (a− p0) · κ = (a− p0) · p0 (3)
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where κ is the intersection point on the hyperplane of the EP description through the projection
point. In order to solve for κ, the line defined in Equation 2 is intersected with the plane described
by Equation 3. Solving for the scalar parameter t and substituting into Equation 2 yields:

κ = a +
(a− p0) · (p0 − a)
(a− p0) · (β − a)

(β − a) (4)

This four-dimensional intersection point, κ is to derive the HSOPs. The rest of the algebra will
project this four-dimensional point to a three-dimensional hyperplane.
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Figure 2. Hypersurface Stereographic Orientation Parameter (HSOP) Illustration

DERIVATION OF THE HSOPS

Relationship to Euler Parameters

As illustrated in Figure 2, the Hypersphere Stereographic Orientation Parameter (HSOP) attitude
set is formed by two conditions: 1) The projection point a is constrained to the surface of the
EP constraint unit hypersphere and 2) the projection hyperplane passes through the center of this
hypersphere.

With the projection point defined as a = [a0, a1, a2, a3]T , this means that a ·a = 1. Likewise, the
EP stack will be defined by β = [β0, β1, β2, β3]T and from the EP constraint β · β = 1. Finally we
set p0 = [0, 0, 0, 0]T to ensure the projection hyperplane intersects with the origin. This simplifies
Equation 4 to:

κ = a− (β − a)
a · β − 1

(5)
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The 4D vector κ represents the projection point of the attitude description β onto the hyperplane.
In order to be a minimal set, this vector needs to be represented in terms of the 3 basis vectors that
describe the projection hyperplane. The 3-D hyperplane is written in the following vector form:
P = ζ1e1 + ζ2e2 + ζ3e3. Here ζ1, ζ2, ζ3 are the in-plane coordinates of the intersection, and thus
the HSOP coordinates. The vectors e1, e2, and e3 form the base vectors of the hyperplane by being
mutually orthogonal to the projection point vector, a. The projection point can be expressed as:

κ = [A]
[
ζ
0

]
(6)

where ζ is the 3x1 matrix:

ζ =

 ζ1
ζ2
ζ3

 (7)

and [A] is:

[A] =


...

...
...

...
e1 e2 e3 a
...

...
...

...

 (8)

Note that the base vector ei are not unique. For example, the base vector can always be rotated about
a to form a new set. This would result in alternate numerical HSOP descriptions which describe
the same orientation. However, these alternate formulations have identical singular behaviors and
do not provide any practical benefits. A goal of this paper is to determine a set of base vectors ei

such that the resulting HSOPs are identical to the prior MRP or ASOP coordinates if the proper
projection point is chosen.

For the developments of this paper, a unit-length orthogonal basis will be used to describe the
projection plane. Therefore, this matrix is full rank and orthogonal meaning that [A]−1 = [A]T .
Solving for the matrix of HSOP coordinates ζ results in:[

ζ
0

]
= [A]T

[
a− β − a

a · β − 1

]
(9)

In order to generate e1, e2, and e3, the composite rotation property of EPs10 is used. Because a is
constrained to the unit hypersphere, it can be treated as a valid EP attitude description. Therefore,
an orthogonal 4-D basis of EPs (ei) is created by simply adding rotations of−180o to a. This results
in the following set of unit-length basis vectors.

e1 = [a1,−a0,−a3, a2]T

e2 = [a2, a3,−a0,−a1]T

e3 = [a3,−a2, a1,−a0]T
(10)

Substituting these vectors into Equation 9 and expanding results in the minimal HSOP attitude
description:

ζ =
1

1− a · β

 a1β0 − a0β1 − a3β2 + a2β3

a2β0 + a3β1 − a0β2 − a1β3

a3β0 − a2β1 + a1β2 − a0β3

 (11)
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It is important to note that the the ζ = 0 vector does not correspond to the zero attitude of β0 = 1.
Instead, the HSOP representation of the zero orientation is defined as:

ζ0 =
1

1− a0

 a1

a2

a3

 (12)

By using this definition, it is clear that the HSOPs are simply a rotation of the MRPs by the attitude
described by the point a, however, the zero attitude is directly dependent on the parameter a. This
has implications on the singularity condition as well as the attitude control which will be discussed
in further detail in the following sections.

To verify these HSOP definitions are a family of attitude coordinates containing MRPs and
ASOPs, we perform the following checks. Reducing Equation 11 to the MRP case where a lies
at β0 = −1 results in the definition of the MRPs:10

 ζ1 = σ1

ζ2 = σ2

ζ3 = σ3

 =


β1

1+β0
β2

1+β0
β3

1+β0

 (13)

Reducing Equation 11 to the ASOP case where a lies at β1 = −1 results in:

 ζ1 = η1

ζ2 = η2

ζ3 = η3

 =


−β0

1+β1
β3

1+β1
−β2

1+β1

 (14)

The original ASOP case (as presented in References 6 and 10) has a sign discrepancy on the first
and third parameters and the second and third parameters are switched. This is due to the unique-
ness issue when defining the basis of the projection plane. The orientation of the original ASOP
projection hyperplane was chosen at random without any further information. The presented ASOP
hyperplane definition is preferred because it allows the presented base vector ei definition to map
between EP and HSOP in a general way. Clearly there is no practical difference between the ζi
and ηi coordinates. Further advantages of this conventions become apparent when considering the
HSOP differential kinematic equations.

Solving for the inverse transformation from ζ to β is similar to solving for the intersection point
on the projection hyperplane. However, rather than solving for the intersection of a plane the re-
verse will happen and the intersection of the projection line onto the unit hypersphere will be ac-
complished.

Assume vectors a and κ (the projection point and intersection point, respectively) are known.
Therefore Equation 2 can be written in the equivalent form: L = a + u(κ − a). Where u is a
scalar parameter of the line. Because a and β lie on the unit hypersphere, intersecting this line with
the unit hypersphere results in two intersection points: one at a and one at β. The equation of a
n-dimensional unit hypersphere in space is given: |S|2 = 1. Intersecting both of these equations
results in the following vector equation:

|a + u(κ− a)|2 = 1 (15)
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Solving for the parameter u and applying the unit hypersphere constraints results in the following:

u =
1± 1
1 + ζ2

(16)

where ζ2 = ζT ζ = ζ2
1 + ζ2

2 + ζ2
3 . Due to the unit-length constraints for projection point vector

and the EP description, this means there are two solutions since both of these points lie on the unit
hypersphere. Substituting the non-trivial solution back into the general equation for a line results
in the desired EP description vector, β. The inverse relation between the HSOPs and EPs is shown
below: 

β0

β1

β2

β3

 =


a0 + 2

1+ζ2
(a1ζ1 + a2ζ2 + a3ζ3 − a0)

a1 + 2
1+ζ2

(−a0ζ1 + a3ζ2 − a2ζ3 − a1)
a2 + 2

1+ζ2
(−a3ζ1 − a0ζ2 + a1ζ3 − a2)

a3 + 2
1+ζ2

(a2ζ1 − a1ζ2 − a0ζ3 − a3)

 (17)

In the simple compact matrix form:

β = a +
2

1 + ζ2
([A]ζ − a) (18)

To verify this general inverse mapping from EP to HSOP, let us consider the special cases of map-
ping from EPs to the previously developed MRPs or ASOPs. Calculating the inverse relation for the
MRP case (a = [−1, 0, 0, 0]T ) and switching coordinates from ζ to σ results in the definition of the
inverse for MRPs:10 

β0

β1

β2

β3

 =
1

1 + σ2


1− σ2

2σ1

2σ2

2σ3

 (19)

Calculating the inverse relation for the ASOP case (a = [0,−1, 0, 0]T ) results in the definition of
the inverse relation for ASOPs: 

β0

β1

β2

β3

 =
1

1 + η2


−2η1

1− η2

−2η3

2η2

 (20)

Direction Cosine Matrix Derivation

Because the HSOPs were derived from the EP set, the Direction Cosine Matrix (DCM) definition
for the EP is used:

[C] = [I3×3]− 2β0[˜̄β] + 2[˜̄β][˜̄β] (21)

where β̄ is the vectorial component of the EPs and [˜̄β] is the cross-product matrix defined as:

[˜̄β] =

 0 −β3 β2

β3 0 −β1

−β2 β1 0

 (22)
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Define ā to be:

ā =

 a1

a2

a3

 (23)

Substituting Equation 17 into Equation 22 results in the following expression:

[˜̄β] =
2

1 + ζ2

[
ζ2 − 1

2
[I3×3] + [ζ̃]

]
[˜̄a]− 2

1 + ζ2
(a0[I3×3] + [˜̄a])[ζ̃] (24)

Simplifying β0 results in:

β0 = a0
ζ2 − 1
ζ2 + 1

+
2

ζ2 + 1
āT ζ (25)

Reducing this DCM down to the MRP case where a = [−1, 0, 0, 0]T and performing a variable
switch from ζ to σ results in the same DCM as for MRPs:10

[C]MRP =
1

(1 + σ2)2

 4(σ2
1−σ2

2−σ2
3) + Σ2

σ 8σ1σ2 + 4σ3Σσ 8σ1σ3 − 4σ2Σσ

8σ2σ1 − 4σ3Σσ 4(−σ2
1 + σ2

2 − σ2
3) + Σ2

σ 8σ2σ3 + 4σ1Σσ

8σ3σ1 + 4σ2Σσ 8σ3σ2 − 4σ1Σσ 4(−σ2
1 − σ2

2 + σ2
3) + Σ2

σ


(26)

where Σσ = (1 − σ2). Reducing the HSOP DCM to the ASOP case where a = [0,−1, 0, 0]T and
switching parameters from ζ to η results in a similar DCM as seen in Equation 26:

[C]ASOP =
1

(1 + η2)2

 4(η2
1 − η2

2 − η2
3) + Σ2

η −8η1η2 − 4η3Ση −8η1η3 + 4η2Ση

8η2η1 − 4η3Ση 4(η2
1 − η2

2 + η2
3)− Σ2

η −8η2η3 − 4η1Ση

8η3η1 + 4η2Ση −8η3η2 + 4η1Ση 4(η2
1 + η2

2 − η2
3)− Σ2

η


(27)

with Ση = (1− η2).

HSOP Shadow Set Derivation

Because EPs have four parameters, there is redundancy in the attitude description (a single EP
is not unique). The other EPs that describes the same attitude are known as the shadow set βs =
−β. The EP shadow set simply represents another way to rotate the object to the desired attitude.
For example: if the desired attitude is 45o about the e1 body axis, one could either rotate 45o

(short rotation) or −315o (long rotation) about the body 1 axis. Both rotations describe the same
orientation. However, there are two different EPs that describe both a short and long rotation.
Because of this shadow parameter with EPs, there is also a shadow set of HSOPs. The geometry of
this is illustrated in Figure 3.

Substituting the definition of the EP shadow set into Equation 6 results in the HSOP shadow set
solution.

ζs = [A]T
[
a− β + a

a · β + 1

]
(28)
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Figure 3. HSOP Shadow Set Geometry

Expanding this form results in the explicit HSOP shadow-set definition.

ζs =
1

a · β − 1

 −a1β0 + a0β1 + a3β2 − a2β3

−a2β0 − a3β1 + a0β2 + a1β3

−a3β0 + a2β1 − a1β2 + a0β3

 (29)

ζs =
1

a · β − 1
(−β0ā + a0[I3×3] + [˜̄a]β̄) (30)

Substituting in the inverse relation between EPs and HSOPs (Equation 17) and simplifying results
in the elegant shadow set relation:

ζsi = −(ζ1, ζ2, ζ3)/|ζ|2 (31)

This is the same shadow set algebraic relationship as found in the MRP shadow set transformation.
This result is expected as the HSOPs, geometrically, can be represented as a rotation of the MRPs
about a particular attitude. The HSOP shadow set, much like the shadow set of the MRP cases, can
be used to avoid singularities during integration. As shown in Figure 3, as one parameter nears the
projection point, the HSOP description begins to grow infinitely large whereas the shadow parameter
stays well bounded. This switching could, however, occur at any point before a singularity is reached
as the shadow set describes the same attitude as the normal set. A property about the shadow sets of
HSOPs is when one set magnitude is greater than one, the shadow set is always less than one. When
one set has a magnitude of 1, the other also has a magnitude of one. Switching at a magnitude of one
is somewhat arbitrary and can happen at any time, however, when |σ| = 1 always corresponds to a
180o rotation from the null attitude. Likewise, when the HSOPs are at |ζ| = 1, it corresponds to the
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180o rotation from the attitude specified by the parameter a. By switching both sets at a magnitude
of one keeps the parameters well bounded by maintaining an attitude description that is always less
that 180o, while avoiding singularities.

Kinematic Differential Equation

The derivation of the HSOP differential kinematic equation requires the kinematic differential
equation of EPs:10

β̇ =
1
2


β0 −β1 −β2 −β3

β1 β0 −β3 β2

β2 β3 β0 −β1

β3 −β2 β1 β0




0
ω1

ω2

ω3

 (32)

Differentiating Equation 11 results in:

ζ̇1 =
−a1β̇0 + a0β̇1 + a3β̇2 − a2β̇3

a0β0 + a1β1 + a2β2 + a3β3 − 1

+
(a1β0 − a0β1 − a3β2 + a2β3)(a0β̇0 + a1β̇1 + a2β̇2 + a3β̇3)

(a0β0 + a1β1 + a2β2 + a3β3 − 1)2

(33a)

ζ̇2 =
−a2β̇0 − a3β̇1 + a0β̇2 + a1β̇3

a0β0 + a1β1 + a2β2 + a3β3 − 1

+
(a2β0 + a3β1 − a0β2 − a1β3)(a0β̇0 + a1β̇1 + a2β̇2 + a3β̇3)

(a0β0 + a1β1 + a2β2 + a3β3 − 1)2

(33b)

ζ̇2 =
−a3β̇0 + a2β̇1 − a1β̇2 + a0β̇3

a0β0 + a1β1 + a2β2 + a3β3 − 1

+
(a3β0 − a2β1 + a1β2 − a3β3)(a0β̇0 + a1β̇1 + a2β̇2 + a3β̇3)

(a0β0 + a1β1 + a2β2 + a3β3 − 1)2

(33c)

Substituting in Equations 17 and 32, and applying the unit hypersphere constraint, results in the
kinematic differential equation for HSOPs which are independent of the projection point a. Despite
the generalities with this attitude parameter set, the result is extremely elegant and given in the
following matrix form:

ζ̇ =
1
4

 1− ζ2 + 2ζ2
1 2(ζ1ζ2 − ζ3) 2(ζ1ζ3 + ζ2)

2(ζ2ζ1 + ζ3) 1− ζ2 + 2ζ2
2 2(ζ2ζ3 − ζ1)

2(ζ3ζ1 − ζ2) 2(ζ3ζ2 + ζ1) 1− ζ2 + 2ζ2
3

ω (34)

Due to the lack of information about a in these equations, we find that all HSOP differential kine-
matic equations will have the exact same algebraic form! These equation are written in compact
vector notation as:

ζ̇ =
1
4

[(
1− ζ2

)
[I3×3] + 2[ζ̃] + 2ζζT

]
ω (35)

After applying the coordinate switch from ζ to σ, this kinematic differential equation is the same
as for MRPs.10 The only difference between HSOPs and MRPs is that the HSOPs are simply a
rotation of the MRPs by the attitude defined by a. Therefore, the kinematic differential equations
will be the same. With this new ASOP definition, the ASOP differential kinematic equations assume
the identical algebraic form as the MRPs. This elegant result justifies why the ASOPs should be
redefined as shown in this paper.

10



Singularity Condition

Because HSOPs is a minimal attitude coordinate set, there is a singular description that can be
arbitrarily placed. This condition arises when the denominator in Equation 11 equals zero:

1− a0β0 − a1β1 − a2β2 − a3β3 = 0 (36)

Geometrically, this arises at one point on the unit hypersphere when a = β. Writing this in terms
of principal rotation angle Φ and principal axis components ei results in:

a0 = cos(Φ/2) = β0

a1 = e1 sin(Φ/2) = β1

a2 = e2 sin(Φ/2) = β2

a3 = e3 sin(Φ/2) = β3

(37)

Therefore, from Equation 37, the singularity can be placed in any desired direction with any desired
rotation angle. There are two rotations that can be performed in order to reach a singularity. For
example, if the singularity is placed in a certain direction at a Φ = 135o, a rotation of +135o or
−585o about the appropriate direction could be performed in order to reach the singular point. This
means that with HSOPs and its sub-sets, the rotational path to a particular orientation determines if
the attitude description will go singular.

It is important to note that because this singular point can be placed anywhere on the unit hy-
persphere, there is only one attitude description that it can go singular at, and in order for this to
be a singularity it must lie exactly on a. However, attitudes around this point will grow infinitely
large and depending on the control technique applied, these large values can be used to avoid a
neighborhood of points in space.

SPACECRAFT CONTROL

Because the HSOP differential kinematic equation are algebraically equivalent to the MRP differ-
ential kinematic equations, any control development that exploits algebraic properties of the MRP
differential equations,6, 5, 11, 12 can also be directly applied to the HSOP. This process is illustrated in
the following control development example based on the MRP-based attitude control developed in
Reference 6. For the purposes of this discussion, the underlying rotational dynamics will be Euler’s
equations of rotational motion of a rigid body:

[I]ω̇ = −[ω̃][I]ω + u+L (38)

where [I] is the inertia tensor, u is the control torque, and L is any external torque acting on the
body. As developed for the MRP set, a logarithmic Lyapunov function will be used to design a
stabilizing control law.5, 6

V (δω, ζe) =
1
2
δωT [I]δω + 2K ln

(
1 + ζe

2
)

(39)

where ζe is defined as the error attitude from the zero attitude of the body so ζe = ζ − ζr where ζr

is the HSOP reference attitude. Recall that for the regulation control case the zero HSOP defined in
Equation 12. This is required because a zero HSOP attitude does not correspond to the null attitude
of a body, by adding in this offset factor, as ζe is driven to zero, the attitude of the body is driven
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to the null attitude. To ensure global stability, the Lyapunov rate is set equal to the negative semi-
definite V̇ = −δωT [P ]δω. Because δω = ω−ωr, we can plug in the equations of motion in order
to generate the closed loop dynamics and solve for the control variable. This leads to the stabilizing
control law u:6

u = [ω̃][I]ω + [I](ω̇r − [ω̃]ωr)−Kζe − [P ]δω −L (40)

While this attitude control law has the exact same algebraic form as the MRP-based control law, the
closed-loop response will be different because the HSOP represent a different attitude description
in general, and has a completely different singular behavior.

CONCLUSION

The newly developed hypersphere stereographic orientation parameters are a generalization of the
MRPs and ASOPs. Direct analytical mappings are present from the HSOP to the Euler parameters,
as well as the direction cosine matrix. The key result of this paper is that the HSOP have the same
differential kinematic equation as the MRPs, and thus can be applied to any control law which uses
the algebraic form of MRP kinematic equation.

HSOPs are different than MRPs because of the different singular behaviors of each attitude coor-
dinate set. This offers great flexibility as the singular orientation can be placed at a full revolution
or at particular rotations about particular body axes. In all cases the kinematic differential equation
only has quadratic nonlinear terms equivalent to those of the MRPs. This is highly beneficial in
relation to non-linear spacecraft attitude control as HSOPs will have the same stability guarantees
as a controller designed using MRPs.
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