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Abstract

A novel method for close-proximity formation flying under differential atmospheric drag using Coulomb forces
is investigated for applications in Earth sensing, space-situational awareness (SSA), and aeronomy. Objects in LEO
are supersonic with respect to the ambient environment, creating a thinned out wake region antiparallel to the craft’s
atmosphere-relative velocity. Objects within this wake will experience little drag acceleration and are able to attain
voltages much greater than in the ambient ionospheric plasma, creating implications for the design and control of
close-proximity leader-follower spacecraft pairs. The proposed system consists of a leader craft with a set of affixed,
conducting spheres and a charged follower craft located in the wake of the leader. The differential drag acceleration
between the leader and follower craft is countered by a controlled Coulomb repulsion to maintain precise separation.
The charge structure on the rear of the leader craft is designed such that the charged follower craft sits in an electrostatic
potential well which opposes off-axis perturbations. A conceptual method for controlling such a pair without the use of
propellant using a set of charged spheres is investigated, with nonlinear models of the system’s relative motion derived
and discussed. Linearized models are used to demonstrate the local controllability of the system to demonstrate the
proposed system’s merit. This linear analysis is used to derive conditions on controllability and control performance
under various charge geometries and environmental assumptions.

1. Introduction

Close-proximity formation flying is an enabling technol-
ogy for next-generation missions involving Space Situ-
ational Awareness, spacecraft servicing,1 debris mitiga-
tion, or Earth observation. However, close-proximity for-
mation flight represents a substantial challenge to space-
craft guidance, navigation, and control technologies, es-
pecially when tight position constraints are imposed by
one of the aforementioned mission types. The use of
traditional thrusters for formation-flight control increases
mission mass and cost; additionally, thruster plumes for
close-proximity flight can cause undesirable effects due
to plume impingement on neighboring spacecraft. By
fusing concepts from differential-drag formation flight
and Coulomb-actuated formation flight, this work aims
to demonstrate the feasibility of non-impulsive formation
flight that leverages the space environment to achieve tight
formation control tolerances.

Traditional approaches to close-proximity formation
flight consider the application of impulsive thrusters as
actuators. The CanX-4/5 dual spacecraft experiment uti-
lized a pair of nanosatellites to achieve sub-meter level

control accuracy while using between 1.15 and 3.4 cm/s of
∆V per orbit.2 While these values are small, they imply
that a multi-year formation flight mission would require
hundreds of meters per second of ∆V , which would re-
quire steep trade-offs from other mission areas. For these
reasons, it is desirable for future high-precision forma-
tion flight missions to leverage forces originating from the
space environment whenever possible.

The study of environmental forces for formation actu-
ation is substantial. For spacecraft in LEO, drag forces
are a dominant perturbation force.3 Differential drag for-
mation flight, which uses differences in drag forces acting
on spacecraft to achieve relative accelerations, has been
used to constitute and maintain formations operationally
as described by Foster.4 However, uncertainty in forecasts
of atmospheric density5 and spacecraft drag coefficients,?

combined with the small magnitude of drag forces, largely
prevents their application to the high-precision formation
flight domain.

Charging of spacecraft using electron or ion-beams re-
sults in Coulomb forces that represent another method of
zero-propellant maneuvering for formation flight. First
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described by King,6 Coulomb formation flight is largely
considered in the context of GEO formation flight7 due to
the need for low plasma densities to prevent charge disper-
sion and plasma shielding effects. Multiple studies have
demonstrated the controllability of formations where indi-
vidual spacecraft are considered as charged spheres.8 The
recent development of Multi Sphere Method9 (MSM) has
allowed for the consideration of dynamics between two
spacecraft represented as collections of charged spheres,
enabling considerably more complex dynamics. The pres-
ence of relatively dense ambient plasmas in LEO pre-
vents extreme spacecraft charging by providing a medium
for charge transfer, and as a result few studies in the
use of Coulomb actuation for LEO formation flight have
been undertaken. Additionally, the Debye length in LEO
plasma is on the order of 1cm, so electrostatic forces
and torques are attentuated significantly beyond this dis-
tance. However, recent studies in the dynamics of space-
craft plasma wakes — regions of decreased plasma den-
sity produced behind spacecraft as they move through
space–suggests that GEO-like plasma environments exist
“behind” spacecraft in LEO.10 Additionally, the reduced
density of plasma and neutral species in the wake reduces
drag forces acting on spacecraft in the wake, creating rela-
tive accelerations due to differential drag. This work envi-
sions a formation flight system that leverages the unique
physics of the wake by applying Coulomb repulsion to
balance differential drag effects and thereby enable high-
precision, close-proximity formation flight in LEO.

This work is arranged as follows. First, the architec-
ture of the proposed formation flight system is presented
alongside bounding assumptions. Next, the non-linear dy-
namics of such a system are derived from first principles.
These dynamics are then linearized about an equilibrium
condition that uses Coulomb repulsion to counter-act drag
forces acting on the leader spacecraft. The linear control-
lability of this system is examined for a variety of feasible
system parameters and assumed drag accelerations. Fi-
nally, a representative, controlled system is demonstrated
using the true non-linear dynamics under additional non-
modeled perturbations to validate this approach.

2. Problem Statement

A two-spacecraft, along-track formation in Low Earth Or-
bit (LEO) is considered in this work, which aims to study
the feasibility of coulomb-balanced differential-drag for-
mation flight in LEO spacecraft wakes. Prior studies in
DPCA mission design have shown a required baseline off-
set on the order of meters, with this relative rectilinear
position being held to sub-centimeter accuracy. These pa-
rameters are considered as bounding constraints to inform
the parameters considered by this study.

The mission concept is illustrated in Figure 1. A charge
structure consisting of ncs spheres at a radius rcs is at-

 

Fig. 1: Illustration of the Coulomb-balanced differential drag
concept

tached to the back of the leader craft. A charged follower
craft is offset in the along-track direction by some dis-
tance ρf. Because the wake exhibits decreased neutral
density as well as plasma density, the drag acceleration
on the follower is assumed to be zero. Differential drag
will always decrease the separation between the leader
and follower in this case, so voltages are sourced on the
follower and charge structure to cancel the drag accelera-
tion of the leader. Negative voltages are chosen because
the wake is only ion devoid — the presence of electrons
means that negative voltages will require less power than
positive ones. Additionally, shielding of negatively signed
potentials in an electron-dominated plasma is significantly
less than that of those positive.11 Therefore, the wake acts
as vacuum for negative potentials. Therefore, a “pusher-
only” control is used in which the controller only ever
sources repulsive Coulomb forces. If the follower exceeds
the nominal separation, the voltages are nulled and differ-
ential drag brings the craft back together. For this inves-
tigation, it is assumed that the tight tolerance on relative
position will also require the craft to remain in the wake.
MSM is applied to calculate the Coulomb acceleration be-
tween the leader and follower crafts.

3. Nonlinear Equations of Motion

Three perturbations are included in the simplified model
used throughout this investigation: Two-body gravity, or-
bital drag, and Coulomb forces. The Hill frame is used
with the origin at the center of the charge structure at-
tached to the leader. Therefore, the accelerations of the
follower relative to the leader (stationary in the Hill frame)
are used throughout.

Hρ = [NH]
�Nrf − NrL

�
(1)

Henceforth, the left superscript on ρ and its derivatives
is suppressed. The state of the system is defined X =
[ρ, 9ρ]T and evolves according to the equation

9X = F (X,V ) (2)

where F is a non-linear vector function of the state
and voltagesV which, in this case, incorporates two-body
gravity, atmospheric drag, and Coulomb forces.
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3.1 Coulomb Acceleration

The Coulomb acceleration of the follower relative to the
leader is calculated from the charge on the follower and
the electric field of the leader. It is assumed throughout
that the large mass of the leader relative to the follower
results in a negligible acceleration of the leader resulting
from repulsion with the follower.

FC(X,V ) =
QfEL(X,V )

mf
(3)

The proximity of the follower to the charge structure on
the leader means that a mutual capacitance exists between
the two objects. This affect is described by the relation
between the voltage and the charge on a given object.

Vi = kc
Qi

Ri
+ kc

n∑
j=1,j 6=i

Qj

ri,j
(4)

where kC = 8.99×109Nm2/C2 is Coulomb’s constant,
Ri is the radius of the ith sphere, and ri,j is the distance
between the ith and jth spheres. Throughout this paper, the
subscript 1 refers to the follower and subscripts 2 through
n refer to the spheres on the charge structure. The relation
above can be rewritten into a single matrix equation.�
����

V1
V2
...
Vn

�
���
= kc

�
����

1/R1
1/r1,2 . . . 1/r1,n

1/r2,1 1/R2 . . . 2/r2,n
...

...
. . .

...
1/rn,1

1/rn,2 . . . 1/Rn

�
����
�
����

Q1

Q2

...
Qn

�
���

(5)

Written in a more compact fashion

V = [S]Q (6)

Here, [S] is the elastance matrix. Another, well-known
expression relating charge to voltage, Q = [C]V indi-
cates that the capacitance is the inverse of the elastance
matrix.

Q = [S]−1V (7)

This form is preferable, as the voltage is the control vari-
able and the charge dictates the dynamics. The charge on
the follower can be written as an inner product between
the first row of the capacitance and the voltage vector.
Following the convention establish above, the subscript
f from equation (3) is replaced with 1 to indicate the row
in the capacitance matrix.

Qf = CT
1 V (8)

The electric field from the charge structure EL at the
position of the follower can be calculated by summing the
individual fields from each of the spheres on the charge
structure.

EL(X,V ) = kC

n∑
i=2

CT
i V

r31,i
r1,i (9)

Substituting Equations (8) and (9) into (3) yields the
non-linear acceleration of the follower subject to the
leader.

FC(X,V ) =
kC

mf
CT

1 V

n∑
i=2

CT
i V

r31,i
r1,i (10)

However, an additional complication presents itself.
The coupling through the mutual capacitance described
by Eq. (5) means that the proximity of two nearby objects
affects their charge. To demonstrate this affect, Eq. (8) is
expanded.

Q1 = C1V1 +

n∑
i=2

C1,iV1,i (11)

As a rule, the self capacitance of an object (C1) is al-
ways positive, while the mutual capacitance (C1,i) is al-
ways negative. Physically, this results in nearby objects of
the same voltage causing a decrease in charge on — in this
case — the follower craft. This means that there are sets of
voltages and relative positions for which a given Coulomb
acceleration cannot be generated. To demonstrate this,
consider the mission scenario discussed above and recall
that the Coulomb accelerations between the leader and
follower are proportional to the charge products.The norm
of Eq. (10) is expanded assuming the charge structure
spheres are all at the same potential V2. As discussed pre-
viously, the desired Coulomb acceleration is that which
perfectly opposes the drag acceleration in the along-track
direction.

(12)

|FC(X,V )| !=

−aDrag =
kC

mf


(
C1V1 + V2

n∑
i=2

C1,i

)

+

V1 n∑
i=2

C1,i

r21,i
+ V2

n∑
i=2,j=2

Ci,j

r2i,j


This equation can be re-expressed as a quadratic in V2,

assuming a charge structure voltage is desired to be found
for a given follower voltage V1. The following substitu-
tions are made to simplify the equation. The conditions in
this equation recall the discussion of the signs of self and
mutual capacitance above.
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α = C1 > 0

β =

n∑
i=2

C1,i < 0

γ =

n∑
i=2

C1,i

r21,i
< 0

δ =

n∑
i=2,j=2

Ci,j

r2i,j
< 0

(13)

Eq. (12) is written as a quadratic

0 = βδV 2
2 + (αδ + βγ)V1V2 + (αγV 2

1 + aDragy ) (14)

The condition on real voltages satisfying this expres-
sion come from the square root term in the quadratic equa-
tion. This condition is written

(αδ + βγ)2V 2
1 − 4βδ(αγV 2

1 + aDragy ) > 0 (15)

Solving for V1 yields the final condition for the mini-
mum follower voltage.

V 2
1 >

aDragyβδ

(αδ − βγ)2
(16)

Note here that, given the sign of the substituted vari-
ables indicated in Eq. (13), there is a minimum follower
voltage for all possible configurations.

4. Linearization of Equations of Motion

To apply linear control techniques, Eq. (2) must be lin-
earized about some reference state and potential vector.

9X ≈ F (X0,V0)+
∂F

∂X

∣∣∣∣
X0

(X−X0)+
∂F

∂V

∣∣∣∣
V0

(V −V0)

(17)
The value F (X0, V0) is the derivative of the state at the

reference. Moving this term to the left side and using the
∆ notation to indicate the different between the variables
and their reference values gives the familiar state-space
form of the equations.

∆ 9X =
∂F

∂X

∣∣∣∣
X0

∆X +
∂F

∂V

∣∣∣∣
V0

∆V (18)

The linearization of the Coulomb acceleration with re-
spect to the state variable is complicated, as both the rel-
ative positions r1,i and the capacitance C depend on the
states.

(19)

∂FC

∂X
=
kC

mf

{(
∂CT

1

∂X
V

) n∑
i=2

CT
i V

r31,i
r1,i +

CT
1 V

n∑
i=2

[
∂CT

i

∂X

V

r31,i
r1,i +

∂r−31,i

∂X
CT

i V r1,i

∂r1,i
∂X

CT
i V

r31,i

]}

The derivative of the capacitance is necessarily a n ×
n × 3 tensor. Tensors of this shape are henceforth indi-
cated with a bar over the matrix, as shown in Eq (20).
Additionally, the prime notation here is used to denote the
derivative with respect to the state. The derivative of the
capacitance can be calculated by relation to the elastance,
for which a simple analytic expression (Equation (5)) ex-
ists.

[C ′] =
∂[C]

∂X
= −[C][S′][C] (20)

.
Similar to the usage of capacitance vectors previously,

the sub-matrices of the capacitance derivative are denoted
[C ′i] henceforth.

∂FC

∂X
=
kC

mf

{(
n∑

i=2

CT
i V

r3i
ri

)(
[C ′1]TV

)T
+

(
CT

1 V
) n∑
i=2

[C ′i]
TV ri +CT

i V ([I]− 3rir
T
i )

r3i

}
(21)

In addition to these accelerations due to the nominal
sphere voltages, additional dynamics are present from rel-
ative orbital motion with drag. Under the assumptions of a
circular leader orbit and nearby follower orbit, the formu-
lation of the Hill-Clohessy-Whiltshire (HCW) equations
with linearized drag forces presented first by Silva12 and
modified by Harris13 is considered. While these equa-
tions of motion typically also include a secular differential
drag acceleration; however, this acceleration is assumed
to be cancelled by the nominal voltage of the follower and
charge structure. Using these assumptions, the full system
dynamics are produced by summing the state dynamics
matrices of the HCW-plus-drag and Coulomb perturbed
systems:

Afull = AHCW+drag +
∂FC

∂X
(22)

The linearization of the Coulomb acceleration with re-
spect to the control variable — the voltages on the fol-
lower and charge structure — is more straightforward, as
the capacitance does not depend on this variable.
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Table 1: Minimal controllability summary

Arrangement Controllable Eigenvectors
Single sphere In-Plane directions

Two Spheres, In-Plane In-Plane directions
Two Spheres, Out-of-Plane All directions

B =
∂FC

∂V

=
kC

mf

{(
n∑

i=2

CT
i V

r3i
ri

)
CT

1 + (CT
1 V )

n∑
i=2

riC
T
i

r3i

}
(23)

The matrices in Eqs. (21) and (23) are evaluated at
the nominal follower position and potential vector, re-
spectively, to obtain the linearized dynamics is state space
form as shown in Eq. (18).

5. Results & Discussion

5.1 Linear Controllability

Prior to examining linear controllability, the passive dy-
namics of the system are examined through eigenvalue
analysis. Linear controllability can be readily established
using the linearized equations of motion by analyzing the
column and null space of the controllability matrix M :

M =
�
B AB A2B ... AnB

�
(24)

Prior work on Coulomb-tethered spacecraft and
Coulomb-controlled formation flight has suggested sev-
eral results for this system’s controllability.

In a minimal sense, only the in-plane states are found to
be controllable with a single sphere on the leader space-
craft. While a single sphere could in theory produce only
positive or negative accelerations in the Hill-y direction,
controllability is achieved due to in-plane coupling in the
HCW equations. Fundamentally, this result grounds the
following results by replicating the controllability results
found by Natarajan814 with respect to a two-sphere forma-
tion actuated only by Coulomb attraction. Notably, due
to the assumption of two-body motion, the out-of-plane
mode is marginally stable and will remain bounded.

Out-of-plane controllability is achieved with the addi-
tion of a second sphere. Because the system has been
linearized about an in-plane equilibrium, full controlla-
bility could not be achieved if the charge structure is ar-
ranged in-plane, i.e. along the Hill x axis. However, a line
of charged spheres along the out-of-plane axis yields full
controllability in the position and velocity states, as the
ri states gain a component along the out-of-plane axis.
These results are summarized in Table 1.

5.2 Control Sensitivity

With the linear controllability of the system established, it
is necessary to further examine the sensitivity of prospec-
tive controllers to the selection of multiple system param-
eters. First, pole-placement control was used to specify

a system settling time reflecting the half-period perturba-
tion frequency outlined in Section 2. The settling time τs
of a linear system is taken to be

τs =
−4

λmin
(25)

where λmin is the eigenvalue of the feedback-stabilized
system A − BK with the smallest magnitude. This ap-
proach allows for system designs using different parame-
ters to be examined without sacrificing high-level mission
requirements.

A major concern with this approach is the validity of
the linearization under large control voltages. As such,
the selection of system parameters should minimize the
control voltage requested by the controller. In an equiv-
alent sense, it is desirable for changes from the reference
voltage to have a large impact on the system’s states. For a
linear system, the impact of these parameters is governed
by the control effect matrixB. For systems that satisfy the
necessary conditions for controllability derived in Section
5.1, the Frobenius norm ofB is used as an index of control
sensitivity with respect to parameter variation:

norm(B) =

d∑
i

= 1m
∑
j

= 1n|aij |2 (26)

The sensitivity of B with respect to the follower volt-
age Vf and the number of spheres constituting the charge
structure n was evaluated for a range of plausible values
of n and Vf , resulting in Figure 2. The norm of B scales
log-logarithmically as Vf increases, as each sphere car-
ries a larger voltage under nominal conditions. At the
same time, the norm of B drops as the number of spheres
increases, reflecting the fact that attractive and repulsive
forces between spheres cancels out some degree of con-
trollability. These results show that the norm of B is
largest when the charge structure consists of only a hand-
ful of spheres and the follower maintains a relatively large
voltage.

Using ncs = 2 and Vf = 1000V , the sensitivity
of norm(B) was investigated with respect to the charge
structure radius, rcs, and the sphere shell radius as a func-
tion of the charge structure side length, ri/(2rcs). These
results are shown in Figure 3. Here, it is apparent that
the norm of B increases with both the charge structure ra-
dius and the radii of the spheres constituting the charge
structure. As the charge structure radius increases, addi-
tional control authority is achieved by the larger compo-
nents of the forces resulting from each sphere along axes
other than the Hill y direction. similarly, as the sphere
radii increase, the electric field generated by each sphere
for a given voltage increases in magnitude, resulting in
larger forces on the follower.

From these sweeps, it is apparent that a system de-
signed for maximized control effectiveness will use the
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Fig. 2: norm(B) variation with respect to n and Vf .
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Fig. 3: norm(B) variation with respect to rcs and ri/rcs.

largest feasible ring of charges, sphere radii, and follower
voltage while minimizing the number of spheres used.

5.3 Simulation Results

Simulations are performed applying the linear control law
derived above to the nonlinear dynamics in a variety of
cases. The controller is run at 0.2Hz and control gains
are chosen such that the system settles within ∼45 min-
utes (0.5 orbits). The orbit elements of the leader are
[6700km, 0, 0◦, 0◦, 20◦, 0◦]T . Note that a lower orbit is
used so that the leader experiences significant drag. A
nominal separation distance of 1m in the along-track di-
rection is chosen to fit the requirements of a DCPA mis-
sion.

For direct comparison with the discussion immediately
above, an initial simulation is performed applying the pa-
rameters outlined in Table 2. Additionally, perfect knowl-

Table 2: Minimum Control Norm Design Parameters

Parameter Value
Vf 1000V
ncs 2
rcs 3m
rs 2.5m

edge of the follower craft’s HCW position is assumed.
These parameters and assumptions will be changed in
later simulations. The mass of the leader is large com-
pared with the follower such that the equal and opposite
Coulomb force generated by the voltages on the follower
and charge structure results in a small relative accelera-
tion. The performance of the control is considered for a
case in which the follower is offset from the nominal po-
sition — about which the linearization is performed — by
1cm in the along-track direction.

0 0.5 1
1

1.005

1.01

1.015

Fig. 4: HCW-frame follower position magnitude for perfect
feedback system

0 0.2 0.4 0.6 0.8 1 1.2
-10

-5

0

5

Fig. 5: Control voltage for perfect feedback system. These val-
ues are superimposed onto a leader craft at Vf = −1000V
and Vcs = −790V

Of note in Figure 4 is the initial increase in separation
distance before the control settles to the nominal value.
This is because only two spheres are used in the charge
structure. Table 1 indicates that two spheres placed sym-
metrically out of plane results in a fully controllable sys-
tem, but this is due to the coupling in the Hill x- and y-
directions. This is illustrated in Figure 6, which shows the
offset from nominal for each of the Hill directions.

If the controller simply pulled the sphere in the along-
track direction, some radial change would occur. Two
spheres out of plane cannot generate an electric field to
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Fig. 6: Hill vector component differences

fully control in this direction. By leveraging the system
dynamics, and specifically the known in-plane coupling
exhibited by the HCW equations, the system is able to re-
cover controllability.

While the simulation above demonstrates the effective-
ness of the control given parameters that enhance control-
lability, the values in Table 2 and the assumptions state
above do not fit a realistic mission scenario. The parame-
ters in Table 3 are used in the simulation to follow. They
are chosen to be commensurate with the dimensions of the
leader shown in 4.

Table 3: Mission Scenario Design Parameters

Parameter Value
Vf 1000V
n 3
rcs 0.1m
rs 0.1m

The size and mass of the leader craft were based
roughly on the Iridium spacecraft to provide a reasonable
baseline for a LEO mission. The follower is assumed to
be a spherical craft small enough to fit within the wake of
the leader. To simulate the effects of the wake on atmo-
spheric drag, the drag coefficient of the follower is set to
0.

Table 4: System Physical Parameters

Parameter Leader Follower
Area (m2) 0.5 0.008
Mass (kg) 1000 1

Coefficient of Reflectivity 1 1
Coefficient of Drag 2.2 0

The previous assumption that the follower position is
known perfectly is relaxed. White Gaussian noise of σr =
10−3m,σv = 10−5m/s is added to the range value input
to the controller. To account for this, the control is run at
a lower frequency than the measurements are coming in.
Ten range measurements are averaged while the control
voltages are held constant.

Solar Radiation Pressure (SRP) is included as an un-
modeled perturbation. Both drag and SRP vary as they
pass in and out of sunlight. Drag is varied sinusoidally by
±30%, while SRP is cut completely in shade. Finally, the
same 1cm offset is introduced to start as was previously.

0 1 2 3
0.99

0.995

1

1.005

Fig. 7: Hill-frame follower position

0 1 2 3
-800

-700

-600

-500

-400

-300

-200

Fig. 8: Total system voltages

Figure 7 shows the control performance of the system.
With unmodeled accelerations and noisy range measure-
ments, the system still remains very near the nominal po-
sition. The ability of the control to remain exactly at this
location is compromised, however it does stay within a
4mm bound — well within the sub-centimeter accuracy
required by DCPA.

Figure 8 shows the total voltage sourced at a given
timestep — note this is a difference from Figure 5, which
showed the change in voltage from the nominal. Note that
the “pusher-only” control described in previous sections
is sufficient, as no positive voltages are sourced.

The drag, Coulomb, and SRP accelerations are shown
for both the leader and follower in Figure 9. Two-body
gravity is not included on this plot because it is many or-
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Fig. 9: Drag, Coulomb, and SRP acclerations on the leader and
follower crafts

ders of magnitude larger. Note that the drag acceleration
dominates for the leader craft. This is because the equal
and opposite Coulomb force produces a much smaller ac-
celeration due to the large mass of the leader. The fol-
lower Coulomb acceleration dominates over SRP, and is
on roughly the same order as the drag acceleration as the
leader. As it is generated based on knowledge of the nom-
inal drag acceleration, this matches intuition. It is slightly
larger than drag partially because it is correcting on noisy
measurements, and also because it is also correcting on
the discrepancy between the HCW linearization and true
two-body dynamics.

6. Conclusion & Future Work

Coulomb actuation is applied to close-proximity leader-
follwer formation with the goal of maintaining relative
position with high precision. The DPCA mission con-
cept is used to guide the generation of feasible param-
eters. A formulation of the Coulomb acceleration is
provided using MSM, and is then linearized about the
state and control variables for application to a linear con-
troller. The nonlinear dynamics are also used to generate
a minimum follower voltage for a given system geom-
etry, which provides additional feasibility insight. Lin-
ear controllability is assessed on a system with the lin-
earized Coulomb acceleration as well as linearized HCW
and drag, and parameters are chosen to minimize the con-
trol norm. Simulations are performed with these and the
system is shown to behave as expected. Finally, more
mission-appropriate parameters and assumptions are used
in a simulation which demonstrates that the controller still
functions, though not as well as in the idealized case.

The linear controller used throughout is sensitive to
gain selection. Each new set of parameters required new

gains to be selected, some of which caused the follower
voltage to drop below the allowable value shown in Eq.
(16), or cause the dynamics to diverge, possibly because
the system left the linear regime. A weakness of the con-
troller is the various linearizations that are performed to
derive it. HCW is linearized about small separations, drag
about a given density, and the Coulomb acceleration about
both the relative positions and voltages. The many bene-
fits of a linear controller were reaped at the cost of sig-
nificant effort matching parameters and gains. Neverthe-
less, the controller performed well when tuned correctly.
Future iterations of this concept will investigate the ap-
plication of nonlinear control techniques. Additionally, a
physical model of the wake will be implemented to pro-
vide insight into power requirements and control authority
under electrostatic shielding.
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