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GENERALIZED BACKSUBSTITUTION DYNAMICS FOR
BRANCHING OF FREE RIGID BODIES ATTACHED TO

PRESCRIBED COMPONENTS

Leah Kiner* and Hanspeter Schaub†

While often tedious and time-consuming, deriving the equations of motion for
spacecraft systems is essential in order to simulate spacecraft missions and en-
sure performance requirements are met. A complete analytic rederivation, soft-
ware implementation, and verification of the equations is typically required if any
changes are made to the original spacecraft configuration. To avoid this unfavor-
able process, this work introduces a new, generalized backsubstitution formulation
for branching of spacecraft components using a joint mapping representation. De-
velopment of this formulation enables a spacecraft system to be easily simulated
and reconfigured throughout the entire mission design process, without requiring
any analytic rederivations, software modifications, or verification when the space-
craft design is modified. Building on previous work, which expanded the backsub-
stitution method to enable branching of specific dynamic components relative to
prescribed motion components, this work develops a generalized formulation for
attachment of free six degree-of-freedom rigid bodies to prescribed motion com-
ponents. This new development enables a wide variety of previously impossible
spacecraft configurations to be simulated using the backsubstitution method.

INTRODUCTION

Spacecraft missions have seen rapid advancements over the last several decades. The 1957 launch
of the first artificial satellite, Sputnik 1— a small sphere with simple sensors— marked the incep-
tion of the space age. Within the next year, spacecraft progressed to contain strut-mounted solar
”paddles” first seen on Pioneer 5, which later advanced to deployable fixed-orientation solar pan-
els beginning in 1961 with the Ranger series and the Lunar Orbiter 1 in 1966. By 1973, the US
launched Mariner 10, the first two-wing gimbaled solar array design that enabled tracking of the
Sun. This concept, together with the cheaper hub-fixed panel design, remain in primary use today.1

The latest missions to the farthest edges of our solar system have required critical component
advancements in order to navigate through deep space efficiently. The Lucy mission to the Trojan
asteroids, the Emirates Mission to the Asteroid Belt (EMA), and the Double Asteroid Redirection
Test (DART) binary asteroid impact mission all required extensive solar array advancements to meet
power requirements. The Lucy and EMA missions use two large circular flexible-substrate solar
arrays which deploy using a motor-driven lanyard and articulate to track the Sun.2–5 Similarly, the
DART mission was the first of its kind to demonstrate roll-out solar array (ROSA) technology.2, 6, 7
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To meet thrust vector alignment requirements for deep-space missions such as EMA, Deep Space
1,8 Dawn,9 and Psyche,10 spacecraft ionic thrusters evolved from being hub-fixed to being mounted
on gimbaled platforms.5, 11–13

(a) Canadarm214 (b) EMA MBR Explorer15

Figure 1. Examples of complex multi-body spacecraft missions.

The desire to send humans into space for extended periods drove advancements required for space
orbiters including the Space Shuttle orbiter and the International Space Station, where multi-link
robotic arms such as the space station remote manipulator system (Canadarm),16, 17 were developed
to aid in complex orbital servicing, assembly, and docking operations. The football-field-sized
International Space Station particularly illustrates the evolution of spacecraft complexity, containing
a massive articulated main truss to which other large components—such as the Canadarm, solar
panels, and experimental modules—are attached.18 The Lunar Gateway is proposed to utilize a
third generation of the Canadarm for similar tasks. Modeling and simulation of these complex
spacecraft systems is a fundamental part of spacecraft mission design, providing a necessary method
of analyzing and validating expected mission performance.

The field of multi-body dynamics and its applications to spacecraft systems has been studied for
many decades.18–29 There are many different methods for deriving the equations of motion (EOM)
for multi-body systems, some of which include Newtonian and Eulerian mechanics, Lagrangian
mechanics, and Kane’s method.30, 31 Although developing the EOM for complex rigid body sys-
tems is not a nontrivial task, perhaps the most difficult and important consideration in multi-body
dynamics is how the EOM are formulated and implemented in software. This choice dramatically
influences the long-term maintainability, scalability, testability, and computational efficiency of the
software. Research efforts have focused deeply on this aspect of multi-body dynamics.

To solve the inverse dynamics problem of computing the joint forces required to produce given ac-
tive joint velocities and accelerations, Luh et al. coined the O(n) recursive Newton-Euler method.24

Walker and Orin first introduced the O(n2) composite-rigid-body algorithm (CRBA) to compute the
mass matrix for a kinematic tree, which was later improved and modified to be more efficient.25, 32

Featherstone later introduced a six-dimensional vector notation called spatial notation, where the
linear and angular components of the rigid body motion are combined to yield a unified set of equa-
tions.32–34 This approach greatly reduces the size and number of equations required to facilitate
dynamics analysis and has been shown to significantly improve computational efficiency through
recursive relations.35 Improving the O(n2) CRBA, Featherstone developed the O(n) forward dy-
namics articulated-body algorithm (ABA) which has been used in many robotics applications.34

Spatial Operator Algebra (SOA) is a similar, widely applied dynamics formulation capable of sim-
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ulating flexible multi-body systems efficiently in software using a reformulated spatial vector nota-
tion.36–38 Used in the Jet Propulsion Laboratory’s Dynamics Algorithms for Real-Time Simulation
(DARTS) * software package, the method leverages linear operators acting on spatial vectors to
derive more general recursive solutions. NASA’s open-source software package 42 † utilizes a tree-
topology approach for implementation of the spacecraft dynamics, which reduces the size of the
system mass matrix for numerical integration.19, 21

The backsubstitution method (BSM) is a spacecraft dynamics formulation that has been recently
developed to prioritize the issues of computational efficiency, modularity, scalability, and testability
of spacecraft-specific simulation software.39–42 The original foundation of this method is the as-
sumption of hub-centric spacecraft configurations, where all of the system components (effectors)
such as solar panels, reaction wheels, and thrusters are attached to a central rigid hub structure.
While this assumption limits the spacecraft design space, it encompasses a sufficiently wide spec-
trum of allowable spacecraft configurations and has proven to adequately support near-Earth and
interplanetary space missions. Moreover, this requirement provides several advantages from a soft-
ware perspective. The first is that the dynamics of each component are decoupled from one another
in the system mass matrix. This observation enables all component accelerations to be analyti-
cally back-substituted into the hub dynamics and decouples the hub EOM from the other system
components. This analytic process achieves a significant numerical simulation speed increase and
reduces the computational load for large multi-body spacecraft systems because the entire system
mass matrix no longer needs to be inverted. Instead, only two 3×3 matrix inversions are required to
solve for the hub accelerations.39, 41 The second advantage of this method is its modular nature with
which it can be implemented in software, which is strongly tied to its other testability and scalability
advantages. Because all component dynamics are decoupled from one another, the EOM for each
type of component attachment to the hub need only be derived and implemented modularly in soft-
ware once, allowing for both scalability of the spacecraft system and a straightforward, independent
verification process for each dynamics model. The benefits of this dynamics formulation cannot be
overstated. Especially for spacecraft mission design and analysis, rederivation of the system EOM
is nearly always required and can be an extremely time-intensive process even for simple changes
to the spacecraft design. This method enables rapid reconfiguration of the spacecraft design without
requiring rederivation of the system EOM.39

Prior work using the backsubstitution method has developed the EOM for a wide variety of
components attached to a spacecraft hub including single and multi-hinged solar panels,43 reac-
tion wheels,44 control moment gyroscopes,45 linear fuel slosh particles,46 and spherical pendulum
slosh particles.47 Recent work by Carneiro et al. developed more general formulations to simulate
chains of sequentially rotating or translating rigid bodies.48–50 The results can be used to simulate
telescoping or rotatable robotic arms and other chained structures. Kiner et al. recently expanded
the backsubstitution method to simulate prescribed spacecraft components, enabling branching in
the spacecraft configuration space that was not feasible before.51 Most recently, Kiner et al. intro-
duced a method to simulate branching not limited to prescribed spacecraft components, but instead
permits branching of specific one and two-axis rotating rigid bodies relative to prescribed compo-
nents.52 These new developments modified existing backsubstitution formulations for attachment
to prescribed motion components, rather than introducing new branching components in software.
This paper directly builds upon this previous branching work by introducing a generalized single-

*https://dartslab.jpl.nasa.gov/DARTS/index.php
†https://software.nasa.gov/software/GSC-16720-1
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body branching formulation using a joint mapping representation. The results can be used to simu-
late six degree-of-freedom rigid component motion relative to prescribed motion components.

The organization of this paper is as follows: First, an overview of the spacecraft dynamics back-
substitution method is provided. Next, the problem statement for the general branching system and
the joint mapping formulation and kinematics are outlined. The general equations of motion for the
single-body branching system are next derived, including the system’s translational and rotational
equations of motion and the general rigid body equations of motion. Finally, the equations are or-
ganized into the backsubstitution formulation and an example scenario illustrating the applicability
of the branching formulation is provided. The concluding remarks are offered in the final section of
this paper.

BACKSUBSTITUTION METHOD REVIEW

This paper expands the allowable configuration space for complex multibody spacecraft systems
under the assumptions of the backsubstitution method. As discussed previously, the formulation was
originally developed using a hub-centric design assumption to address the issues of software modu-
larity, scalability, maintainability, and testability.39–41 The formulation enables complex multi-body
spacecraft simulations to be rapidly configured, executed, and tested in software. The hub-centric
design requirement produces the following general form for the system mass matrix

[·]3×3 [·]3×3 [·]3×1 [·]3×1 · · · [·]3×1

[·]3×3 [·]3×3 [·]3×1 [·]3×1 · · · [·]3×1

[·]1×3 [·]1×3 [·]1×1 [0]1×1 · · · [0]1×1

[·]1×3 [·]1×3 [0]1×1 [·]1×1 · · · [0]1×1

· · · · · · · · · · · · · · · · · ·
[·]1×3 [·]1×3 [0]1×1 [0]1×1 · · · [·]1×1





r̈B/N

ω̇B/N
α̈1

α̈2

· · ·
α̈M

 =



[·]3×1

[·]3×1

[·]1×1

[·]1×1

· · ·
[·]1×1

 (1)

where r̈B/N is the hub inertial translational acceleration and ω̇B/N is the hub inertial angular accel-
eration. The additional degrees of freedom required for the attached subcomponents are generalized
as α̈. M denotes the total number of additional degrees of freedom contributed by all subcompo-
nents.

Inspection of the system mass matrix reveals a useful insight: the hub second-order state variables
are coupled with all of the subcomponent second-order states and vice-versa; however, the second-
order states of the subcomponents are not coupled together. Therefore, a block-diagonal form is
observed for the component-on-component associations and the equations for each subcomponent
can be individually expressed as

[α̈] = [Aα]r̈B/N + [Bα]ω̇B/N + [Cα] (2)

where the [Aα] and [Bα] matrices contain the coupling terms between the subcomponents and the
hub and the [Cα] matrix contains the remaining terms. Substituting the subcomponent accelera-
tions back into the hub equations of motion yields the condensed result where the subcomponent
accelerations are decoupled from the hub accelerations[

[A] [B]
[C] [D]

] [
r̈B/N

ω̇B/N

]
=

[
vtrans
vrot

]
(3)
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Finally, the hub accelerations can be directly solved using Eqs. (4) and (5), where using Schur
decomposition, only two 3× 3 matrix inversions are required.39

ω̇B/N =
(
[D]− [C][A]−1[B]

)−1 (
vrot − [C][A]−1vtrans

)
(4)

r̈B/N = [A]−1
(
vtrans − [B]ω̇B/N

)
(5)

Substituting the hub accelerations back into Eq. (2) provides the accelerations for each subcompo-
nent. The system can be numerically integrated using these results.

PROBLEM STATEMENT

Figure (2) illustrates the multibody chained system of interest for the derivation in this work. The
chained system includes a rigid hub (gray), a prescribed motion component (green), and a general
six-degree-of-freedom rigid body (orange).
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Figure 2. Problem statement for the general chained system.

Five reference frames are required to derive system dynamics. First, an inertial frame indicated
by N : {N, n̂1, n̂2, n̂3} is used as the base of reference for the dynamics. The motion of the
rigid hub is described using the frame B : {B, b̂1, b̂2, b̂3}, while the motion of the prescribed
and general body are defined using the frames P : {P, p̂1, p̂2, p̂3} and G : {G, ĝ1, ĝ2, ĝ3}, re-
spectively. The prescribed body motion is profiled relative to a hub-fixed mount frame given by
M : {M, m̂1, m̂2, m̂3}. This frame is introduced as a matter of kinematic convenience for devel-
opment of the prescribed motion. The origin points of these frames are given by N,B,M,P, and
G, respectively. The masses of the system bodies are defined as mhub,mP, and mG. Finally, the
center of mass points of each body are indicated by Bc, Pc, and Gc.

The translational and rotational states required to profile the prescribed component motion are
given by rP/M , r′P/M , r′′P/M ,σP/M,ωP/M and ω′

P/M. The right ′ superscript indicates a hub B
frame-relative time derivative. Modified Rodriguez Parameter attitude coordinates31 are selected to
express the relative orientations between reference frames.

JOINT MAPS

The motion of the general rigid body illustrated in Fig. 2 can be described using a six degree-
of-freedom joint. The general vector β of size N × 1 is used to define the degrees of freedom of
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the general body relative to the prescribed component. A mapping matrix [T ] of size 6×N is used
to map the N degrees of freedom of the general body to its vector states relative to the prescribed
component. Equation 6 describes how the joint mapping matrix and degree-of-freedom vector is
used to obtain the general body’s velocity vectors relative to the prescribed component.

[
P d
dt rG/P

ωG/P

]
6×1

=

T


︸︷︷︸
6×N

β̇


︸︷︷︸
N×1

(6)

For example, a rigid body modeled as a 1 degree-of-freedom revolute joint has the mapping

matrix [T ] =

[
0
ĝθ

]
and degree-of-freedom vector β = [θ]. Table (1) provides several simple joint

types and their corresponding mapping matrices and degree-of-freedom vectors.

Joint DOF [T ] β

Revolute 1
[
0
ĝθ

]
[θ]

Prismatic 1
[
ĝρ
0

]
[ρ]

Helical Screw 1
[
cĝθ
ĝθ

]
[θ]

Cylindrical 2
[
ĝρ 0
0 ĝθ

] [
ρ
θ

]

Table 1. Joint types.

Joint Kinematics

Next, the general body kinematics relative to the prescribed component can be defined using the
joint mapping formulation given by Eq. (6)

ωG/P = [Φθ][T ]β̇ (7)
Pd
dt

ωG/P = [Φθ][T ]β̈ (8)

rGc/P = rGc/G + rG/P

= rGc/G + [Φρ][T ]β (9)
Pd
dt

rGc/P = [ω̃G/P ]rGc/G +
Pd
dt

rG/P

=
(
[Φρ]−

[
r̃Gc/G

]
[Φθ]

)
[T ]β̇ (10)
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Pd2

dt2
rGc/P =

(
[
Pd
dt

ω̃G/P ] + [ω̃G/P ]
2

)
rGc/G +

Pd2

dt2
rG/P

=
(
[Φρ]−

[
r̃Gc/G

]
[Φθ]

)
[T ]β̈ +

[
˜[Φθ][T ]β̇

]2
rGc/G (11)

where [Φρ] =
[
[I]3×3 [0]3×3

]
and [Φθ] =

[
[0]3×3 [I]3×3

]
.

EQUATIONS OF MOTION DERIVATION

This section derives the general equations of motion for the three-body chained system contain-
ing a rigid hub, intermediate prescribed motion component, and a six-degree-of-freedom general
rigid body. Newtonian and Eulerian mechanics are used for the equation-of-motion development.
Moreover, note that that while the presented derivation considers only a single rigid body attached
to the prescribed component, the results are immediately scalable for N single-body attachments.

System Translational Equations of Motion

The spacecraft hub translational equations of motion define the first three system degrees of
freedom. These equations are derived starting from Newton’s Second Law for the spacecraft center
of mass?

mscr̈C/N = mscc̈+mscr̈B/N =
∑

Fext (12)

where msc is the total mass of the spacecraft system, msc = mhub +mP +mG, and
∑

Fext is the
sum of all external forces acting on the system. Note that because the hub equations of motion are
of interest for this formulation, the acceleration of the hub frame origin point B must be defined.
First, the transport theorem? is used to relate the hub-relative derivative of the center of mass vector
to its inertial time derivative

ċ = c′ + ωB/N × c (13)

c̈ = c′′ + 2ωB/N × c′ + ω̇B/N × c+ ωB/N × ωB/N × c (14)

The system center of mass vector is defined using the mass contributions from all of the system
bodies

c =
mhubrBc/B +mPrPc/B +mGrGc/B

msc
(15)

The hub-relative velocity of the center of mass vector is

c′ =
mPr

′
Pc/B

+mGr
′
Gc/B

msc
(16)

where using the transport theorem yields

r′Pc/B
= r′Pc/P

+ r′P/M + r′M/B = ωP/B × rPc/P + r′P/M (17)

r′Gc/B
= r′Gc/P

+ r′P/B =
Pd
dt

rGc/P + ωP/B × rGc/P + r′P/B (18)

Similarly, the hub-relative acceleration of the center of mass vector is

c′′ =
mPr

′′
Pc/B

+mGr
′′
Gc/B

msc
(19)
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where

r′′Pc/B
=

(
[ω̃′

P/B] + [ω̃P/B]
2
)
rPc/P + r′′P/B (20)

r′′Gc/B
=

Pd2

dt2
rGc/P + 2[ω̃P/B]

Pd
dt

rGc/P +
(
[ω̃′

P/B] + [ω̃P/B]
2
)
rGc/P + r′′P/B (21)

Substituting Eqs. (14) and (19) into Eq. (12) yields a compact expression for the system transla-
tional equations of motion

mscr̈B/N+msc[ ˙̃ωB/N ]c =
∑

Fext−2msc[ω̃B/N ]c′−msc[ω̃B/N ]2c−mPr
′′
Pc/B

−mGr
′′
Gc/B

(22)

Note that the above equation does not explicitly reveal the coupling between the general rigid
body and the prescribed body. As written, this equation is equally valid for describing a system
where both bodies are directly attached to the hub. Substituting Eq. (21) into Eq. (22) yields an
expanded form that exposes the coupling terms required to simulate this specific chained system

mscr̈B/N +msc[ ˙̃ωB/N ]c =
∑

Fext − 2msc[ω̃B/N ]c′ −msc[ω̃B/N ]2c

Prescribed and general body contributions

{
−mPr

′′
Pc/B

−mG

Pd2

dt2
rGc/P

Coupling contr.
{
−mG

(
2[ω̃P/B]

Pd
dt

rGc/P +
(
[ω̃′

P/B] + [ω̃P/B]
2
)
rGc/P + r′′P/B

)
(23)

The coupling terms required to simulate the chained system in this work are seen in the third line
of Eq. (23). Indeed, if the prescribed body is removed from the system, Eq. (23) collapses and
yields Eq. (22).

Finally, generalizing Eq. (23) using the general body joint map kinematics given in the previous
section gives the final form for the hub translational equations of motion

mscr̈B/N +msc[ ˙̃ωB/N ]c+mG
(
[Φρ]−

[
r̃Gc/G

]
[Φθ]

)
[T ]β̈ =∑

Fext − 2msc[ω̃B/N ]c′ −msc[ω̃B/N ]2c

Prescribed and general body contr.

{
−mPr

′′
Pc/B

−mG

[
˜[Φθ][T ]β̇

]2
rGc/G

Coupling contr.

−mG

(
2[ω̃P/B]

(
[Φρ]−

[
r̃Gc/G

]
[Φθ]

)
[T ]β̇

+
(
[ω̃′

P/B] + [ω̃P/B]
2
) (

rGc/G + [Φρ][T ]β
)
+ r′′P/B

) (24)

System Rotational Equations of Motion

The spacecraft hub rotational equations of motion describe the three remaining hub degrees of
freedom. The derivation begins by applying Euler’s equation to the case where the spacecraft angu-
lar momentum is expressed about a hub-fixed point not coincident with the system center of mass?

Ḣsc,B =
∑

LB +mscr̈B/N × c (25)
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where Hsc,B is the inertial angular momentum of the spacecraft system about point B and
∑

LB is
the total external torque acting on the system about point B. First, the system angular momentum
about point B is

Hsc,B = Hhub,B +HP,B +HG,B = ([Ihub,B] + [IP,B] + [IG,B])ωB/N

+ [IP,Pc ]ωP/B +mP[r̃Pc/B]r
′
Pc/B

+ [IG,Gc ]ωG/B +mG[r̃Gc/B]r
′
Gc/B

(26)

where [Ihub,B], [IP,B], and [IG,B] are the hub, prescribed, and general body inertia tensors about
point B. [IP,Pc ] and [IG,Gc ] are the prescribed and general body inertia tensors about their centers of
mass. Combining all inertia tensors about point B yields the total spacecraft inertia about point B

[Isc,B] = [Ihub,B] + [IP,B] + [IG,B] (27)

Simplifying reduces Eq. (26) to

Hsc,B = [Isc,B]ωB/N + [IP,Pc ]ωP/B +mP[r̃Pc/B]r
′
Pc/B

+ [IG,Gc ]ωG/B +mG[r̃Gc/B]r
′
Gc/B

(28)

Next, the inertial time derivative of the total spacecraft angular momentum is expressed using the
transport theorem as

Ḣsc,B = [I ′sc,B]ωB/N + [Isc,B]ω̇B/N

+ [IP,Pc ]ω
′
P/B + [ω̃P/N ][IP,Pc ]ωP/B +mP[r̃Pc/B]r

′′
Pc/B

+mP[ω̃B/N ][r̃Pc/B]r
′
Pc/B

+ [IG,Gc ]ω
′
G/B + [ω̃G/N ][IG,Gc ]ωG/B +mG[r̃Gc/B]r

′′
Gc/B

+mG[ω̃B/N ][r̃Gc/B]r
′
Gc/B

(29)

Using the rigid body assumption for the hub and the parallel axis theorem to express the subcom-
ponent inertias about point B yields the B frame derivative of the spacecraft inertia tensor

[I ′sc,B] = [I ′P,B] + [I ′G,B] =
(
[I ′P,Pc

] +mP

(
[r̃′Pc/B

][r̃Pc/B]
T + [r̃Pc/B][r̃

′
Pc/B

]T
))

+
(
[I ′G,Gc

] +mG

(
[r̃′Gc/B

][r̃Gc/B]
T + [r̃Gc/B][r̃

′
Gc/B

]T
))

(30)

The inertia transport theorem? is used to express the subcomponent inertias about their centers of
mass

[I ′P,Pc
] = [ω̃P/B][IP,Pc ]− [IP,Pc ][ω̃P/B] (31)

[I ′G,Gc
] = [ω̃G/B][IG,Gc ]− [IG,Gc ][ω̃G/B] (32)

Equation (30) then becomes

[I ′sc,B] =
(
[ω̃P/B][IP,Pc ]− [IP,Pc ][ω̃P/B] +mP

(
[r̃′Pc/B

][r̃Pc/B]
T + [r̃Pc/B][r̃

′
Pc/B

]T
))

+
(
[ω̃G/B][IG,Gc ]− [IG,Gc ][ω̃G/B] +mG

(
[r̃′Gc/B

][r̃Gc/B]
T + [r̃Gc/B][r̃

′
Gc/B

]T
))

(33)
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Combining these results and arranging the terms in the form of the backsubstitution method yields
the system rotational equations of motion

msc[c̃]r̈B/N + [Isc,B]ω̇B/N =
∑

LB −
(
[I ′sc,B] + [ω̃B/N ][Isc,B]

)
ωB/N

−
(
[IP,Pc ]ω

′
P/B +mP[r̃Pc/B]r

′′
Pc/B

+ [ω̃P/N ][IP,Pc ]ωP/B +mP[ω̃B/N ][r̃Pc/B]r
′
Pc/B

)
−
(
[IG,Gc ]ω

′
G/B +mG[r̃Gc/B]r

′′
Gc/B

+ [ω̃G/N ][IG,Gc ]ωG/B +mG[ω̃B/N ][r̃Gc/B]r
′
Gc/B

)
(34)

Similar to the translational equations of motion, note that Eq. (34) does not expose the coupling
terms associated with the chain of bodies studied in this work. The expanded translational terms are
given in Eqs. (18) and (21). The following terms must also be expanded

ωB/N = ωP/N − ωP/B (35)

ωG/B = ωG/P + ωP/B (36)

ω′
G/B =

Pd
dt

ωG/P + ω′
P/B (37)

Substituting these results into Eq. (34) yields the expanded form

msc[c̃]r̈B/N + [Isc,B]ω̇B/N =
∑

LB −
(
[I ′sc,B] + [ω̃B/N ][Isc,B]

)
ωB/N

Prescribed contributions

{
− [IP,Pc ]ω

′
P/B −mP[r̃Pc/B]r

′′
Pc/B

− [ω̃P/N ][IP,Pc ]ωP/B −mP[ω̃B/N ][r̃Pc/B]r
′
Pc/B

General body contributions


− [IG,Gc ]

Pd
dt

ωG/P −mG[r̃Gc/P ]

Pd2

dt2
rGc/P

− [ω̃G/N ][IG,Gc ]ωG/P −mG[ω̃P/N ][r̃Gc/P ]
Pd
dt

rGc/P

Coupling contr.



− [IG,Gc ]
(
[ω̃P/B]ωG/P + ω′

P/B

)
− [ω̃G/N ][IG,Gc ]ωP/B

−mG[r̃P/B]

Pd2

dt2
rGc/P

−mG[r̃Gc/B]

(
2[ω̃P/B]

Pd
dt

rGc/P +
(
[ω̃′

P/B] + [ω̃P/B]
2
)
rGc/P + r′′P/B

)
−mG

(
[ω̃B/N ][r̃P/B]− [ω̃P/B][r̃Gc/P ]

) Pd
dt

rGc/P

−mG[ω̃B/N ][r̃Gc/B]
(
[ω̃P/B]rGc/P + r′P/B

)
(38)

The coupling terms required to simulate the chained system in this work are grouped at the end of
Eq. (38). Indeed, if the prescribed body is removed from the system, Eq. (38) collapses and yields
Eq. (34).

Finally, generalizing Eq. (38) using the general body joint map kinematics gives the final form
for the hub rotational equations of motion

msc[c̃]r̈B/N + [Isc,B]ω̇B/N
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+
(
[IG,Gc ][Φθ] +mG[ ˜rGc/G + [Φρ][T ]β + r

P/B
]
(
[Φρ]−

[
r̃Gc/G

]
[Φθ]

))
[T ]β̈

=
∑

LB −
(
[I ′sc,B] + [ω̃B/N ][Isc,B]

)
ωB/N

Prescribed contributions

{
− [IP,Pc ]ω

′
P/B −mP[r̃Pc/B]r

′′
Pc/B

− [ω̃P/N ][IP,Pc ]ωP/B −mP[ω̃B/N ][r̃Pc/B]r
′
Pc/B

General body contributions


−mG[ ˜rGc/G + [Φρ][T ]β]

[
˜[Φθ][T ]β̇

]2
rGc/G

−
[

˜[Φθ][T ]β̇ + ωP/N

]
[IG,Gc ][Φθ][T ]β̇

−mG[ω̃P/N ]
[

˜rGc/G + [Φρ][T ]β
] (

[Φρ]−
[
r̃Gc/G

]
[Φθ]

)
[T ]β̇

Coupling contr.



− [IG,Gc ]
(
[ω̃P/B][Φθ][T ]β̇ + ω′

P/B

)
−
[

˜[Φθ][T ]β̇ + ωP/N

]
[IG,Gc ]ωP/B

−mG[r̃P/B]

[
˜[Φθ][T ]β̇

]2
rGc/G

−mG

[
˜rGc/G + [Φρ][T ]β + rP/B

] (
2[ω̃P/B]

(
[Φρ]−

[
r̃Gc/G

]
[Φθ]

)
[T ]β̇

+
(
[ω̃′

P/B] + [ω̃P/B]
2
) (

rGc/G + [Φρ][T ]β
)
+ r′′P/B

)
−mG

(
[ω̃B/N ][r̃P/B]− [ω̃P/B]

[
˜rGc/G + [Φρ][T ]β

]) (
[Φρ]−

[
r̃Gc/G

]
[Φθ]

)
[T ]β̇

−mG[ω̃B/N ]
[

˜rGc/G + [Φρ][T ]β + rP/B

] (
[ω̃P/B]

(
rGc/G + [Φρ][T ]β

)
+ r′P/B

)
(39)

General Body Translational Equations of Motion

The general body translational equations of motion are derived using Newton’s second law

mGr̈Gc/N =
∑

FG (40)

where

r̈Gc/N =

Pd2

dt2
rGc/P + 2[ω̃P/N ]

Pd
dt

rGc/P +
(
[ ˙̃ωP/N ] + [ω̃P/N ]2

)
rGc/P + r̈P/N (41)

Substitution of the general body kinematics given by Eqs. (9-11) into Eq. (41), followed by
substitution of Eq. (41) into Eq. (40) yields the general body translational equations of motion

mG ([Φρ] −
[
r̃Gc/G

]
[Φθ][T ]β̈ = −mGr̈P/N +mG

[
˜rGc/G + [Φρ][T ]β

]
ω̇P/N

+
∑

FG − 2mG[ω̃P/N ]
(
[Φρ]−

[
r̃Gc/G

]
[Φθ]

)
[T ]β̇

−mG[ω̃P/N ]2
(
rGc/G + [Φρ][T ]β

)
−mG

[
˜[Φθ][T ]β̇

]2
rGc/G (42)

General Body Rotational Equations of Motion

The general body rotational equations of motion are developed using Euler’s equation

ḢG,G =
∑

LG −mG[r̃Gc/G]r̈G/N (43)
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where
HG,G = [IG,G]ωG/N (44)

Taking the inertial time derivative of Eq. (44) gives the left-hand side of Eq. (43):

ḢG,G =
[
[Φθ][T ]β̇ + ωP/N

]
[IG,G]

(
[Φθ][T ]β̇ + ωP/N

)
+ [IG,G][Φθ][T ]β̈ + [IG,G][ω̃P/N ][Φθ][T ]β̇ + [IG,G]ω̇P/N (45)

Substitution of Eq. (45) into Eq. (43) and expanding r̈G/N gives the general body rotational
equations of motion

([IG,G][Φθ] +mG[r̃Gc/G][Φρ][T ]β̈ = −mG[r̃Gc/G]r̈P/N

−
(
[IG,G]−mG[r̃Gc/G]

[
˜[Φρ][T ]β

])
ω̇P/N

+
∑

LG −
[
[Φθ][T ]β̇ + ωP/N

]
[IG,G]

(
[Φθ][T ]β̇ + ωP/N

)
− [IG,G][ω̃P/N ][Φθ][T ]β̇

−mG[r̃Gc/G]
(
2[ω̃P/N ][Φρ][T ]β̇ + [ω̃P/N ]2[Φρ][T ]β

)
(46)

BACKSUBSTITUTION FORMULATION

Next, the general body equations of motion must be organized to facilitate integration with the
hub equations of motion. Combining the general body equations yields

[Mβ]β̈ = [A∗∗
β ]r̈P/N + [B∗∗

β ]ω̇P/N + [C∗∗
β ] (47)

where

[Mβ] =

[
mG

(
[Φρ]−

[
r̃Gc/G

]
[Φθ]

)
[T ](

[IG,G][Φθ] +mG[r̃Gc/G][Φρ]
)
[T ]

]
(48)

[A∗∗
β ] =

[
−mG[I3×3]
−mG[r̃Gc/G]

]
(49)

[B∗∗
β ] =

 mG

[
˜rGc/G + [Φρ][T ]β

]
−
(
[IG,G]−mG[r̃Gc/G]

[
˜[Φρ][T ]β

]) (50)

[C∗∗
β ] =



∑
FG − 2mG[ω̃P/N ]

(
[Φρ]−

[
r̃Gc/G

]
[Φθ]

)
[T ]β̇

−mG[ω̃P/N ]2
(
rGc/G + [Φρ][T ]β

)
−mG

[
˜[Φθ][T ]β̇

]2
rGc/G

∑
LG −

[
[Φθ][T ]β̇ + ωP/N

]
[IG,G]

(
[Φθ][T ]β̇ + ωP/N

)
−[IG,G][ω̃P/N ][Φθ][T ]β̇

−mG[r̃Gc/G]
(
2[ω̃P/N ][Φρ][T ]β̇ + [ω̃P/N ]2[Φρ][T ]β

)


(51)

Next, Eq. 52 can be rewritten as

β̈ = [A∗
β]r̈P/N + [B∗

β]ω̇P/N + [C∗
β] (52)
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where

[A∗
β] = [Mβ]

−1[A∗∗
β ] (53)

[B∗
β] = [Mβ]

−1[B∗∗
β ] (54)

[C∗
β] = [Mβ]

−1[C∗∗
β ] (55)

The prescribed body inertial accelerations are

r̈P/N = r̈P/B + r̈B/N

= r′′P/B + 2[ω̃B/N ]r′P/B − [r̃P/B]ω̇B/N + [ω̃B/N ]2rP/B + r̈B/N (56)

ω̇P/N = ω̇P/B + ω̇B/N = ω′
P/B + [ω̃B/N ]ωP/B + ω̇B/N (57)

Substitution of Eqs. (56) and (57) into Eq. (52) gives the final form of the general body equations
for backsubstitution into the hub equations of motion

β̈ = [Aβ]r̈B/N + [Bβ]ω̇B/N + [Cβ] (58)

where

[Aβ] = [A∗
β] (59)

[Bβ] = [B∗
β]− [A∗

β][r̃P/B] (60)

[Cβ] = [C∗
β] + [A∗

β]
(
r′′P/B + 2[ω̃B/N ]r′P/B + [ω̃B/N ]2rP/B

)
+ [B∗

β]
(
ω′
P/B + [ω̃B/N ]ωP/B

)
(61)

Back-substituting these results into the system equations of motion given by Eqs. (24) and (39)
yields the final form of the system equations of motion[

[A] [B]
[C] [D]

] [
r̈B/N

ω̇B/N

]
=

[
vtrans
vrot

]
(62)

The matrices are defined as

[A] = msc[I3×3] +mG
(
[Φρ]−

[
r̃Gc/G

]
[Φθ]

)
[T ][Aβ] (63)

[B] = −msc[c̃] +mG
(
[Φρ]−

[
r̃Gc/G

]
[Φθ]

)
[T ][Bβ] (64)

[C] = msc[c̃]

+
(
[IG,Gc ][Φθ] +mG[ ˜rGc/G + [Φρ][T ]β + r

P/B
]
(
[Φρ]−

[
r̃Gc/G

]
[Φθ]

))
[T ][Aβ] (65)

[D] = [Isc,B]

+
(
[IG,Gc ][Φθ] +mG[ ˜rGc/G + [Φρ][T ]β + r

P/B
]
(
[Φρ]−

[
r̃Gc/G

]
[Φθ]

))
[T ][Bβ] (66)

The vector components group the remaining terms

vtrans =
∑

Fext − 2msc[ω̃B/N ]c′ −msc[ω̃B/N ]2c

Prescribed contributions
{
−mPr

′′
Pc/B
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General body contr.

{
−mG

[
˜[Φθ][T ]β̇

]2
rGc/G −mG

(
[Φρ]−

[
r̃Gc/G

]
[Φθ]

)
[T ][Cβ]

Coupling contr.

−mG

(
2[ω̃P/B]

(
[Φρ]−

[
r̃Gc/G

]
[Φθ]

)
[T ]β̇

+
(
[ω̃′

P/B] + [ω̃P/B]
2
) (

rGc/G + [Φρ][T ]β
)
+ r′′P/B

) (67)

vrot =
∑

LB −
(
[I ′sc,B] + [ω̃B/N ][Isc,B]

)
ωB/N

Prescribed contributions

{
− [IP,Pc ]ω

′
P/B −mP[r̃Pc/B]r

′′
Pc/B

− [ω̃P/N ][IP,Pc ]ωP/B −mP[ω̃B/N ][r̃Pc/B]r
′
Pc/B

General body contr.



−mG[ ˜rGc/G + [Φρ][T ]β]

[
˜[Φθ][T ]β̇

]2
rGc/G

−
[

˜[Φθ][T ]β̇ + ωP/N

]
[IG,Gc ][Φθ][T ]β̇

−mG[ω̃P/N ]
[

˜rGc/G + [Φρ][T ]β
] (

[Φρ]−
[
r̃Gc/G

]
[Φθ]

)
[T ]β̇

−
(
[IG,Gc ][Φθ] +mG[ ˜rGc/G + [Φρ][T ]β + r

P/B
]
(
[Φρ]−

[
r̃Gc/G

]
[Φθ]

))
[T ][Cβ]

Coupling contr.



− [IG,Gc ]
(
[ω̃P/B][Φθ][T ]β̇ + ω′

P/B

)
−
[

˜[Φθ][T ]β̇ + ωP/N

]
[IG,Gc ]ωP/B

−mG[r̃P/B]

[
˜[Φθ][T ]β̇

]2
rGc/G

−mG

[
˜rGc/G + [Φρ][T ]β + rP/B

] (
2[ω̃P/B]

(
[Φρ]−

[
r̃Gc/G

]
[Φθ]

)
[T ]β̇

+
(
[ω̃′

P/B] + [ω̃P/B]
2
) (

rGc/G + [Φρ][T ]β
)
+ r′′P/B

)
−mG

(
[ω̃B/N ][r̃P/B]− [ω̃P/B]

[
˜rGc/G + [Φρ][T ]β

]) (
[Φρ]−

[
r̃Gc/G

]
[Φθ]

)
[T ]β̇

−mG[ω̃B/N ]
[

˜rGc/G + [Φρ][T ]β + rP/B

] (
[ω̃P/B]

(
rGc/G + [Φρ][T ]β

)
+ r′P/B

)
(68)

The backsubstitution contributions above can be implemented and numerically integrated in soft-
ware to simulate any type of joint motion relative to a prescribed component.

NUMERICAL SIMULATION

This section provides a spacecraft simulation scenario demonstrating the applicability of the
branching dynamics derived in the previous section. Recall that any type of 6-DOF rigid body
joint motion can be simulated using these results. A revolute (1-DOF rotational) joint is chosen
for the numerical simulation presented in this paper. Substitution of the revolute joint information
provided in Table 1 into the general branching equations of motion provides the specific backsub-
stitution dynamics for the single-axis spinning body chained system derived and verified in prior
work.52 The backsubstitution dynamics for the single-axis spinning body chained system are im-
plemented in the Basilisk ‡ astrodynamics simulation software. Note that the existing

‡https://avslab.github.io/basilisk
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Figure 3. Spacecraft system simulation configuration.

Table 2. Hub simulation parameters.

Parameter Notation Value Unit
Hub mass mhub 15,000 kg

Hub inertia about
its center of mas B[Ihub,Bc ]

580, 000 0 0
0 160, 000 0
0 0 580, 000

 kg · m2

Hub center of mass
location with respect
to point B BrBc/B [0, 0, 0] m
Hub initial inertial
angular velocity BωB/N [0, 0, 0] rad / s

spinningBodyOneDOFStateEffector software had to be expanded to include the coupling
terms shown in Eqs. (67) and (68). Additionally, the stateEffector base class was cleanly
modified to allow connection of the spinning body and other effectors to the prescribed component.
The full simulation is openly available online as a Basilisk example scenario §.

The spacecraft configuration selected for the simulation is illustrated in Fig. (3). The simulation
sets up an ISS-scale spacecraft containing a cylindrical rigid hub (gray), two large prescribed trusses
(green) which rotate about their longitudinal axes, and eight single-axis solar panels (blue) which
rotate about their transverse (bending) axes. The truss body (P) and mount (M) frames are initially
aligned, as seen in Fig. (3). The hub, truss, and solar panel structures each have dimensions 8x8x20
, 50x4x4, and 10x0.3x30 meters, respectively. Other relevant parameters for the hub, trusses, and
solar panels are provided in Tables 2-4.

The spacecraft is at rest at the start of the simulation with the configuration seen in Fig. (3). To
demonstrate the impact of the prescribed truss motion on the solar panel dynamics, all solar panels
are given zero initial deflections. The trusses are profiled to symmetrically rotate 45 degrees from

§Data available online at https://avslab.github.io/basilisk/examples/scenarioPrescribedMotionWithRotationBranching.html
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Table 3. Prescribed truss parameters.

Parameter Notation Value Unit
Truss mass mP 6000 kg

Truss inertia about
its center of mass P [IP,Pc ]

1, 258, 000 0 0
0 1, 258, 000 0
0 0 16, 000

 kg · m2

Truss center of mass
locations with respect
to points P PrPc/P [25, 0, 0] m
Truss 1 mount frame
location with respect
to point B BrM1/B [4, 0, 0] m
Truss 2 mount frame
location with respect
to point B BrM2/B [-4, 0, 0] m
DCM of mount frame 1
with respect to the
B frame [M1B]

1 0 0
0 1 0
0 0 1

 —

DCM of mount frame 2
with respect to the
B frame [M2B]

−1 0 0
0 1 0
0 0 −1

 —

Truss rotation axes Mp̂θ [1, 0, 0] —

Table 4. Solar panel parameters.

Parameter Notation Value Unit
Panel mass mS 1000 kg

Panel inertia about
its center of mass S [IS,Sc ]

83, 333.333 0 0
0 8, 340.833 0
0 0 76, 333.333

 kg · m2

Panel center of mass
locations with respect
to points S SrSc/S [0, 0, 15] m
Panel bending rotation axes S ŝ [1, 0, 0] —
Torsional spring constant k 7 · 105 N · m / rad
Torsional damper constant c 5 · 104 N · m · s / rad
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Figure 4. Prescribed truss motion.

their initial configurations using a smoothed bang-coast-bang acceleration profile.51 The prescribed
truss motion is provided in Fig. (4), where the truss angles are seen in Fig. 4(a), their rates are seen
in Fig. 4(b), and their accelerations are seen in Fig. 4(c).

The impact of the prescribed truss motion on the solar panel dynamics is provided in Fig. (5). The
solar panel angles are given in Fig. 5(a) and their rates are seen in Fig. 5(b). The panels mounted
to the top of the truss structure (panels 1, 2, 5 and 6) are observed to deflect negatively relative to
their spin axes, while the panels mounted to the bottom of the trusses (panels 3, 4, 7 and 8) deflect
positively about their spin axes. The observed panel motion is expected, indicating that the truss
rotation directly impacts the bending angle of the panels.
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Figure 5. Solar panel response.
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Figure 6. Hub response.

Finally, the hub response to the truss and panel motion is illustrated in Fig. (6). Its inertial
attitude and angular velocity are provided in Figs. 6(a) and 6(b). Because the spacecraft is simulated
in a conservative environment, its motion is expected to respond in order to conserve the angular
momentum about its center of mass. Viewing Figs. 6(a) and 6(b), the hub is seen to rotate about its
first (longitudinal axis) negatively throughout the simulation, which indeed opposes the prescribed
truss motion. The hub angular velocity is seen to oscillate during the acceleration periods of the truss
motion and returns to zero after the truss actuation is complete, confirming the expected response.

CONCLUSION

Building on prior work which developed branching formulations for attachment of specific con-
strained spacecraft components to prescribed motion components using the backsubstitution method,
this work develops a generalized backsubstitution formulation for attaching general free rigid bod-
ies to prescribed components using a joint mapping representation. The results can be implemented
in software to simulate any type of six degree-of-freedom joint motion relative to a prescribed com-
ponent. Future work involves implementing the general equations into software and verifying the
results using energy and momentum verifications.
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