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ESTABLISHING A FORMATION OF SMALL SATELLITES IN A
LUNAR FLOWER CONSTELLATION

Lauren McManus∗ and Hanspeter Schaub†

The success of previous lunar science missions can be expanded upon by using a
constellation of satellites to increase the lunar surface coverage. A constellation
could also serve as a communications or GPS network for a lunar human base.
Small-sats, deployed from a single mothercraft, are proposed to achieve a lunar
constellation. The establishment of this constellation is investigated where the
mothercraft does the primary deployment maneuvers. The constellation lifetime
and closed-loop maintenance are addressed.

INTRODUCTION

The Scientific Context for Exploration of the Moon (SCEM) report produced by the National
Research Council includes studies of the lunar atmosphere and dust environment as one of eight
major priorities for future lunar science missions1. In fact, the Moon is considered to be a key to
deciphering the evolutionary history of planets because it preserves a surface record spanning most
of solar system history and is very accessible from Earth2. In addition to lunar science missions,
there are also plans to return humans to the Moon and establish a lunar base, which would require
a communication satellite structure. A small-satellite constellation at the Moon, deployed from a
single mothercraft, is proposed as a configuration for potential science or communications missions.
Small- satellites, such as cubesats, are desired for this constellation due to their affordability.

A constellation at the Moon has never been established, but previous lunar missions that included
formation flying were the Gravity Recovery and Interior Laboratory (GRAIL) from 2011-2012 and
the Japanese Kaguya (SELENE) mission to the Moon from 2007-2009. The GRAIL mission had
two identical satellites flying in a leader-follower formation, similar to the Earth based gravity field
mapping mission known as GRACE2. The SELENE mission differs from GRAIL in that there were
a total of three satellites, and the main orbiter carried the two subsatellites on its roof to the Moon
where they were released into their own orbits3. These missions have used more traditionally sized
spacecraft, rather than the small-sats proposed in this work. Some small-sat constellations have
been flown successfully at Earth however, including the Flock constellation from Planetary Labs4

and QB505

Repeat groundtrack orbits offer interesting options for potential science or communication con-
stellations, since they provide repeat coverage of the surface at a fixed time between sequential
visits. Flower constellations are a family of constellations being studied by Daniele Mortari at
Texas A&M University that utilize repeat groundtracks. Orbital parameters are selected such that
∗Graduate Research Assistant, Aerospace Engineering Sciences, University of Colorado
†Professor, AAS Fellow, Department of Aerospace Engineering Sciences, University of Colorado, 431 UCB, Colorado
Center for Astrodynamics Research, Boulder, CO 80309-0431
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Figure 1. Small satellites in a lunar flower constellation deployed by mothercraft

the nodal period of the orbit matches the nodal period of the primary body by a factor dependent on
the number of days to repeat and the number of revolutions to repeat the groundtrack. All orbits in a
flower constellation have identical orbital elements, with the exception of the right ascension of the
ascending node (RAAN) and the initial mean anomaly, which are determined based on the phasing
scheme desired.

Flower constellations have thus far primarily been studied at Earth. A flower constellation at the
Moon could be quite useful for science or communications purposes. In this scenario, the flower
constellation satellites would be small-satellites, which introduces many unique challenges. The
small-sats would have limited propulsion capability and would be deployed from a mothercraft in
order to avoid large, fuel-expensive plane change maneuvers. Orbital maintenance would then be
required after deployment to retain the repeat groundtrack nature of the flower constellation. The
limited fuel on the small-sats and the maneuvers required determine the lifetime of the constellation.
The communications range of the small-sats will also be limited, so that once the deployment is
complete, the mothercraft must move into a longterm communications orbit where it can see the
children craft as well as Earth, and act as a communications relay. A lunar flower constellation
concept is shown in Fig. 1. Three of the four small-sats have already been deployed into their orbits
and the mothercraft has just deployed the final satellite.

This paper investigates a mission scenario where a mothercraft deploys a cluster of small-sats
into a single petal of a flower constellation for a planar formation, and into a multi-petal configu-
ration for a three-dimensional constellation. Of interest is how such constellations can be deployed
without the small-sats performing fuel-expensive maneuvers, but rather letting the mothercraft do
all repositioning. The small-sats are assumed to depart the mothercraft with a relative velocity typ-
ical for a cubesat deployment system. Finally, station keeping maneuvers are utilized to maintain a
flower constellation in the presence of lunar perturbations.

FLOWER CONSTELLATIONS AT THE MOON

Flower constellations are an interesting family of constellations being studied extensively by
Daniele Mortari at Texas A&M University. A full development of the flower constellation setup
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algorithm is found in References 6, 7, 8, and9. Flower constellations are characterized by their
repeat groundtracks and their axis of symmetry. Flower constellations are at frozen inclinations
of either 63.4◦ or 116.6◦ and arguments of periapsis of either 90◦ or 270◦. The remaining orbital
parameters are selected based on matching the nodal period of the orbit with the nodal period of the
central body about which the constellation is orbiting with some specified phasing. Scale factors for
the number of days and the number of revolutions to repeat the groundtracks determine the period
of repetition for the constellation7:

Tr = NpTΩ = NdTΩB (1)

In Eq. (1), Tr is the period of repetition for the groundtracks, Np is the number of revolutions to
repeat, TΩ is the nodal period of the orbit, Nd is the number of days to repeat, and TΩB is the nodal
period of the primary body. Another important parameter in flower constellations is the number
of satellites, Ns. Flower constellations are named based on these three parameters as Np-Nd-Ns
constellations. The flower constellation period equation derived in Reference 6 is given in Eq. (2a).
In Eq. (2), ω$ is the angular rotation rate of the Moon, n is the mean motion, R$ is the equatorial
radius of the Moon, p is the semi-latus rectum, and J2 is the oblateness of the Moon. The classical
set of orbital elements, oe = (a, e, i,Ω, ω,M) are used.

T =
2π

ω$

Nd

Np

(
1 + 2ξ

n

ω$
cos i

)−1

(1 + ξχ) (2a)

ξ =
3R$J2

4p2
(2b)

χ = 4 + 2
√

1 − e2 −
(

5 + 3
√

1 − e2
)

(2c)

The anomalistic period is also given by the classic period equation as:

T = 2π

√
a3

µ
(3)

The expression in Eq. (2a) can be equated to Eq. (3) and a numerical solver, such as MATLAB’s
built-in solver vpasolve.m, can be used to calculate a. From the semi-major axis, the eccentricity
can be found, based on the design input for the radius of periapsis using the relationship rp = a(1−
e). It should be noted that the number of days to repeat (Nd) is defined as a day for the primary
body. The Moon takes 27.32 Earth days to complete one rotation, so that an Nd of one lunar day
corresponds to 27.32 Earth days. The long rotation period of the Moon creates very large orbits
when Nd = 1, so that the perturbations from the Earth are dominant and the satellites actually
escape Lunar orbit. A solution is to drastically increase the number of petals, Np, to at least 50. A
comparison of flower constellations at the Moon and Earth are shown in Fig. 2 in the body-fixed
frame and in Fig. 3 in the inertial frame. The inertial orbits look very similar but the relative orbits
produced are drastically different due to the rotation periods of the central bodies. The new look of
flower constellations at the Moon creates so many petals that they become difficult to distinguish
from one another. The term vase is perhaps now more appropriate to describe the look of the
constellations in the relative frame.
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(a) 4-1-4 Flower constellation at Earth

2
1

X/R
m

0
-1

-2-2
-1

0

Y/R
m

1
2

4

3

2

1

0

-1

Z
/R

m

(b) 73-1-4 Flower constellation at the Moon

Figure 2. Flower constellation relative orbits at Earth and the Moon
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(a) 4-1-4 Flower constellation at Earth
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(b) 73-1-4 Flower constellation at the Moon

Figure 3. Flower constellation inertial orbits at Earth and the Moon

While the application of flower constellation to the Moon is novel, Russell and Lara in Refer-
ence 10 investigated long-lifetime repeat groundtrack orbits at the Moon. Periodic solutions where
the normalized period of the orbit exactly matched one period of the Moon’s revolution plus the
additional change in the longitude of the ascending node of the orbit were desired10. This is in
effect matching the nodal period of the orbit to the period of the Moon’s rotation, as is achieved
by flower constellations. The results of Reference 10 were merely families of solutions for frozen
orbits where the number of orbit revolutions varied from 73 to 328 cycles, while the revolution of
the Moon was held to one. Interestingly, these orbits are simply flower constellations with 73 to 328
petals, so that they also appear as vase constellations in the relative frame.

SINGLE PETAL DEPLOYMENT SCHEME

Deployment is a primary challenge in the establishment of a constellation at the Moon. The
mothercraft must do all the maneuvering and then deploy the small-sats into their desired orbits.
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A string-of-pearls formation within a flower constellation orbit can be created, and is relatively
simple to deploy. This configuration is referred to as a single petal formation due to the nature
of the single inertial orbit. The mothercraft deploys the satellites from an orbit that has a larger
semi-major axis, and, therefore, longer period than the desired flower constellation orbit. A mean
anomaly spacing of δM is desired between each flower constellation satellite. A factor,K, is used to
determine how many orbits the mothercraft will complete between deploying sequential satellites.
Equation (4) shows the relationship between the mothercraft period (TMC) and the period of the
flower constellation orbit (TFC). This deployment scheme is shown in Fig. 4.

TMC = TFC +
δM

nFCK
(4)

Figure 4. Single Petal Deployment Scheme

Through increasing K, the semi-major axis difference can be decreased, which decreases the
relative velocity between the mothercraft and flower constellation orbits. Reducing this relative
speed decreases the deployment speed required as the flower constellation satellites are released
and put into their proper orbit slots. A small semi-major axis difference is desired as the impulsive
∆V that matches the small satellites to the flower constellation orbits will be entirely achieved by
the cubesat deployment system on the mothercraft. The poly picosatellite orbital deployer (P-POD)
is a standard deployment system and will be used as a baseline for the attainable ∆V in the cubesat
deployment. The nominal rates of deployment for the P-POD have been shown to be 1.6-2 m/s11.

Once the mothercraft period has been determined, the semi-major axis can be solved for using
the standard period expression given in Eq. (3). The radius of periapsis is set to the same radius
of periapsis of the flower constellation orbit, which was a user input in the flower constellation
design. From the radius of periapsis and semi-major axis of the mothercraft deployment orbit,
the eccentricity can be solved for. The deployment is then implemented by releasing a satellite at
every K th periapsis passage of the mothercraft. The required ∆V at which the flower constellation
cubesats must be released is determined by the difference in the mothercraft and flower constellation
orbit velocities at periapsis. The well-known vis-viva equation is useful to solve for the velocity
at periapsis of both mothercraft orbit and the flower constellation orbit, as given in Eq. (5)12.
The impulsive ∆V required is the difference between these two periapsis velocities. This process
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continues until all desired satellites have been deployed.

v =

√
2µ

r
− µ

a
(5)

SINGLE PETAL MOTHERCRAFT MANEUVER

After deployment is complete, the mothercraft must maneuver from the deployment orbit to the
longterm communications orbit. The longterm communications orbit creates a relative orbit that
is designed to orbit the flower constellation orbit element barycenter (FC barycenter). The orbit
element barycenter is calculated by finding the average of the flower constellation satellite elements
assuming that all flower constellation satellites are identical and have the same mass. The desired
communications orbit for the mothercraft will have the same orbit elements as the FC barycenter but
with an eccentricity difference. An eccentricity difference in formation flying creates a 2:1 ellipse
of the mothercraft about the FC barycenter. At the end of deployment, the mothercraft will have a
difference in a, e, and M from the FC barycenter. The semi-major axis and eccentricity differences
are typically small, due to the factor K. However, the mean anomaly difference from the barycenter
at the end of deployment will be half of the prescribed string-of-pearls mean anomaly range, ∆M .
A correction is performed to maneuver the mothercraft into the communications orbit. The first burn
occurs at the first periapsis passage after the final flower constellation satellite deployment at peri-
apsis. This maneuver places the mothercraft into a phase orbit that will correct the mean anomaly
error by altering the semi-major axis, eccentricity, and radius of apoapsis of the mothercraft. Based
on the desired phase orbit, the semi-major axis, and the initial radius of periapsis, the radius of
apoapsis and the eccentricity will change according to Eq. (6).

rp = a(1 − e) (6a)

ra = a(1 + e) (6b)

It is recalled that in the final mothercraft orbit, only an eccentricity difference is desired from
the flower constellation satellites. For an orbit to have the same semi-major axis as another orbit,
but a different eccentricity, the radii of periapsis and apoapsis must both be shifted. The first burn
will have already shifted the radius of apoapsis, which can contribute to an eccentricity difference
in the final mothercraft orbit. Therefore, the second burn is desired to occur at apoapsis in order
to maintain the shifted radius of apoapsis while still matching the desired semi-major axis by now
shifting the radius of periapsis. Since the first burn occurs at periapsis and the second at apoapsis,
the mean anomaly correction will occur over 1.5 phase orbits. In other words, 2/3 of the mean
anomaly error is corrected in one phase orbit period and the remaining 1/3 is corrected in the final
half-phase orbit period. The phase orbit is designed so that the mothercraft periapsis is raised to an
orbit that has a period equal to the flower constellation orbit period, plus the time needed to cover
2/3 of the mean anomaly difference. This is described by Eq. (7), where φ is the phase angle
between the mothercraft and the FC barycenter. In other words, φ is the initial mean anomaly error
(∆M/2). In this study, φ is a negative value (desired minus actual), and the phase orbit will have a
smaller semi-major axis, and therefore, shorter period, than the flower constellation orbit.

Tphase =
2π + 2φ

3

nFC
(7)

6



From Eq. (4) and Eq. (7), the phase orbit semi-major axis can be determined. From there, Eq.
(5) can be used to find the velocity of the mothercraft at periapsis in the original deployment orbit
(Vp,deploy) and the velocity at periapsis required for the phasing orbit (Vp,phase). The difference in
these velocity magnitudes is the impulsive ∆V1 required to place the mothercraft into the phasing
orbit, with the burn applied in the along-track direction.

After 1.5 phasing orbits the mothercraft makes a second burn at apoapsis (∆V2) to match the
desired flower constellation semi-major axis. Again, the magnitude of this burn is found using the
radius of apoapsis of the phase orbit and the semi-major axis of the phase orbit and the desired
orbit to find the initial and final velocities at apoapsis respectively. This burn is also in the along-
track direction; once completed, the mothercraft will be in the desired longterm orbit with only an
eccentricity difference from the flower constellation barycenter.

The flower constellation to be studied for the numerical simulation is a 73-1-4 constellation with
a periapsis height of 250 km. A mean anomaly range (∆M ) or 21◦ is specified, resulting in the or-
bital elements given in Table 1. A value of K = 5 in Eq. (4) is selected resulting in a required ∆V
magnitude of 0.550680 m/s, which is well within the capability of a cubesat deployer. The deploy-
ment simulation does not include any perturbations. It is important to note that in real applications,
the irregular gravity field of the Moon and third-body effects from the Sun and Earth would need to
be considered. Instead, this simulation assumes that any initial errors that would result from ignor-
ing perturbations can be corrected for through the controls in the first longterm orbit maintenance
maneuver.

Table 1. Orbital elements for single petal flower constellation satellites

Satellite a (km) e i (deg) ω (deg) Ω (deg) M0 (deg)

1, 2, 3, 4 5053.73 0.60670 63.4 270 0 0, 7, 14, 21

The mean anomalies achieved at the end of the deployment phase for the constellation satellites
are shown in Table 2. In comparison to the mean anomalies in Table 1, it can be seen that the desired
values are achieved with small errors. These errors can be corrected for in the first longterm orbit
maintenance maneuver.

Table 2. Mean anomalies achieved for flower constellation satellites after deployment

Satellite 1 2 3 4

Mean anomaly -0.4275 6.5722 13.5725 20.5729

The inertial orbits at the end of the deployment phase are shown in Fig. 5. The red orbit is the
orbit of the mothercraft and the blue orbit is the flower constellation orbit. In this view, the two
orbits appear to be the same, but there are small differences in semi-major axis and eccentricity, as
shown in Table 3. The red circle indicates the mothercraft’s location at the final deployment and
the blue plus signs represent the flower constellation satellites. The final flower constellation and
mothercraft satellites are shown to be at the same location at the moment of deployment.

Now that deployment of the flower constellations satellites is complete, the mothercraft must
move into its longterm communications orbit. At the end of the deployment phase, the initial mean
anomaly error is -11.90◦. The inertial orbits during the mean anomaly correction period are shown
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Table 3. FC and mothercraft orbits during deployment

Orbit a (km) e i (deg) ω (deg) Ω (deg)

Flower Constellation 5053.73 0.60670 63.4 270.0 0
Mothercraft 5066.82 0.60771 63.40 270.0 0
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Figure 5. Inertial Orbits at moment of final FC satellite deployment

in Fig. 6. The first burn has a magnitude of 4.2794 m/s and the second burn has a magnitude of
14.4396 m/s, both in the along-track direction. These burn magnitudes are small and found to be
acceptable.

In Fig. 6(a), the mothercraft starts at periapsis on the black orbit. The black dot shows where the
first maneuver is made at periapsis to lower the mothercraft into the phase orbit shown in red. The
phase orbit elements are given in Table 4. After 1.5 phase orbits, the second maneuver is made at
apoapsis, marked by the red dot. The resulting orbit is the final mothercraft orbit shown in blue in
Fig. 6(a). This new mothercraft orbit is also given in Table 5 and matches the FC barycenter orbit
but with an eccentricity difference. The mothercraft orbits during this correction period are shown
with the flower constellation orbit in Fig. 6(b). The final position of the mothercraft relative to
the flower constellation satellites can be seen; as desired, the mothercraft is aligned with the mean
anomaly of the FC barycenter.

Table 4. Phase orbit elements
a (km) e i (deg) ω (deg) Ω (deg)

Phase Orbit 4979.21 0.60081 63.40 270.00 0

The initial and final flower constellation and mothercraft orbit elements, as well as the phase
orbit elements are given in Table 5. All values in Table 5 are taken at the FC barycenter apoapsis
passage, as this is where the final maneuver occurs. An eccentricity difference between the final FC
barycenter and final MC orbits are all that remain.
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(b) Inertial Orbits at end of mean anomaly correction

Figure 6. Mothercraft mean anomaly correction

Table 5. Orbits during mean anomaly correction

Orbit a (km) e i (deg) ω (deg) Ω (deg) M (deg)

Initial FC Barycenter 5053.73 0.60670 63.40 270.00 0 11.8754
Initial MC 5066.82 0.60772 63.40 270.00 0 360.9996

Final FC Barycenter 5053.73 0.60670 63.40 270.00 0 359.8478
Final MC 5053.73 0.57721 63.40 269.98 359.80 359.8455

MULTI-PETAL DEPLOYMENT SCHEME

In contrast to the single petal formation, the full flower constellation involving multiple orbit
planes will be referred to as a multi-petal constellation, due to the multiple inertial orbits. This
deployment scheme is more complicated as it does involve large plane changes in the RAAN. One-
burn plane changes are the simplest maneuver to alter the plane of an orbit and will serve as the
baseline cost. A one-impulse plane change must be performed at one of the two nodes where the
initial and desired orbit planes intersect. This optimal point is found numerically after looping
through various values of the mean anomaly in two neighboring flower constellation orbits. Two
node possibilities exist; the node located at the larger radius magnitude will be less costly as the
local velocity will be lower. Two neighboring orbits from a 73-1-4 flower constellation are shown
in Fig. 7 with the two nodes for one-impulse maneuvers shown by the red dots. The cost of this
one-burn plane change can be found by calculating the magnitude of the difference in the inertial
velocity vectors between the two orbits at the node.

It is known, however, that three-impulse plane change maneuvers (i.e. bi-elliptic) are usually
optimal over one-impulse plane changes13. A bi-elliptic plane change is shown in Fig. 8, where the
majority of the plane change occurs at the second maneuver, and a small amount occurs at the first
and third burns. Unfortunately, a bi-elliptic maneuver can be problematic at the Moon, where the
Sun and Earth can cause significant perturbations in the large transfer orbits. A modified bi-elliptic
plane change with only a slight increase in the semi-major axis is investigated. It is assumed that the
mothercraft is initially in one of the desired flower constellation orbits, and has already deployed the
first small-sat. In the deployment of the remainingNs−1 satellites it is assumed that the mothercraft
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Figure 7. Nodes for one-impulse maneuvers Figure 8. Bi-elliptic three-burn plane change13

performs all burns to conserve fuel in the small-sats.

The optimal orbits can be found using MATLAB’s built-in constrained optimizer, fmincon.m.
A transfer orbit sequence will be considered optimal if it is less costly than an impulsive maneuver.
The goal of this optimization problem is to find the optimal values of the parameters given in Table
6.

Table 6. Optimization parameters

M1 Mean anomaly in initial FC orbit at which to perform first impulsive burn
∆V1 Inertial delta-V vector for first impulsive burn
MT Mean anomaly in transfer orbit at which to perform second impulsive burn

∆V2 Inertial delta-V vector for second impulsive burn
M2 Mean anomaly in final FC orbit at which to perform third impulsive burn

∆V3 Inertial delta-V vector for third impulsive burn

Intuitively, it is expected that M1 will be near periapsis and that the first burn, ∆V1, will raise
the apoapsis of the orbit. Some of the plane change will be accomplished by ∆V1 and ∆V3, but
both of these maneuvers will primarily be responsible for adjusting the size (semi-major axis) and
shape (eccentricity) of the orbits. The majority of the plane change will occur with ∆V2, with this
burn doing very little to change either the size or shape of the transfer orbit. The third burn, ∆V3

is also expected to occur near periapsis as this maneuver will lower the orbit back to the flower
constellation semi-major axis and eccentricity values.

Scaling is very critical in optimization. All parameters to be optimized–as well as bounds and
constraints on the system–must all be the same order of magnitude. For this problem, all values are
desired to be between ±1. In order to achieve this scaling, normalization is used for parameters that
would otherwise fall outside of the ±1 scale limits. The mean anomaly is normalized by 2π with
a lower bound of 0 and an upper bound of 1. The ∆V components do not require normalizing as
they are already bounded to be between ±0.5 km/s.

The cost function for this problem is simply the total ∆V required for the three-burn maneuver.
As such, the cost is given by the sum of the magnitudes of the individual burns. The first and second
burn ∆V components are parameters to be optimized. The third burn ∆V3 is simply determined by
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the magnitude of the difference between the velocity vector at M2 in the final flower constellation
orbit and the velocity vector at the end of the second transfer orbit. The cost function is given by
Eq. (8).

f = ∆V1 + ∆V2 + ∆V3 (8)

There are also some constraints on this problem in addition to the bounds that were placed on the
optimization parameters. These constraints take the form of either equality constraints or inequality
constraints. The equality constraints state that the components of the inertial position vectors at the
end of the second transfer orbit must match the components of the position vector at M2 in the final
flower constellation orbit. The position vectors are normalized by the semi-major axis of the flower
constellation orbits for scaling purposes, as given by Eq. (9)

g =
RT2f

aFC
−

RFC2M2

aFC
= 0 (9)

There are several inequality constraints on the problem. The first constraint is that the eccen-
tricities of the transfer orbits must be less than one to ensure an elliptic transfer orbit. The second
constraint is that the radius of periapsis of the transfer orbits must be larger than the radius of the
Moon in order to prevent impact. This constraint uses the radius of the Moon to normalize for
proper scaling. The final inequality constraint is that the semi-major axis of the transfer orbits must
be less than a specified semi-major axis limit. This constraint is normalized by the semi-major axis
of the individual transfer orbits to ensure proper scaling. The inequality constraints are summarized
by Eq. (10)

h1 = eT1 − 1 ≤ 0 (10a)

h2 = eT2 − 1 ≤ 0 (10b)

h3 =
Rm − rp,T1

Rm
≤ 0 (10c)

h4 =
Rm − rp,T2

Rm
≤ 0 (10d)

h5 =
aT1 − amax

aT1
≤ 0 (10e)

h6 =
aT2 − amax

aT2
≤ 0 (10f)

Within the confines of the small bi-elliptic strategy employed in this study, there exist trade-offs
between the fuel spent in the first burn to raise apoapsis and fuel savings in changing the RAAN
at a larger radius of apoapsis where the velocity is smaller. Additionally, large orbits about the
Moon are greatly impacted by third-body perturbations from the Sun and Earth. The limit given to
the semi-major axis of the transfer orbits, amax, will greatly impact the solution. The larger amax
is, the lower the overall cost, since the largest burn, ∆V3 will decrease. However, it is desired for
the transfer orbits to remain relatively small in order to avoid significant third-body perturbations.
Perturbations are not included in this optimization, with the assumption that small errors that would
accumulate over the transfer duration can be corrected for either by the mothercraft once in the final
orbit, or by the children craft after deployment in the orbit maintenance maneuvers.
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The flower constellation to be studied for the numerical simulation is a 73-1-4 constellation with
a height of periapsis of 250 km. The orbital elements for the satellites in this constellation are
summarized in Table 7.

Table 7. Orbital elements for 73-1-4 multi-petal flower constellation satellites

Satellite a (km) e i (deg) ω (deg) Ω (deg) M0 (deg)

1, 2, 3, 4 5053.73 0.60670 63.4 270 0, 270, 180, 90 0, 180, 0, 180

The baseline cost of a one-burn RAAN change is calculated and found to be 0.93084 km/s. For a
small bi-elliptic method to be optimal over the one burn strategy, it must have a total cost less than
0.93084 km/s. Initially, the limit on the transfer orbit semi-major axis is set to 9000 km. The total
cost for this maneuver is found to be 0.686234 km/s and is, therefore, optimal over the one-burn
maneuver with a cost savings of 0.24460 km/s. The final values for the optimization parameters are
summarized in Table 8.

Table 8. Final values of optimization parameters for amax = 9000 km

M1 ∆V1x ∆V1y ∆V1z MT ∆V2x ∆V2y ∆V2z M2

(deg) (km/s) (km/s) (km/s) (deg) (km/s) (km/s) (km/s) (deg)

338.3 0.0478 -0.0557 -0.1172 154.3 0.1716 0.1827 -0.2772 40.97

The trajectories for this optimal three-burn maneuver are shown in Fig. 9. The first burn at M1

is marked by the turquoise asterisk, the second burn at MT by the light blue asterisk, and the third
burn at M2 with the magenta asterisk. While not a constraint on the problem, the first and second
transfer orbits have nearly matching orbital elements with the exception of RAAN and inclination,
as these were desired to be changed in the maneuver. The orbital elements of the transfer orbits are
summarized in Table 9.
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Figure 9. Optimal three-burn orbits for amax = 9000 km

Ultimately, the limit placed on the semi-major axis of the transfer orbits significantly alters the
optimal solution that can be found. As the semi-major axis limit becomes smaller, the bi-elliptic
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Table 9. Orbital elements for transfer orbits for amax = 9000 km

Transfer Orbit a (km) e i (deg) ω (deg) Ω (deg) M0 (deg)

1 8985.24 0.75436 63.50 253.38 0.01 352.45
2 8994.71 0.72790 65.16 293.49 270.89 182.38

nature of the transfer orbits no longer holds since the transfer orbit is not allowed to be much larger
than the flower constellation orbits themselves. This change occurs approximately at a semi-major
axis limit of 5200 km. However, even in these schemes, a three-burn maneuver is still shown to be
optimal over a one-burn maneuver. Again, the baseline cost is 0.93084 km/s. When the limit on the
transfer orbits semi-major axis is set to 5200 km the total cost for the three-burn maneuver is found
to be 0.86228 km/s and is, therefore, optimal over the one-burn maneuver with a cost savings of
0.06855 km/s. The final values for the optimization parameters are summarized in Table 10.

Table 10. Final values of optimization parameters for amax = 5200 km

M1 ∆V1x ∆V1y ∆V1z MT ∆V2x ∆V2y ∆V2z M2

(deg) (km/s) (km/s) (km/s) (deg) (km/s) (km/s) (km/s) (deg)

158.3 0.0675 0.1525 -0.3769 141.3 0.1784 0.0887 -0.3987 25.34

While still optimal over the one burn maneuver, the strict semi-major axis limit causes the transfer
orbits to take on a new form, as shown in Fig. 10 and summarized in Table 11. The first burn is
performed near apoapsis instead of closer to periapsis in Fig. 9. The apoapsis of the first transfer
orbit is only slightly raised to a semi-major axis of 5198.66 km and almost a full orbit is completed
before the second maneuver. After the second burn, the orbit elements almost match the desired
final constellation orbit, with the third burn eliminating these small differences.
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Figure 10. Optimal three-burn orbits for amax = 5200 km

These simulations have assumed a 73-1-4 constellation, so that there are four orbit planes, each
at a 90◦ RAAN separation. However, as Ns is increased, the ∆Ω between orbits decreases. It is
desired to know if the three-burn method is always optimal over the one-burn method. For a semi-
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Table 11. Orbital elements for transfer orbits for amax = 5200 km

Transfer Orbit a (km) e i (deg) ω (deg) Ω (deg) M0 (deg)

1 5198.66 0.60928 65.27 268.93 317.96 222.03
2 5101.79 0.60818 63.43 270.67 269.99 205.59

major axis limits of 9000 and 5200 km, the parameter Ns is varied from four to twenty and the cost
of the three-burn maneuver is compared to a one-burn maneuver. The results are plotted in Fig. 11.
The values of ∆Ω corresponding to Ns are also plotted.
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Figure 11. Maneuver costs for various values of Ns

It can be seen in Fig. 11(a), that the initial difference between the one-burn and three-burn
maneuver for amax = 9000 km is greater than in Fig. 11(b) for amax = 5200 km. Regardless
of the semi-major axis limit, as the number of satellites is increased, the RAAN change required
per satellite decreases and the cost of the three-burn maneuver approaches the cost of the one-burn
maneuver. However, the three-burn maneuver is always less than or equal to the one-burn method.

It was also desired to observe trends in the cost for the establishment of the entire constellation
as Ns is varied. For the semi-major axis limit of 9000 km, the general trend is that the total cost
grows as the number of satellites increases, due to the increased number of maneuvers. However,
there are some interesting fluctuations in the total cost for eight, nine, and eleven satellites. It is
actually less expensive to establish an eight or nine satellite constellation than one with only seven
satellites. Likewise, it costs less to create an eleven satellite constellation compared to a ten satellite
constellation. For the semi-major axis limit of 5200 km, the general trend of increasing total cost
is more consistent than for the semi-major axis limit of 9000 km. The only deviants from the trend
are a ten satellite constellation, which is equal in cost to a nine satellite constellation, as well as a
twelve satellite constellation, which is equal in cost to an eleven satellite constellation.

Ultimately, for any number of satellites, Ns, a three-burn maneuver should be used to deploy
the individual satellites in the constellation. The larger the semi-major axis limit, the less costly
the three-burn maneuver. However, the larger the transfer orbits, the more prominent the third-body
perturbations will be, perhaps requiring larger initial corrections by the flower constellation satellites
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after deployment. As is true in all optimization problems, the optimal solution is dependent upon
the requirements of the problem at hand.

MULTI-PETAL MOTHERCRAFT MANEUVER

Once the flower constellation has been fully deployed, the mothercraft must maneuver to a
longterm communications orbit. The requirement of this orbit are that the mothercraft must pe-
riodically pass by all of the children craft in order to communicate with them and relay back to the
Earth due to the limited communications range of the small-sats. A polar orbit for the mothercraft
has been selected as it maintains the same symmetry as the flower constellation about the spin axis
of the Moon. The semi-major axis is desired to be larger than the flower constellation orbit semi-
major axis so that there is a period difference. This period difference will allow the mothercraft to
travel by all children satellites rather than maintaining the same relative positions to the children
satellites were the semi-major axis to match. The RAAN will drift with time due to lunar pertur-
bations and this motion will not be controlled against, so that the initial RAAN is not a critical
parameter. Therefore, to minimize fuel costs in this maneuver, the RAAN will not be changed from
the final flower constellation orbit to the longterm mothercraft orbit.

Once again, a 73-1-4 flower constellation is studied. The desired semi-major axis for the longterm
mothercraft orbit is chosen to be 10% larger than the flower constellation semi-major axis. As it will
be shown later, it is the inclination change from the frozen inclination of 63.4◦ to a polar inclination
of 90◦ that drives the cost of this maneuver. Therefore, the semi-major axis difference used is almost
arbitrary. The initial mothercraft orbit elements are the same as the final flower constellation orbit.
The desired elements are the same except for the polar inclination and semi-major axis. The initial
and final elements for the mothercraft are summarized in Table 12.

Table 12. Initial and final mothercraft orbits
Orbit a (km) e i (deg) ω (deg) Ω (deg)

Initial Orbit 5053.72 0.60670 63.4 270 90
Final Orbit 5559.10 0.60670 90 270 90

The simplest way to move the mothercraft into the desired orbit is to first perform one orbit with
small burns in the along-track direction at both periapsis and apoapsis to raise the semi-major axis
of the orbit. The costs of these burns are found using the impulsive orbit element control equations
of Reference 14. Once the desired semi-major axis is obtained, the plane change maneuver can
be performed. It is desired to perform this maneuver second as the velocity will be smaller in the
larger orbit, decreasing the cost of the maneuver. The location at which to perform the plane change
maneuver will be governed by the critical angle, θc at which plane change maneuvers are optimal.
This burn will occur in the out of plane direction and is computed using the equation for ∆Vh in
Reference 14. The total baseline cost for this sequence of maneuvers was found to be 0.61438 km/s.

Similarly to the deployment scheme discussed for establishing the flower constellation orbits, this
maneuver also involves a costly large plane change. Therefore, it is likely that there is a three-burn
transfer orbit maneuver to change both the inclination and semi-major axis that would be optimal
over the series of impulsive burns just discussed. The cost functions and constraints remain un-
changed from Eqs. (8), (9), and (10). The only difference between these two optimization problems
is the initial and final orbits desired. It should also be noted that the impulsive burns for the baseline
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cost are all in the local vertical local horizontal (LVLH) frame whereas the burns to be optimized in
the three burn transfer orbit scheme are inertial velocities. However, when comparing magnitudes,
the frames used are irrelevant.

For the three-burn transfer orbit method to be optimal over the impulsive burn series strategy, it
must have a total cost less than the baseline cost of 0.61438 km/s. The limit on the transfer orbits
semi-major axis is set to 9000 km. The total cost for this maneuver is found to be 0.44432 km/s and
is, therefore, optimal over the impulsive burn series with a cost savings of 0.17007 km/s. The final
values for the optimization parameters are summarized in Table 13 and shown in Fig. 12.

Table 13. Final values of optimization parameters for final mothercraft maneuver

M1 ∆V1x ∆V1y ∆V1z MT ∆V2x ∆V2y ∆V2z M2

(deg) (km/s) (km/s) (km/s) (deg) (km/s) (km/s) (km/s) (deg)

60.09 0.1886 0.0200 0.1041 301.89 -0.2230 -0.0208 -0.0424 25.02
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Figure 12. Optimal three-burn orbits for amax = 9000 km

The orbital elements of the transfer orbits are summarized in Table 14. Figure 12 shows that
the second transfer orbit nearly matches the desired orbit. This is verified by comparing the orbital
elements in Table 12 for the desired orbit to the elements in Table 14 for transfer orbit two. The
final burn is a small burn that simply matches the two orbits more precisely.

Table 14. Orbital elements for transfer orbits for amax = 9000 km

Transfer Orbit a (km) e i (deg) ω (deg) Ω (deg) M0 (deg)

1 5390.58 0.60714 76.04 271.01 100.87 53.66
2 5559.42 0.60663 90.00 270.00 89.94 304.78

Many orbits are feasible for the mothercraft longterm communications orbit, as long as the moth-
ercraft periodically comes into communications range of all satellites in the constellation. The one
example presented in this section is a good candidate orbit. The three-burn transfer orbit strategy
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used for this orbit can also be applied to other mothercraft maneuvers that may require large plane
changes.

LONGTERM MAINTENANCE

Once deployment is complete, the flower constellation satellites are subject to the perturbations
at the Moon. The orbits must be corrected periodically in order to maintain the repeat groundtrack
nature of the flower constellation. This will be simulated through propagating the orbits under the
influence of the 50×50 lunar gravity field, as well as point mass effects from the Earth and Sun. The
impulsive feedback control law developed in Reference 14 will be used to perform impulsive orbit
element corrections in the simulation. The accumulated ∆V corrections from the impulsive control
will be used to predict fuel expenditure, and from that, the constellation lifetime. As the lifetime
maintenance is very similar for the single petal and multi-petal configurations, only the simulation
for the multi-petal configuration is presented.

The relative orbits for the repetition period are shown in Fig. 13(a). The overall vase shape
is maintained, although the perfect latticework of the relative orbits is compromised by the lunar
perturbations and the drift that occurs between control periods. The difference between the con-
stellation with full perturbations and only J2 can be seen by comparing Fig. 13(a) with Fig. 2(b).
However, the lunar surface coverage of the constellation is still achieved, just without the exact re-
peat groundtrack nature that would occur with only J2, or if controls were to be applied every orbit
to constantly eliminate drift.
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Figure 13. 73-1-4 multi-petal FC perturbed orbits

The inertial orbits over the repetition period are shown in Fig. 13(b). It can be seen that the
perturbations cause precession in the inertial orbits over the 27-day repetition period, by comparing
Fig. 13(b) to Fig. 3(b) where only J2 was included. The total control costs are sensitive to how
close the corrections are applied relative to the desired locations of periapsis, apoapsis, and θc.
It was found that satellite one experienced the largest ∆V and after further investigation, it was
found to be due to how close the in-plane corrections were performed relative to the actual periapsis
crossing. This is an implementation challenge and is manifested in the higher control ∆V cost for
satellite one compared to the remaining satellites, as shown in Table 15. Since satellite one is the
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worst case, only the results of the control simulation for satellite one (Ω = 0◦) are presented in
detail.

Table 15. Total ∆V magnitude over five control orbits

Satellite 1 2 3 4

∆V (m/s) 360.6 219.3 201.5 231.8

The errors in the orbital elements for satellite one are shown in Fig. 14. From Fig. 14(a), it can be
seen that on average, a, e, and i do not grow, but rather osculate around a mean value. However, in
Fig. 14(b), ω, Ω, and M grow over the first five days before the first control cycle is implemented.
However, after each control period, the element errors are reduced to nearly zero. In other words,
the control sequence corrects the actual orbit elements to match the desired orbit elements. This
behavior is better shown in Fig. 15. The red dashed line is the desired elements and the solid blue
line is the actual elements. After each sequence of five control orbits, the actual elements converge
on the desired element values. In Fig. 15(a), the desired values for a, e, i, and ω are all constant,
as described in Table 7. However, the RAAN (Ω) is drifting over time. The control phase captures
the drift behavior and converges to the current RAAN value rather than the initial RAAN, as shown
in Fig. 15(b). The initial jumps that occur at the beginning of each control phase for the in-plane
elements (a, e, and ω) are all due to the application of the controls at a point near periapsis, but
not exactly at periapsis. These errors that are introduced are eliminated in subsequent control orbits
from the burns at apoapsis, where better accuracy is achieved due to the slower orbital velocity near
apoapsis.
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Figure 14. Satellite one element errors controlling every four days

In order to predict the lifetime of a flower constellation at the Moon, two pieces of information
are needed: the fuel required and the fuel available for each satellite. The ∆V required per 27-day
repetition period, per satellite was given in Table 15 and corresponds to the fuel required. Two
primary factors that affect cubesat fuel consumption are overall mass and the type of engine or
propellant used. Reference 15 provides propellant mass required as a function of ∆V for various
types of propellant assuming a 4 kg cubesat. This relationship is used to estimate the constellation
lifetime.
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Figure 15. Satellite one actual (solid) and desired (dashed) elements controlling every four days
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Figure 16. Multi-petal FC lifetime prediction for a 4 kg satellite with 1 kg fuel

In Fig. 16, the red curve in the bottom left of the plot is the actual calculated average ∆V s after
every four days for 28 days. The black curve is the linear curve fit produced from the first 28 days
of calculated burns, extrapolated for 900 days. It can be seen in Fig. 16 that for a monopropellant
thruster and 1 kg of fuel, the constellation can last exactly 100 days. As the thruster efficiency
increases in the form of a higher Isp, the lifetime increases. A pulsed plasma thruster can support
the constellation for 240 days, the electrostatic thruster extends the lifetime to just over 400 days,
and the hall thruster provides the longest constellation lifetime at over 800 days.

CONCLUSION AND FUTURE WORK

This work provided an initial investigation of the feasibility for establishing a flower constellation
at the Moon. This constellation can take the form of either a single-petal constellation or a multi-
petal constellation. Both constellations studied were 73-1-4 constellations with a height of periapsis
of 250 km. The challenges of applying flower constellations to the Moon, optimal deployment
schemes, and constellation lifetime and maintenance were all investigated. Overall, it has been
demonstrated that flower constellations are indeed feasible at the Moon. In fact, the constellation can
achieve a significant scientific mission with a lifetime of at least 90 days. While this investigation
made many specific assumptions in the studies and simulations performed, the techniques can be
generalized to any sort of constellation at any Moon or other celestial body. The perturbations and
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constellation configuration would differ based on the central body involved.
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