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Singularity avoidance in Variable Speed Control Moment Gyroscope (VSCMG)
systems can require significant computation to determine null motion steering
commands. This paper presents a less complicated method of determining appro-
priate null motion steering laws while achieving similar performance as current,
more complicated, methods. This method is based on tracking the range of the
transverse axes, instead of the rank of the VSCMG steering control projection ma-
trix. The new approach does not require any knowledge of the rotor speeds in order
to create singularity avoidance null motion steering commands. The performance
using this simpler CMG singularity cost function is essentially identical to previ-
ously published methods, as is illustrated with a simple numerical simulation. The
main benefit of this new method for CMG singularity avoidance using VSCMG
devices is that the null motion commands are greatly simplified compared to pre-
vious methods.

INTRODUCTION

Singularity avoidance in Variable Speed Control Moment Gyroscope (VSCMG) systems can re-
quire significant computation to determine null motion steering commands. This paper presents
a less complicated method of determining appropriate null motion steering laws while achieving
similar performance as current, more complicated, methods.

Control Moment Gyroscope (CMG) clusters, which are often used for spacecraft attitude control,
can encounter singular gimbal angle configurations where a general three-dimensional torque can-
not be produced. Such singularities can be overcome through a variety of methods such as those
presented in References 1 - 2. Another option to help avoid singularities is to use VSCMG devices,
which allow a CMG device to vary its wheel speed, and thus produce a torque about two orthog-
onal axes (wheel spin and transfer axis).3, 4, 5 A VSCMG cluster will not encounter gimbal locks
(singular gimbal angle configurations) due to the reaction wheel modes. If all the CMG torque axes
lie in a plane, then one of the reaction wheel control axis will point apart from this CMG-torque
plane. Thus a VSCMG cluster can always produce the required torque of a chosen attitude control
law without encountering temporary small attitude errors as the CMG singularity is avoided. How-
ever, using reaction wheel (RW) modes to drive through the CMG singular configuration requires
significant RW motor torques, which is not power effective.6 Using the null space of the VSCMG
system wisely can enable the system to avoid this singular CMG situation while completing the
required control maneuvers. The extra RW control modes of the VSCMG allows for greater ef-
fectiveness to rearrange the gimbal angles away from the CMG singularity.7 This increased null
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space of the VSCMG devices can also be used to create novel combined attitude and energy storage
devices.8, 9, 10 Here the rotor speed can be spun up during sun-lit portions of the orbit to store energy
without changing the spacecraft attitude. Then, during a shaded orbit region the rotors can be spun
down using the VSCMG null space to extract this energy again.

VSCMG steering laws lead to a simple condition which maps the desired rotor accelerations and
gimbal rates into the required attitude control torque. The null space of this mapping is exploited
by Schaub and Junkins using a gradient based method to drive the gimbal angles away from a CMG
singularity.7 The condition number of the mapping matrix is used as the singularity index. Yoon
and Tsiotras analyze the CMG singularities of VSCMG devices in Reference 11 and provide a small
modification to the gradient based null space proposed in Reference 7. The advantage of this mod-
ification is that stability of the singularity avoidance can be analytically guaranteed. However, this
new null space steering law requires particular control of both the wheel speed and the gimbal rate,
while the earlier method only required gimbal angle motion. The reduced actuation requirements
are a benefit because this makes it easier for the null space to be used to implement auxiliary objects
such as power storage demands, or returning the wheel speeds to their original values and avoiding
long term rotor speed drift. Lee, Lee and Bang present in Reference 12 a general formulation to
develop optimal null space VSCMG steering laws to avoid a CMG singularity. Their method can ac-
count for higher order CMG cost function sensitivities and provides analytical stability guarantees.
However, as with the method by Yoon and Tsiotras, the VSCMG steering law dictates both rotor
speed and gimbal angle changes. If reduced to a simple first-order form, their general formulation
can be shown to be a generalization of the earlier methods discussed in References 7 and 11.

Many VSCMG null space steering methods have developed their formulation around the attitude
regulation problem. The algebraic null space formulation often becomes significantly more complex
if an attitude tracking problem is considered. This paper investigates a simplified CMG singularity
measure whose performance is equivalent to the previously published methods, but is implemented
using a substantial reduction in complexity. In particular, considering an attitude tracking problems
does not lead to an increase in complexity. The developments are performed, and numerically
simulated, using the optimal steering formulation by Lee, Lee and Bang. However, the presented
results could also be easily applied to the VSCMG null space steering law presented by Yoon and
Tsiotras.

VSCMG STEERING LAW OVERVIEW

Figure 1 illustrates the gimbal frame coordinate system G : {ĝs, ĝt, ĝg} used to describe the time
varying orientation of the VSCMG relative to the spacecraft body B. The gimbal rate γ̇i is applied
about the body-fixed axis ĝgi , while the rotor speed motor causes angular accelerations Ω̇i about the
spin axis ĝsi . All VSCMG steering laws for both attitude regulation and tracking application leads
to a control condition of the form:3, 4, 5, 13

[Q]η̇ = Lr (1)

[Q] = [D0 D] (2)

η̇ =
[
Ω̇
γ̇

]
(3)

Here [D0] and [D] are 3 × N matrices, withN being the number of VSCMGs in the system. The
projection matrix [Q] is therefore a 3 × 2N matrix which maps the VSCMG control states to the
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Figure 1: Variable-Speed CMG Coordinate Frame Illustration

requiredN×1 control vector Lr. This paper follows the notation setup in References 7 and 5 which
also provide expressions for Lr for attitude regulation and tracking control formulations. Finally,
the parameters Ω̇ and γ̇ are the N × 1 wheel speed and gimbal rate vectors, respectively.

The wheel speed rate control matrix, [D0], is formulated by5

[D0] = [· · · ĝsiJsi · · · ] (4)

and the gimbal rate control matrix, [D] for the reference attitude tracking problem is given by5

[D] = [ · · · Jsi(ĝti(Ωi +
1
2
ωsi) +

1
2
ωti ĝsi)

− 1
2
Jti(ωti ĝsi + ωsi ĝti) + Jgi(ωti ĝsi − ωsi ĝti)

+
1
2

(Jsi − Jti)(ĝsi ĝ
T
tiωr + ĝti ĝ

T
si
ωr) · · · ]

(5)

whereωr is the reference trajectory angular velocity. The G-frame axes can be grouped into a matrix
such that each axis forms a column. For example, using the transverse axes ĝti we find

[Gt] = [ĝt1 · · · ĝti · · · ĝtN ] (6)

The same notation can be used to create [Gs] and [Gg] matrices. Js, Jt and Jg are the combined
wheel and gimbal structure moments of inertia in the spin, transverse and gimbal directions, respec-
tively. The projection of the spacecraft body angular velocity ω = ωB/N onto the ith gimbal frame
G yields

ω = ωsi ĝsi + ωti ĝti + ωgi ĝgi (7)

If examining the attitude regulation problem, the VSCMG steering law projection matrix [D] can
be simplified from (5) by setting ωr = 0 and dropping non-working terms to become5

[D]reg = [· · · ĝti(Jsi(Ωi + ωsi)− Jtiωsi) · · · ] (8)
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Note that both versions of [D] depend the gimbal angles γi through the dependence on ĝsi , ĝti ,
ωsi and ωti , and on the rotor spin rates Ωi. A further simplification of [D] is typically made in
recognizing that the Jtiωsi term is very small compared to the other terms due to the size of the
inertias, and therefore the typical form for regulator control is,

[Q] = [D0 D1] (9)

where

[D1] = [· · · ĝtiJsi(Ωi + ωsi) · · · ] (10)

While the [Q] matrix will never be singular, it is possible for the [D] or [D1] matrices to become
singular. In this case the VSCMG cannot fully employ the CMG mode and some RW modes must be
employed to produce the required control torque Lr. The goal of the VSCMG null motion steering
law is to keep the [D] or [D1] matrices (tracking or regulation cases) full rank at all times.

Solving the control constraint in Eq. (1) results in the spacecraft executing the desired stabilizing
motion. But, due to the fact that a typical 4 VSCMG system has a 5-D null space, there are infinite
ways to solve for the steering command η̇. Typically, the desired solution is executed primarily with
the CMG modes using a weighted minimum norm inverse of Eq. (1). To ensure that the CMG mode
can be utilized at all times happens, the control solution must consider CMG singularity avoidance
using the VSCMG control modes.

OPTIMAL STEERING LAW

Lee et al. present in Reference 12 an optimal VSCMG null space steering law formulation to
avoid the CMG singular configuration. This formulation relies on a CMG singularity measure V
which must be minimized while keeping the VSCMG steering commands η̇ small. This section
provides a brief overview of Lee’s method, including second order sensitivities. If the singularity
measure V has a complex form, then the null space steering law formulation quickly increases in
complexity. This paper provides first and second order singularity sensitivities for regulation and
tracking problems using both the [D] matrix and simplified singularity measure.

The singularity avoidance cost function used to derive Lee’s optimal steering is,12

J(η̇) = V (η + η̇∆t) +
1
2
η̇TW η̇ +

1
2

(η̇ − η̇d)TZ(η̇ − η̇d) (11)

where η̇d is a vector of preferred gimbal and wheel speed rates.

η̇d =
ηd − η

∆t
(12)

where ηd is a vector of desired values for the gimbal angles and wheel speeds.

The first term V in the cost function J is the singularity avoidance cost. The second term is the
weighted cost for the control effort, and the final term is the weighted cost for deviated state values.
Typically only the wheel speeds are weighted in the third term, which allows the gimbals to vary in
any way without impacting the cost function through this term. This is assumed to be the case for
the remainder of this paper.
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The Hessian matrix (H̄) and the gradient vector (g) are defined as

H̄ ≡ ∆t2V ′′(η) = ∆t2
[
∂2V
∂Ω2

∂2V
∂Ω∂γ

∂2V
∂γ∂Ω

∂2V
∂γ2

]
(13)

and

g(η) =
[
gΩ

gγ

]
= ∆tV ′(η) = ∆t

[
∂V
∂Ω

∂V
∂γ

]T
(14)

where gΩ, gγ ∈ RN are the partitions of the gradient matrix. Using these definitions of the Hessian
and the gradient matrices, and ignoring the higher order terms, the singularity avoidance cost is
approximated as

V (η + η̇∆t) ' V (η) + gT η̇ +
1
2
η̇T H̄η̇ (15)

Using this framework, the optimal steering law is solved to be,[
Ω̇
γ̇

]
= ŜQ̂+Lr + (ŜQ̂+ŜT − Ĥ−1)

[
ĝΩ

ĝγ

]
(16)

where

Ŝ = Ĥ−1QT , Q̂+ = (QĤ−1QT )−1 (17)

Here the modified Hessian and gradient matrices are defined as

Ĥ = H̄ +W + Z (18)

ĝ =
[
ĝΩ

ĝγ

]
=
[
gΩ − ZΩΩ̇d

gγ

]
(19)

It should be noted that this optimal steering law is very similar to that proposed in Reference 7 for
singularity avoidance and constant wheel speeds. The main difference is that the optimal steering
law uses the second order derivatives for V and requires both Ω̇i and γ̇i to perform the desired
null motion, whereas Reference 7 only uses the first order derivatives and the gimbal rates γ̇i. The
choice of the singularity index V results in varying algebraic complexities of the optimal steering
law formulation. Further, it is beneficial to not require both specific γ̇i and Ω̇i to avoid a CMG
singularity. This makes it simpler to implement other objectives such as nominally constant rotor
speeds, or power extraction requirements, using the VSCMG null motion.

SINGULARITY AVOIDANCE

Although the VSCMG configuration cannot become singular like a CMG system ([Q] is always
full rank),3 avoiding the geometrically singular CMG configuration ĝti in the same plane for the
regulation case) is still desirable. In general, it is more efficient to steer with the CMG mode as
much as possible.6 Furthermore, the rotor speeds will saturate much sooner than the gimbals when
producing a given torque, therefore smart VSCMG control systems attempt to keep the wheel speeds
near the nominal values.
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Mathematically, the singular CMG situation that needs to be avoided is when the ĝti axis become
co-planar. The gimbal rates γ̇i produce a torque about the ĝti axis. Thus, if these only span a
two-dimensional space, then the CMG control modes cannot produce a general three-dimensional
vector. This is seen directly for the regulation case in the [D1] matrix; the columns depend directly
on the transverse axes.

The same argument can be used for attitude tracking problem with the full [D] matrix. Although
there are other terms present that are proportional to ĝsi , the dominant terms are still the gyroscopic
term proportional to JsiΩi. If the transverse axes become co-planar, then torques out of plane could
still be produced. But, because the other terms are small in comparison to the JsiΩi term, the
required motion will be an undesirable method of producing the torque.

In any case, a VSCMG steering law not only implements the required torque, but also has some
null motion to avoid the singularity situation. For the regulation case, Reference 7 continuously
minimizes the condition number of the [D1] matrix. The condition number of a matrix, κ, is defined
as the ratio of the largest to smallest singular values of the chosen 3xN matrix,

κ =
σ1

σ3
(20)

For the tracking case one would use the condition number of the [D] matrix. Likewise, these condi-
tion numbers can be used as the CMG singularity V function in the optimal steering law developed
by Lee.12

This technical note proposes to always use the condition number of the [Gt] matrix in place of
the [D] or [D1] matrix condition numbers. This makes intuitive sense; the situation that is to be
avoided is the transverse axes ĝti becoming co-planar, and thus the loss of full 3-D CMG control
authority. If the condition number of [Gt] is kept small, then the matrix is being kept at full rank, and
therefore the transverse axes are spanning 3-D space instead of becoming co-planar. Furthermore,
using [Gt] works for the regulation or tracking case, unlike [D] or [D1], and therefore does not
require reworking the steering law for each specific case.

Note the following subtle issue with using the condition number of [Gt] versus that of [D] or
[D1]. The later matrices depend on the rotor speeds Ωi. Thus, the VSCMG null motion can mod-
ify the rotor speeds to minimize the condition number κ. This ability is lost with the simplified
singularity measure using the condition number of [Gt] only. However, as is illustrated in the en-
closed numerical simulations, as long as the rotor speeds are kept apart from zero, the resulting
CMG avoidance performance is essentially equivalent to those of using the more complex condition
number formulation of the [D1] and [D] matrices.

A second order form of Lee’s optimal steering law is examined which requires the first and second
partial derivatives of the condition number with respect to both the gimbal angles and wheel speeds.
The first partial derivatives are defined as

∂κ

∂Ωi
=

1
σ3

∂σ1

∂Ωi
− σ1

σ2
3

∂σ3

∂Ωi
(21)

∂κ

∂γi
=

1
σ3

∂σ1

∂γi
− σ1

σ2
3

∂σ3

∂γi
(22)

and where i = 1, . . . , N . The partial derivatives of the singular values of a given matrix, [A], are

6



given by14

∂σj
∂Ωi

= uTj
∂[A]
∂Ωi

vj (23)

∂σj
∂γi

= uTj
∂[A]
∂γi

vj (24)

where the SVD of [A] is
[A] = [U ][Σ][V ]T

uj is the jth column of [U ], and vj is the jth column of [V ].

The second partial derivatives of κ can be obtained by applying the chain rule to Eqs. (21) and
(22) to get,

∂2κ

∂Ωi∂Ωj
=

1
σ3

∂2σ1

∂Ωi∂Ωj
− 1
σ2

3

∂σ1

∂Ωi

∂σ3

∂Ωj

− 1
σ2

3

(
∂σ3

∂Ωi

∂σ1

∂Ωj
+ σ1

∂2σ3

∂Ωi∂Ωj

)
+

2σ1

σ3
3

∂σ3

∂Ωi

∂σ3

∂Ωj

(25)

∂2κ

∂Ωi∂γj
=

∂2κ

∂γi∂Ωj
=

1
σ3

∂2σ1

∂Ωi∂γj
− 1
σ2

3

∂σ1

∂Ωi

∂σ3

∂γj

− 1
σ2

3

(
∂σ3

∂Ωi

∂σ1

∂γj
+ σ1

∂2σ3

∂Ωi∂γj

)
+

2σ1

σ3
3

∂σ3

∂Ωi

∂σ3

∂γj

(26)

∂2κ

∂γi∂γj
=

1
σ3

∂2σ1

∂γi∂γj
− 1
σ2

3

∂σ1

∂γi

∂σ3

∂γj

− 1
σ2

3

(
∂σ3

∂γi

∂σ1

∂γj
+ σ1

∂2σ3

∂γi∂γj

)
+

2σ1

σ3
3

∂σ3

∂γi

∂σ3

∂γj

(27)

The second partials of the singular values can then be determined by differentiating Eqs. (23) and
(24),

∂2σj
∂Ωi∂Ωk

= uTj
∂2[A]
∂Ωi∂Ωk

vj (28)

∂2σj
∂Ωi∂γk

=
∂2σj
∂γi∂Ωk

= uTj
∂2[A]
∂Ωi∂γk

vj (29)

∂2σj
∂γi∂γk

= uTj
∂2[A]
∂γi∂γk

vj (30)

For a given matrix [A] (which will be [D], [D1], or [Gt]), the partial derivatives will have the
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form:

∂[A]
∂γi

= [0 · · ·0 χi 0 · · ·0] (31)

∂[A]
∂Ωi

= [0 · · ·0 ψi 0 · · ·0] (32)

∂2[A]
∂ΩiΩj

= 0 ∀i, j (33)

∂2[A]
∂Ωiγj

=
∂2[A]
∂γiΩj

= [0 · · ·0 ξi 0 · · ·0] (34)

∂2[A]
∂γiγj

= [0 · · ·0 φi 0 · · ·0] (35)

The derivation for each of the three matrices is shown in the following subsections. It is made clear
that determining the singularity avoidance controls is much simpler for [Gt] than either [D] or [D1].

[D1] Matrix Condition Number

For the attitude regulation control case, Reference 7 presents the partial derivative of [D1] with
respect to γi as,

χi = −ĝsiJsi(Ωi + ωsi) + ĝtiJsiωti (36)

Likewise, the partial derivative of [D1] with respect to Ωi is,

ψi = ĝtiJsi (37)

The second partial derivative of [D1] with respect to γi and Ωi is,

ξi =
{

0 i 6= j
−ĝsiJsi i = j

(38)

The second partial derivative of [D1] with respect to γi is,

φi =
{

0 i 6= j
−ĝtiJsi(Ωi + 2ωsi)− ĝsiJsiωti i = j

(39)

[D] Matrix Condition Number

For the reference attitude tracking control case, the first partial derivative of [D] with respect to
γi is,

χi = Jsi(−Ωiĝsi − ωsi ĝsi

+ ωti ĝti) + Jti(ωsi ĝsi − ωti ĝti)
+ (Jsi − Jti)(ĝti ĝTtiωr − ĝsi ĝ

T
si
ωr)

(40)

The partial derivative of [D] with respect to Ωi is,

ψi = ĝtiJsi (41)
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The second partial derivatives of [D] with respect to γi and Ωi is,

ξi =
{

0 i 6= j
−ĝsiJsi i = j

(42)

The second partial derivative of [D] with respect to γi is,

φi =


0 i 6= j

2Jsi(−
1
2

Ωiĝti − ωsi ĝti − ωti ĝsi)

+ 2Jti(ωti ĝsi + ωsi ĝti)
− 2(Jsi − Jti)(ĝsi ĝ

T
tiωr + ĝti ĝ

T
si
ωr)

i = j
(43)

[Gt] Matrix Condition Number

For both the attitude regulation and tracking cases, the first partial derivatives of [Gt] have the
very simple form,

χi = −ĝsi (44)

ψi = 0 (45)

Likewise, the second partial derivatives have the simple form,

ξi = 0 (46)

and

φi =
{

0 i 6= j
−ĝti i = j

(47)

The functional form of using the condition number of [Gt] is much simpler than those of the
[D1] or [D] matrices. Furthermore, it is important to note that the wheel speeds are not needed
to determine the null motion steering commands for singularity avoidance, unlike with the other
cost functions. The effectiveness of this simple CMG singularity measure is demonstrated in the
following numerical simulations.

SIMULATION RESULTS

A test simulation is used to illustrate the performance of the singularity avoidance using [Gt] for
a tracking case. For this simulation, the satellite properties are the same as were used by Schaub,7

and are reproduced in Table 1. This simulation uses the full nonlinear acceleration-based equations
of motion developed in Reference 5. A sub-servo gimbal acceleration controller (with feed-forward
term) is used to implement the VSCMG gimbal rate γ̇i commands from the optimal steering law.

In the following simulation the optimal steering law proposed by Lee et al.12 is used, and the
control parameters are shown in Table 2. An additional VSCMG state goal is implemented where
any rotor speeds Ωi should return gradually back to their original states. The attitude control goal is
to track a reference rotation while continuously avoiding a CMG singularity. The reference trajec-
tory is created assuming the satellite is commanded to constantly point at a fixed spot on the Earth’s

9



Table 1: Spacecraft properties.

Parameter Value

Is1 15,053 kg-m2/s
Is2 6,510 kg-m2/s
Is3 11,122 kg-m2/s
N 4
θ 54.75◦

Js 0.70 kg-m2

Jt 0.35 kg-m2

Jg 0.35 kg-m2

Table 2: Control parameters.

Parameter Value

Ωi(t0) 628 rad/s
γi(t0) [ 45 -45 45 -45 ] deg
∆t 0.01 s
Ωd 628 rad/s
Wγ 0.8IN×N
WΩ 0.008IN×N
ZΩ 0.008IN×N
K 2 kg-m2/s
[P ] 30IN×N kg-m2/s

surface. This is executed by rotating the spacecraft about it’s first body axis b̂1 in order to always
keep the body-z axis pointing at the desired location.

Figure 2 shows attitude difference between the body quaternion and the reference trajectory
quaternion, and Figure 3 shows the body axis angular velocities along with the reference trajec-
tory commands. The difference between the actual and reference trajectories is very small. Also
recall that using any method of singularity avoidance results in the same tracking performance since
the singularity avoidance motion is in the null space, and therefore does not apply any net torques
to the spacecraft. The differences shown in the three illustrated cases are due to the different gimbal
rate commands resulting in slightly different gimbal acceleration based implementations.

Figures 4 and 5 show the VSCMG wheel speeds and gimbal angles, respectively, for the controller
using the condition number of [D] and [Gt]. Different singularity avoidance methods are expected
to show different motions for each individual VSCMG component. However, this case shows that
the results of using the different singularity avoidance measurements show almost identical motion
for every component of the system. This implies that the methods result in nearly identical null
motion commands, and therefore the considerably more complex computations to use [D] made
little difference in the final closed-loop performance.

Finally, Figure 6 shows the comparison of the condition numbers for the three different singularity
control methods. It is evident that the two optimal steering methods using either the condition
number of [D] or [Gt] have nearly identical performance. The differences is only 0.62% at the peak
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Figure 2: Quaternion attitude differences between body and reference frame. (- - -) illustrates the
results using the [Gt] cost function, (- - -) uses the [D] cost function , and (—) illustrates the case
without any CMG avoidance null motion. Note that using [Gt] and [D] result in basically identical
motion.

of κ at 450 seconds, too small to be of practical consequence. During the time frame when the
condition number increases, the wheel speeds also change in Figure 4; this is when the VSCMG
cluster is near the CMG singularity. Both singularity avoidance methods work appropriately to
reduce the condition number, and then to return the rotor speeds back to their nominal values. The
third simulation contrasts the optimal VSCMG steering law performance to the simple first order
gradient method proposed in Reference 7. The condition number is also reduced back to a small
value, but after growing first to a much larger value of approximately 82000. This comparison
is interesting in that the optimal steering law minimizing the condition number of [Gt] also only
requires the gimbal rates in the resulting null space motion.

CONCLUSION

This paper introduces a simple method to implement a Control Moment Gyroscope (CMG) sin-
gularity avoidance null motion for a Variable Speed Control Moment Gyroscope (VSCMG) control
system. This method is based on tracking the range of the transverse axes, instead of the rank of
the VSCMG steering control projection matrix. The new approach does not require any knowl-
edge of the rotor speeds in order to create singularity avoidance null motion steering commands.
The performance using this simpler CMG singularity cost function is essentially identical to pre-
viously published methods, as is illustrated with a simple numerical simulation. The main benefit
of this new method for CMG singularity avoidance using VSCMG devices is that the null motion
commands are greatly simplified compared to previous methods.
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Figure 3: Spacecraft (—) and reference (- - -) angular velocities in mili-radians/second
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Figure 4: Time histories of the 4 VSCMG wheel speeds Ωi. All four wheels show nearly identical
speed profiles using [Gt] (- - -) or [D] (- - -)
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Figure 5: Time histories of the 4 individual VSCMG gimbal angles γi. All four wheels show nearly
identical orientations using [Gt] (- - -) or [D] (- - -)
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Figure 6: Condition numbers of using the optimal controller with [D] (- - -) and [Gt] (- - -). (—)
illustrates the performance of the first order gradient method of Reference 7 using the condition
number of [D]. As discussed in the text, using [Gt] or [D] result in a maximum difference of 0.62%.
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