
68th International Astronautical Congress, Adelaide, Australia.
Copyright c©2017 by Mr. Patrick Kenneally. Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-17,C1,4,3,x40634

Parallel Spacecraft Solar Radiation Pressure Modeling Using Ray-Tracing On Graphic
Processing Unit

Patrick Kenneallya,˚ and Hanspeter Schaubb

a Graduate Student, Aerospace Engineering Sciences, University of Colorado Boulder., patrick.kenneally@colorado.edu
b Glenn L. Murphy Endowed Chair, Professor of Engineering, Department of Aerospace Engineering Sciences, University of
Colorado, 431 UCB, Colorado Center for Astrodynamics Research, Boulder, CO 80309-0431., hanspeter.schaub@colorado.edu
˚ Corresponding Author

Abstract
A description of a method for computing on the graphics processing unit the force and torque on a spacecraft

due to solar radiation pressure. The method employs ray-tracing techniques, developed in the graphics rendering
discipline, to resolve spacecraft self-shadowing, self-reflections and arbitrary spacecraft articulation at faster than
real-time computation speed. The primary algorithmic components of the ray-tracing process which contribute to the
methods computational efficiency are described. These components include bounding volume hierarchy acceleration
data structures, fast ray to bounding box intersection testing using the slab intersection algorithm and fast triangle
intersection testing using the Möller-Trumbore algorithm. The process is implemented using C++ and OpenCL and
executed in the parallel execution environment of a consumer grade graphic processing unit. Initial model validation
is presented comparing computed values to both the analytic cannonball model and post-launch data of the Mars
Reconnaissance Orbiter spacecraft.

1. Introduction

Effective orbit determination, maneuver and mission de-
sign, and mission numerical simulations require tools that
enable accurate modeling of the spacecraft dynamical sys-
tem. Solar radiation pressure (SRP), the momentum im-
parted to a body by impinging solar photons, becomes a
dominant non-conservative force above Low Earth Orbit
(LEO)1 regime. For example, to maintain a desired space-
craft attitude the SRP induced torque on a spacecraft is ab-
sorbed using reaction wheel devices. Under the influence
of a torque in a constant direction the reaction wheels will
reach an operational maximum angular rate and require
desaturation. The requirment to perform desaturation op-
erations may be mitigated through a judicious choice of
reaction orientation or more typically by a momentum un-
loading process using spacecraft thrusters.7 Given the im-
portance of SRP, knowledge of the resultant forces upon a
body due to SRP are a primary consideration in the mod-
eling and analysis of spacecraft operating above the LEO
region.2, 3

The video game and animation industries are driving
the pursuit to create more vivid and realistic artificial
worlds. In the video game industry this pursuit has re-
sulted in highly optimized vector processing software and
graphic processing unit (GPU) computer hardware capa-
ble of carrying out many thousands of floating point op-
erations in parallel.4 In the animation and movie indus-
try the pursuit of photo realistic modeling has pushed the

techniques employed in ray-tracing algorithms to produce
rendering results at near real-time computation speeds.
Two key themes in ray-tracing research are the pursuit
of algorithmic techniques and efficient hardware utiliza-
tion, which increase computing efficiency, and therefore
reduce the time of a photo realistic model rendering.5 The
algorithmic techniques developed in the pursuit of photo
realistic model rendering have provided the tools which
are leveraged in the faster than real-time high geometric
fidelity SRP ray-tracing methodology presented in this pa-
per.

The ability to model and compute faster than real-time,
the SRP forces and torques on flexible and time varying
spacecraft structures, presents compelling opportunities.
Current SRP evaluation approaches are capable of model-
ing the resultant force of an articulated spacecraft where
the articulation motion is known prior to evaluation as
computed forces are saved to a lookup table in an off-line
process.6 However, there are many instances in which the
articulation motion and the spacecraft state are dependent
on the myriad spacecraft control inputs and constraints.
Accounting for all possible permutations of the spacecraft
dynamical state is further challenged by the inclusion of
flexing in large spacecraft structures or time varying sur-
face properties.

It is evident then that a method of SRP evaluation char-
acterized by an ability to include time varying informa-
tion of the spacecraft state has potential for a wide range

IAC-17,C1,4,3,x40634 Page 1 of 11

mailto:patrick.kenneally@colorado.edu
mailto:hanspeter.schaub@colorado.edu

68th International Astronautical Congress, Adelaide, Australia.
Copyright c©2017 by Mr. Patrick Kenneally. Published by the IAF, with permission and released to the IAF to publish in all forms.

of applications. Effective modeling of the SRP induced
perturbation of a spacecraft enables mission designers to
consider SRP as a valuable actuator rather than a distur-
bance. Such a novel use of the SRP force in maneuver and
mission design is exemplified by the MErcury Surface,
Space ENvironment, GEochemistry and Ranging (MES-
SENGER) mission. The MESSENGER mission design-
ers employed a solar sailing technique to perform each
trajectory change maneuver (TCM) and accurately tar-
get each of the mission’s six planetary flyby maneuvers.
Typically TCM’s are performed using onboard thrusters.
However, using SRP as the TCM actuator allowed the
MESSENGER team to perform TCMs with more accu-
racy and finer control due to the smaller magnitude of the
SRP induced acceleration.7 Additionally, the MESSEN-
GER team was able to reduce fuel and related structural
accommodations in the spacecraft design to reduce over-
all mission cost.8

A survey of the current landscape of SRP research re-
veals a variety of approaches. The nature of the ap-
proaches can be characterized as analytic, semi-analytic
or empirical. Whereas analytic models rely only on
pre-launch engineering information, empirical models are
constructed post-launch using flight data. The majority
of models used during flight guidance and navigation ef-
forts are semi-analytic models. These models are com-
prised of both analytic and empirical components. Of-
ten an analytic model will be employed pre-flight and
then post-launch the particular parameters in the model
may be incorporated into a parameter estimation pro-
cess. Prominent examples of the three modeling ap-
proaches include the ROCK42 analytic model, the Bern
semi-analytic model and the Jet Propulsion Lab (JPL) em-
pirical model.9, 10 The ROCK42 model is a pre-launch
analytic model of the GPS Block II/IIA satellites which
models the spacecraft structure and materials at compo-
nent level detail. The Bern semi-analytic model extends
the ROCK42 model by agumenting the final acceleration
due to SRP computed by the ROCK42 with a set of 9 pa-
rameters which are derived from a post-launch orbit es-
timation effort. Finally, the JPL model is an empirical
model that exclusively uses operational orbit estimation
data to estimate the coefficients of a Fourier Series which
when evaluated yields the SRP force on the spacecraft.
The OpenCL ray-tracing modeling method presented may
be classified as an analytic model and seeks to make ex-
tensive use of the pre-launch engineering data available to
spacecraft engineering and operations teams.

The most basic analytic model employed is referred to
as the cannonball model. The cannonball model, given in
Eq. (1), is computed from the surface area upon which ra-
diation is incident A, solar flux Φd, the spacecraft mass
M , speed of light c, heliocentric distance to the spacecraft
r and the reflection, absorption and emission characteris-

tics of the spacecraft surface which are grouped together
within the coefficient of reflection Cr. It is often the case
that the Cr parameter is continually estimated and up-
dated by an orbit determination effort. This model was
most notably used during the Laser Geodynamics Satel-
lites (LAGEOS) missions and continues to prove useful
for initial mission analysis.11

ad “ ´Cr
AΦd
Mc

ˆ

1AU

r

˙2

ŝ (1)

Increased accuracy in analytic models is often achieved
by defining the spacecraft as an approximations of vari-
ous volumes. A common approximation is to model the
spacecraft bus and solar panels as a box and panels re-
spectively. Additionally the individual reflection, absorp-
tion and emission material characteristics are kept distinct
for each surface and set based on known spacecraft ma-
terial properties.12 However, common among shape ap-
proximation methods is that they are augmented as semi-
analytic models where much of the modeling uncertainty
is lumped in a parameter estimation process and the model
is ’tuned’ post launch to more accurately match spacecraft
tracking data.

Notably Ziebart et al., develop an analytic model-
ing approach based on ray-tracing techniques, for the
assessment of SRP force analysis of spacecraft in the
GLONASS constellation.13 Ziebart’s method precom-
putes the body forces over all 4π steradian attitude pos-
sibilities. Ziebart’s approach is also capable of modeling
self-shadowing and multiple solar radiation ray reflection
by ray-tracing a spacecraft model that comprises a set
of volume primitives (boxes, cylinders etc.). McMahon
and Scheeres extend Ziebart’s approach to a semi-analytic
model by aggregating the resultant SRP forces into a set
of Fourier coefficients of a Fourier expansion.12 The re-
sulting Fourier expansion is available for both online and
offline evaluation within a numerical integration process.
Evaluation of the Fourier expansion in numerical simu-
lation demonstrates successful prediction of the periodic
and secular effects of SRP. Additionally, the Fourier coef-
ficients may replace spacecraft material optical properties
as parameters estimated during the orbit determination ef-
fort.

More recently methods that make use of the parallel
processing nature of GPUs have been developed. Tany-
gin and Beatty employ modern GPU parallel processing
techniques to provide a significant reduction in time-to-
solution of Ziebart’s “pixel array” method.14 In previous
work presented by the authors the GPU computation en-
vironment OpenGL, a vector graphics GPU software in-
terface common in video games, is used to dynamically
render the spacecraft model and evaluate the force of the
incident solar radiation across a spacecraft structure ap-
proximated by many thousands of facets.?

IAC-17,C1,4,3,x40634 Page 2 of 11

68th International Astronautical Congress, Adelaide, Australia.
Copyright c©2017 by Mr. Patrick Kenneally. Published by the IAF, with permission and released to the IAF to publish in all forms.

The method presented here leverages advances in ray-
tracing and the OpenCL set of programming tools to pro-
duce a ray-tracing SRP modeling approach at faster than
real-time computation speeds. OpenCL is an application
programming interface (API) and C based programming
language which facilitates the execution of massively-
parallel computations on heterogeneous computation de-
vices. OpenCL is a cross-platform standard for parallel
programming across a range of devices including mul-
ticore CPUs, GPUs and other computation accelerators.
OpenCL facilitates both the read and write of data on pro-
cessing unit(s) and the submission of code for execution
on the processing unit.

This ray-tracing method is a departure from previous
approaches presented by the authors. Previous approaches
have focused on employing the OpenGL vector graphics
render pipeline to compute the per facet force and torque
of a triangulated mesh model.? The OpenGL method pro-
vides a high-geometric fidelity SRP computation of the
spacecraft mesh, however, it is unable to capture self-
reflections. The OpenGL method employed a small mod-
ification to the OpenGL render pipeline to perform SRP
calculations. While efficient to implement, utilizing the
OpenGL render pipeline has two significant shortcom-
ings. The first is the computational cost of initializing and
executing the entire pipeline, even in the case that por-
tions of the pipeline are redundant to the task of comput-
ing SRP forces. The second is the associated software de-
velopment challenges, in particular debugging code exe-
cuting on the GPU. The approach presented in the follow-
ing, addresses the shortcomings of the OpenGL method
by using well proven ray-tracing algorithms implemented
with OpenCL, on the GPU, and provides the following
features:

• Faster than real-time SRP induced force and torque.

• Capturing spacecraft self-shadowing and multiple
light ray bounces.

• Model arbitrary changes in spacecraft configuration
e.g. solar panel rotations.

• Employing a wide variety of material optical proper-
ties.

In the rest of this paper the fundamental components
and initial results are outlined for the OpenCL ray-tracing
methodology. In section two primary considerations
are given to porting the serial and recursive CPU ray-
tracing execution to the parallel and iterative GPU execu-
tion environment. Additionally, an overview of the ray-
tracing methodology implemented is provided. In sec-
tion three key algorithm components are described and
their importance in a GPU ray-tracing implementation

discussed. The resulting OpenCL modeling methodol-
ogy is described in section four with initial validation and
the faster than real-time computational performance pre-
sented in sections five and six respectively.

2. Parallel Ray-Tracing

The goal of ray-tracing is to compute the color in a pixel
within a view port. The light arriving at the pixel is traced
backwards through the scene where its scene interactions
are modeled providing the final color of the view port
pixel. In a serial execution environment a single or set of
ray reflections are computed using a recursive algorithm
for each individual pixel. The recursive algorithm tests
for a ray intersection in the scene , and in the case it finds
an intersection, the same intersection search algorithm is
called again to trace the ray in the new reflected direction.
A common recursion termination condition is a maximum
number of ray reflections.

The parallel GPU computing environment requires two
primary changes to the serial ray-tracing algorithm. The
first is required because recursive function execution is
not available in current GPU execution environments. As
a result the recursive computation of ray reflections must
be achieved through iteration. The second change is that
rather, than making the algorithm parallel by pixel as
is suggested by the serial implementation, the algorithm
should be parallel by ray. The Single Instruction Multi-
ple Device (SIMD) GPU execution environment is most
efficient when developers ensure that each compute unit
on the GPU is actively working. In the case that the algo-
rithm is parallel by pixels, as the scene is traced the rays
from certain pixels will terminate sooner than others. This
leaves compute units inactive resulting in poor utilization
of the computing resources GPU. Rather by producing an
algorithm which is parallel by rays cast, after each iter-
ation terminated rays my be discarded and the reflected
rays repacked for a second iteration ensure all compute
units marshaled are active.

An overview of the method presented in this paper is
shown in Figure 1. To initialize the the process a space-
craft CAD model is provided as a triangulated mesh with
model materials which define the absorption, diffusion
and specular optical characteristics. The mesh is then pro-
cessed to generate the bounding volume hierarchy (BVH)
data structure to accelerate the processes of intersection
testing. With initialization now complete the parallel ray-
tracing algorithm can be executed on the GPU. The ray
plane definition is copied to the GPU allowing with the
BVH traversal structure, the spacecraft mesh material def-
initions. The parallel ray-tracing algorithm then iterates
through ray generation, BVH traversal, intersection test-
ing and SRP computation until all rays have reached the
set termination condition. In this work the termination
condition is either the ray leaves the scene or completes

IAC-17,C1,4,3,x40634 Page 3 of 11

68th International Astronautical Congress, Adelaide, Australia.
Copyright c©2017 by Mr. Patrick Kenneally. Published by the IAF, with permission and released to the IAF to publish in all forms.

three ray reflections. The aggregated force and torque val-
ues are then returned to the CPU bound process where the
values can be integrated into the dynamics propagation
component of a spacecraft numerical simulation.

GPU OpenCL execution

CPU execution

Prepare CAD Model

Compute Ray Plane

Ray Generation

BVH Traversal

Intersection Testing

SRP Computation

Return Force and
Torque

Ray
Terminated?No

Yes

Generate BVH

CPU initialization execution
Fig. 1: Illustration of a set of five bounding boxes and a test

ray. Intersections are recorded for the boxes with the dash
outlines.

3. Algorithm Components

The presented approach employs a number of key tech-
niques and algorithms to minimize the otherwise high
computational load of a naive ray-tracing algorithm.
These techniques include

• generation of an acceleration data structure in partic-
ular that of a bounding volume hierarchy (BVH)

• bounding box intersection testing algorithm using
clipping planes

Fig. 2: Illustration of a set of five bounding boxes and a test
ray. Intersections are recorded for the boxes with the dash
outlines.

• the computational fast Möller-Trumbore ray and tri-
angle facet intersection algorithm is used to test for
intersections with a spacecraft facet and ray

and are presented in the subsequent subsections.

3.1 Acceleration Structures

Many acceleration structures are presented in ray and path
tracing literature. Each of these structures offer advan-
tages and disadvantages which are typically dependent on
the model to be rendered.16 This method employs a sim-
ple bounding volume hierarchy to efficiently reduce the
ray intersection search space and therefore the required
ray intersection computations performed. To build the
bounding volume hierarchy a bounding volume is com-
puted for each triangular facet in the spacecraft mesh
model. In this implementation the bounding volume is
computed as a bounding box aligned to the spacecraft
model body frame. To begin, the list of bounding vol-
umes is sorted along the first frame spacecraft body frame
axis. The sorted list is then divided in half and a new
bounding volume is computed around each half of the list.
This process is carried out recursively while, at each new
split, sequentially selecting the sort axis as the next axis
in the body frame triad. This results in a bounding vol-
ume hierarchy that groups successive bounding volumes
as containing facets spatially near to each other.

An efficient method of traversing the bounding volume
hierarchy is a key aspect in the development of real-time
SRP ray-tracing.16 This implementation uses as the BVH
traversal method a depth first search array as described
by Smits.16 An example BVH hierarchy comprising 6
nodes is shown in Figure 3 first as a recursive depth first
search tree and second as a depth first search array with
precomputed skip pointers. In the recursive tree structure,
if bounding volume node A is intersected, the search re-
cursively descends to test for an intersection against node
B. If no intersection is found at node B the recursion meets

IAC-17,C1,4,3,x40634 Page 4 of 11

68th International Astronautical Congress, Adelaide, Australia.
Copyright c©2017 by Mr. Patrick Kenneally. Published by the IAF, with permission and released to the IAF to publish in all forms.

A

B C

D E F

A

B

D

E

F

C

Fig. 3: Two BVH traversal structures. The left structure demon-
strates a simple recursive BVH traversal. The right demon-
strates the same BVH as shown on the left yet organized as
a depth first search array with precomputed node skip point-
ers.

Data: idx is the index of the current node in the
BVH depth first sorted traversal array

1 while idx is in range do
2 node = fetch next node at idx;
3 if intersectBbox then
4 if node is leaf then
5 intersectTriangle;
6 else
7 idx = idx + 1 (move to first child node);
8 continue;
9 end

10 end
11 idx = skip pointer at node (follow skip pointer

to next node)
12 end

Algorithm 1: Algorithm to traverse the depth first
sorted BVH array using skip pointers.

a termination condition and the search moves back up the
tree and proceeds down the next search branch to test node
C. For the array traversal structure, if bounding volume A
is intersected, the next node to try is the next node in the
array which is node B. If the bounding volume at node B
is not intersected, the next node is found by following the
precomputed skip pointer to the next sibling in the array,
which for node B is node C. The array traversal algorithm
is shown as pseudo code in Listing 1.

The depth first array search structure avoids the func-
tion call overhead inherent in a recursive search tree
traversal and takes advantage of the fact that the next node
in the search tree can be precomputed and stored with the
left most sibling as a skip pointer to the next node. An ad-
ditional benefit to the array BVH traversal structure is that
the structure results in greater memory coherency for large
meshes and therefore more efficient contiguous memory
accesses on the GPU given its sequential nature.16

t_min

t_max

t_min

t_max

Fig. 4: Example results of the parallel plane bounding box in-
tersection algorithm. For the top left ray intersection the
algorithm returns t max as greater than or equal to t min.
For the bottom right ray miss the algorithm returns t max as
less than t min.

3.2 Bounding Volume Intersection

Bounding volume intersection uses the algorithm origi-
nally presented by Kay and Kajiya.17 Here the algorithm
models the bounding box as 3 sets of parallel planes. The
algorithm employs each set of parallel planes as clipping
planes. As demonstrated in Figure 4, once the ray is
clipped by each set of planes any remaining portion of ray
inside the bounding volume indicates an intersection. The
algorithm given in Listing 2, is particularly suited to im-
plementation in the GPU environment because it does not
require any testing of conditional code statements referred
to as code branching. Modern floating-point instruction
sets are capable of computing minimum and maximum
operations without branches and this parallel plane algo-
rithm results in a ray to bounding box intersection test
with no code branches or divisions operations.

3.3 Triangle Facet Intersection

The spacecraft model mesh is comprised of many thou-
sands of triangular facets. To compute a triangle-ray inter-
section the Möller-Trumbore algorithm is used. This algo-
rithm is a fast and memory efficient triangle-ray intersec-
tion algorithm making it ideal for use in the memory con-
strained GPU computation environment. The algorithm
turns on the knowledge that the point of intersection of
a line through a triangle in barycentric coordinates pu, vq
must adhere to easily boolean testable coordinate bounds.
The bounds are defined by the barycentric coordinate sys-
tem which requires u ě 0, v ě 0 and u` v ď 1.18

To begin, a point, T pu, vq, on a triangle described by
vertices V0,V1 and V2 and mapped converted to barycen-

IAC-17,C1,4,3,x40634 Page 5 of 11

68th International Astronautical Congress, Adelaide, Australia.
Copyright c©2017 by Mr. Patrick Kenneally. Published by the IAF, with permission and released to the IAF to publish in all forms.

Input : The ray data structure containing an
origin, direction and inverse direction
vectors and the bounding box extents.

Output: True for intersection, False otherwise

1 tx1Ð (box.min.x - r.o.x)*r.dirinv.x;
2 tx2Ð (box.max.x - r.o.x)*r.dirinv.x;
3 t minÐ Min (tx1, tx2);
4 t maxÐ Max (tx1, tx2);

5 ty1Ð (box.min.y - r.o.y)*r.dirinv.y;
6 ty2Ð (box.max.y - r.o.y)*r.dirinv.y;
7 t minÐ Max (t min, Min (ty1, ty2));
8 t maxÐ Min (t max, Max (ty1, ty2));

9 return t max ě t min;

Algorithm 2: Example of fast bounding box intersec-
tion computation for a box in a plane.

tric coordinates is described as given in Eq. (2).

T pu, vq “ p1´ u´ vqV0 ` uV1 ` vV2 (2)

The ray equation is given in Eq. (3) where O is the ray
origin, t the distance from the ray origin to the intersection
point and D the ray direction.

Rptq “ O ` tD (3)

It is then evident that for a ray to intersect the barycen-
tric description of the triangle the ray equations must be
equal to a point on the triangle, Rptq “ T pu, vq, and re-
sults in the expression at Eq. (4).

O ` tD “ p1´ u´ vqV0 ` uV1 ` vV2 (4)

Rearranging the equation into a matrix form yields
Eq. (5) where it is evident that the terms V1 ´ V0 and
V2´V0 are the edges of the triangle and can be substituted
with E1 “ V1 ´ V0 and E2 “ V2 ´ V0. Additionally,
the substitution T “ O ´ V0 can be made and is inter-
preted as a translation of the ray origin to the barycentric
coordinate frame origin.

r´D,V1 ´ V0,V2 ´ V0s

»

–

t
u
v

fi

fl “ O ´ V0 (5)

Given in equation Eq. (6) is solution for u, v and t found
using Cramer’s rule, which yields the new matrix formu-
lation. The solution for u, v and t will provide the val-
ues with which to test against the barycentric coordinate
bounds conditions.

»

–

t
u
v

fi

fl “
1

| ´D,E1,E2|

»

–

|T ,E1,E2|

| ´D,T ,E2|

| ´D,E1,T |

fi

fl (6)

Data: o is the origin of the ray
Data: d̂ is the direction of the ray
Data: v1, v2, v3 triangle vertices
Result: Return triangle intersection

1 e1 “ v2 ´ v1;
2 e2 “ v3 ´ v1;
3 p “ d̂ˆ e2;
4 det “ e1 ¨ p;
5 if det ă eps then
6 return false;
7 end
8 t “ o´ v1;
9 u “ pt ¨ pqdet´1;

10 if u ă 0 or u ą 1 then
11 return false;
12 end
13 q “ tˆ e1 ;
14 v “ pd̂ ¨ qqdet´1;
15 if v ă 0 or u` v ą 1 then
16 return false;
17 end
18 t “ pe2 ¨ qqdet

´1;

Algorithm 3: Möller-Trumbore algorithm used for
fast and memory efficient triangle intersection testing.

A final solution is computed with slightly more effi-
ciency by recognizing that each determinant |A,B,C| “
´pAˆBq¨C, is shown in Eq. (7). This can be further sim-
plified by computing the cross products P “ pD ˆ E2q

and Q “ pT ˆE1q once each and substituting as seen in
the final matrix equation of Eq. (8).

»

–

t
u
v

fi

fl “
1

pD ˆE2q ¨E1

»

–

pT ˆE1q ¨E2

pD ˆE2q ¨ T
pT ˆE1q ¨D

fi

fl (7)

“
1

P ¨E1

»

–

pQ ¨E2q

pP ¨ T q
pQ ¨Dq

fi

fl (8)

As shown in Listing 3 the mapped ray and triangle
can be tested against the barycentric coordinate frame’s
bounds. These checks occur at lines 10 and 15 in the algo-
rithm’s pseudo code representation. An additional check
is performed early in the execution at line 5 to determine
if the facet is facing the ray (facet normal vector opposite
in direction to the ray unit direction vector). If the facet is
not facing the ray the algorithm returns early as no inter-
section is possible.

4. Computing Solar Radiation Pressure

At each time update a new wave of ray vectors are gen-
erated. The current spacecraft to sun unit direction vector
ŝB is computed and used as the first axis in an orthogonal

IAC-17,C1,4,3,x40634 Page 6 of 11

68th International Astronautical Congress, Adelaide, Australia.
Copyright c©2017 by Mr. Patrick Kenneally. Published by the IAF, with permission and released to the IAF to publish in all forms.

Sun S frame. The direction cosine matrix rSBswhich de-
fines the rotation from the body frame B to the sun frame
is constructed and used to map the eight vertices, which
define the extents of the spacecraft model bounding box,
to the new temporary sun frame. The eight mapped ver-
tices are used to compute a new S frame axis aligned box
of the mesh model. Given that the spacecraft sun distance
is much greater than the spacecraft extents, it is assumed
that the radiation emitted by the Sun can be modeled as
a plane wave front. As shown in Figure 5, the sun fac-
ing side of the rotated bounding box is used as a finite
plane perpendicular to ŝB from which the origins of all
ray vectors shall be defined. The ray origin plane and the
direction cosine matrix rBSs are copied to the GPU mem-
ory space. The wave of rays are efficiently computed in
parallel using a dedicated OpenCL ray generation kernel.

The ray plane is divided into unit squares determined
by the resolution units chosen by the user. For example a
2m x 1m plane can be divided into 10mm sized squares
giving a plane of 200 x 100 squares and a resolution of
20000 rays. The discretization of the incident radiation
wave front has the potential to introduce errors into the
computation. The error source is due to the discretization
of the surface area over the spacecraft which is intersected
by the unit square of an individual ray. Ziebart shows in
a study of this discretization error that for representative
test geometries the error, for a maximum ray cross sec-
tion of 10mm2, is 2% and decreases to less than a percent
for ray cross sections of less than 5mm.13 Paying heed to
Ziebart’s study the maximum ray resolution used in this
method is 10mm. The origin for a ray is taken as the cor-
responding center of a square and the direction for all rays
is taken as ´ŝB . The ray intersection testing must occur
in the same coordinate frame in which the spacecraft ver-
tices are defined. As a result, the ray vectors are mapped
from Sun frame S to the body frame B using the rBSs
rotation matrix.

Each compute unit on the GPU launches an instance of
the coded OpenCL kernel program. Each kernel instance
accesses the ray wave front data in the GPU global mem-
ory space copying a specific ray and the BVH traversal
array to local memory in the compute unit. A wave of
rays are then tested for intersections until all rays have
been tested. If a BVH intersection is found and the in-
tersection is a terminal node then the triangle intersection
is computed and the index of the facet and the intersec-
tion location are recorded and placed in an intersection
array. If no intersection is computed the miss is similarly
recorded in the intersection array.

Currently this method accommodates only the model-
ing of specular ray reflections. The angle of incidence is
equal to the angle of reflection for a specularly reflected
ray.13 Computing the reflected ray unit direction vector
is given in Eq. 9, where r̂iref is the reflected unit direction

Fig. 5: The MRO mesh model surrounded by its bounding box.
The red, green and blue vectors indicate the spacecraft body
frame and the solid black vector indicates the spacecraft-sun
vector, which is oriented perpendicular to the ray casting
plane to the right. The dashed black vectors exemplify rays
cast from the plane.

vector given the impinging ray direction r̂i and the kth

triangle facet unit normal vector nk.

r̂iref “ r̂i ´ 2pr̂i ¨ n̂kqn̂k (9)

The irradiance of the reflected ray is used as given by
Ziebart in Eq. 10 scaled per unit area by the combined
scale factor µv, where vis the reflectivity and µ the spec-
ularity of the intersected triangular facet.

Iref “ µvIi (10)

4.1 Force and Torque Computation

Where an intersection is found, the force on the spacecraft
due to the incident radiation flux of the ray, is evaluated
in the spacecraft body frame using the expression shown
at Eq. (11), where P p|rd|q is the solar radiation pressure
scaled by the heliocentric distance to the spacecraft and
Ak is the cross sectional area of the ray.19

Fdk
“ ´P p|rd|qAk cospθkq

!

p1´ ρskqŝ`
„

2

3
ρdk

` 2ρsk cospθkq

n̂k

)

(11)

The sun angle of incidence θk as given by Eq. (12), is
simply the dot product of the primitive surface normal n̂k

and the sun unit vector ŝ.

n̂k “
e1 ˆ e2
}e1 ˆ e2}

(12a)

θk “ n̂k ¨ ŝ (12b)

The parameters ρsk and ρdk
in Eq. (11) are respec-

tively the specular and diffuse reflection coefficients of the

IAC-17,C1,4,3,x40634 Page 7 of 11

68th International Astronautical Congress, Adelaide, Australia.
Copyright c©2017 by Mr. Patrick Kenneally. Published by the IAF, with permission and released to the IAF to publish in all forms.

0.3

0.2

0.1

0

x [m]

-0.1

-0.2

-0.3
-0.3

-0.2

-0.1

y [m]

0

0.1

0.2

0.2

-0.3

-0.2

-0.1

0.1

0

0.3

0.3

z
 [

m
]

Fig. 6: The 1280 primitive, LAGEOS II size satellite mesh used
in intial method validation.

material definition associated with the primitive. Follow-
ing the force computation, the torque Lk contribution of a
single intersection, as given in Eq. (13), is computed as the
cross product of the vector defined from the body frame
origin to the primitive’s centroid ck and the resolved ray
force Fdk

.

Lk “ ck ˆ Fdk
(13)

5. Initial Model Validation

The initial validation is performed by comparing results
from an analytic cannonball model and a sphere shaped
spacecraft model evaluated by the OpenCL ray-tracing
method. The values for the LAGEOS II spacecraft, given
in Table 1, are used in both evaluations. A spherical
model spacecraft is generated to replicate the LAGEOS
II spacecraft parameters. Figure 6 illustrates the spherical
spacecraft model being tested and Figure 7 shows the ray-
tracing rendered version of the sphere colored according
to facet normal vectors. The perturbative acceleration due
to SRP as given by the cannonball model and the OpenCL
model are given in Table 2. The OpenCL model yields
a resultant torque of 2.3ˆ10´16 Nm. However, it is ex-
pected that a perfectly spherical object yields zero torque.
The non-zero torque value returned by the OpenCL model
is due to the faceted nature of the model not being per-
fectly spherical. It is observed that by increasing the num-
ber of vertices of the model to better approximate a sphere
and increasing the resolution of the projected rays, the re-
sulting torque value approaches machine precision. The
agreement between the two simple evaluations provides
initial confidence of the method’s correctness.

Additional validation is carried out by comparing a
more complex spacecraft mesh evaluation with existing
post-launch SRP data. An example evaluation of the

Fig. 7: A ray-traced evaluation of a 1280 primitive, LAGEOS II
size satellite. Facet colors are purely cosmetic to allow for
visual validation of accurate model rendering.

Table 1: LAGEOS II spacecraft parameters used for computa-
tion of SRP by cannonball model and OpenCL ray-tracing
model.

LAGEOS II Attribute Value
mass 405.38 [kg]
area 0.2817 [m2]

Φ (at 1 AU) 1.38ˆ103 [W/m2]
Cr 1.12

complex MRO spacecraft geometry is shown in Figure
8. In this evaluation a 14750 primitive model of the
MRO spacecraft is processed at a heliocentric distance of
1AU where the sun vector is defined in the body frame is
ŝB “ r0,´1, 0sT . Approximate material optical proper-
ties are assigned to the spacecraft bus whereas the solar
array emissivity and diffusivity, as quoted by You et. al.
are set at 0.12 and 0.05 respectively.20

The post-launch SRP force magnitude value deter-
mined by the MRO navigation and the OpenCL ray-
tracing force magntude value are given in Table 2. The
small difference between these two results is a promis-
ing indication that the this method can offer a pre-launch
SRP force accuracy close to that achieved after on-orbit
small force calibration exercises. Additional visual vali-
dation is provided by an on screen rendering of the ray-
Table 2: LAGEOS II spacecraft SRP induced acceleration

computed by Cannonball and OpenCL models, where the
OpenCL ray resolution is 10mm.

Model SRP Acceleration ad
Cannonball 3.58ˆ10´9 [m/s2]

Ray-Traced Cannonball 3.60ˆ10´9 [m/s2]
MRO Nav Team20 « 9ˆ 10´11 km/s2

Ray-Traced MRO 8.552ˆ10´11 km/s2

IAC-17,C1,4,3,x40634 Page 8 of 11

68th International Astronautical Congress, Adelaide, Australia.
Copyright c©2017 by Mr. Patrick Kenneally. Published by the IAF, with permission and released to the IAF to publish in all forms.

Fig. 8: The 14750 facet MRO mesh model used as the MRO
ray-tracing test mesh.

traced spacecraft as shown in Figure 9. The rendering of
the MRO spacecraft in Figure 9 demonstrates the correct
geometric realization of the spacecraft mesh by the ray-
tracing process. More promising is to acknowledge that
this OpenCL method result does not yet include modeling
of thermal re-radiation. The MRO navigation team found
that thermal re-radiation was a significant contributor to
the total observed small forces due to general radiation
pressure.20 The authors are confident that future near term
model additions such as thermal re-radiation will allow
for greater fidelity of the spacecraft physical processes.

6. Computational Performance

A primary goal of the OpenCL ray-tracing method is ef-
ficient computational performance resulting in faster than
real-time evaluation. The execution time computed as the
time point when ray generation begins to the time point
when the CPU bound process receives the final force and
torque values. Intuitively, the execution duration is criti-
cally dependent on the number of rays cast during model
evaluation. An increased resolution increases the required
number of rays to be traced and therefore the execution
time. Additionally, there is a fixed base time due to la-
tency introduced by the data transfer between the CPU
and GPU memory spaces. This latency can be larger or
smaller depending on the CPU/GPU architecture being
employed. Generally speaking, the latency is lower if the
GPU is on chip as opposed to the GPU being a separate
hardware device for which data transfer is over a common
transfer bridge such as PCI Express.21

To demonstration the dependency of computation speed
on resolution both the cannonball and MRO models were
evaluated for the ray resolutions of 1mm, 5mm and
10mm. The execution time is taken as an average over
30 seconds whereby the computer under load is config-

Table 3: Execution time for various ray resolutions of the can-
nonball spacecraft model.

Ray Plane (w
ˆ h)

Ray
Resolution

Execution Time
[ms]

60 ˆ 60 10mm 2
120 ˆ 120 5mm 8
600 ˆ 600 1mm 35

Table 4: Execution time for various ray resolutions of the can-
nonball and MRO spacecraft models.

Ray Plane (w
ˆ h)

Ray
Resolution

Execution Time
[ms]

1200 ˆ 600 10mm 39
2400 ˆ 1200 5mm 52
12000 ˆ 6000 1mm NA

ured similarly for each benchmark. The computer used
to produce the below results is a MacBook Pro with a 3.1
GHz Intel Core i7 CPU. The GPU employed is an Intel
HD Graphics 630 1536 MB. The result of the evaluations
are given in Table 3 for the cannonball model and Table 4
for the MRO model .

It is clear that tracing an increased number of rays de-
mands further computational time. It is noteworthy that
the test for 1mm resolution on the MRO spacecraft pro-
duced too great a volume of data to copy and hold in the
GPU memory concurrently. This is identified as a limita-
tion of the memory size for the utilized Intel HD Graphics
630 1536 MB and is being remedied by employing a GPU
with a greater on-board memory size.

In contrast to a previously presented approach, which
used the OpenGL graphics pipeline to compute SRP
forces and torques, the resolution of this method is not
bound by the complexity of the spacecraft mesh.? The
previous OpenGL method computed per facet force and
torque values and summed each contribution to yield a
final value. To increase the resolution of the OpenGL
method a model mesh with an increased number of facets
is required and therefore an increased time to compute
the force contribution of each facet. With the OpenCL
ray-tracing method the computation time is coupled to the
number of rays that are traced through the scene. This
allows for increasingly complex spacecraft meshes to be
evaluated for similar computation times.

7. Conclusions

This paper demonstrates how SRP forces and torques can
be resolved for complex spacecraft structures more accu-
rately and at high speed using an OpenCL GPU focused
ray-tracing methodology. Spacecraft self-shadowing,
self-reflection and arbitrary spacecraft articulation are im-
plicitly captured by a ray-tracing method resulting in a
faster than real time modeling evaluation. This method
presents mission analysts with a tool that requires min-

IAC-17,C1,4,3,x40634 Page 9 of 11

68th International Astronautical Congress, Adelaide, Australia.
Copyright c©2017 by Mr. Patrick Kenneally. Published by the IAF, with permission and released to the IAF to publish in all forms.

Fig. 9: A visual validation of the MRO model mesh rendering. Light and dark areas exemplify the various shadowing effects of the
method.

imal set up and makes use of the wealth of pre-launch
spacecraft engineering data. Further validation and char-
acterization of the method is currently being conducted
where more accurate surface optical interactions are to be
modeled.

REFERENCES

[1] David Vallado. Fundamentals of astrodynamics and appli-
cations. Springer, New York, 2007.

[2] Henry F. Fliegel and Thomas E. Gallini. Solar force mod-
eling of block IIR Global Positioning System satellites.
Journal of Spacecraft and Rockets, 33(6):863–866, 1996.

[3] J A Marshall, S B Luthcke, P G Antreasian, and
G W Rosborough. Modeling Radiation Forces Acting
on TOPEX/Poseidon for Precision Orbit Determination.
Technical report, 1992.

[4] J.D. D Owens, M. Houston, D. Luebke, S. Green, J.E. E
Stone, and J.C. C Phillips. GPU Computing. Proceedings
of the IEEE, 96(5), 2008.

[5] Ingo Wald and Philipp Slusallek. State of the art in inter-
active ray tracing. State of the Art Reports, EUROGRAPH-
ICS, pages 21–42, 2001.

[6] M Ziebart, S Adhya, a Sibthorpe, S Edwards, and P Cross.
Combined radiation pressure and thermal modelling of
complex satellites: Algorithms and on-orbit tests. Ad-
vances in Space Research, 36(3):424–430, 2005.

[7] Daniel J. O’Shaughnessy, James V. McAdams, Peter D
Bedini, Andrew B Calloway, Kenneth E Williams, and
Brian R Page. Messenger’s use of solar sailing for cost
and risk reduction. Acta Astronautica, 93:483–489, Jan-
uary 2014.

[8] Daniel J. O’Shaughnessy, James V. McAdams, Kenneth E
Williams, and Brian R Page. Fire sail: Messenger’s use of
solar radiation pressure for accurate mercury flybys. pages
1–16, 2011.

[9] T. A. Springer, G. Beutler, and M. Rothacher. A new solar
radiation pressure model for gps satellites. GPS Solutions,
2(3):50–62, 1999.

[10] Y E. Bar-Sever. New and improved solar radiation models
for gps satellites based on flight data final report. Technical
report, Jet Propulsion Laboratory, 1997.

[11] David M. Lucchesi. Reassessment of the error modelling
of non-gravitational perturbations on LAGEOS II and their
impact in the Lense–Thirring derivation—Part II. Plane-
tary and Space Science, 50(10-11):1067–1100, 2002.

[12] Jay W. McMahon and Daniel J. Scheeres. New solar ra-
diation pressure force model for navigation. Journal of
Guidance, Control, and Dynamics, 2010.

[13] Marek Ziebart. High Precision Analytical Solar Radiation
Pressure Modelling for GNSS Spacecraft. PhD thesis, Uni-
versity of East London, 2001.

[14] S Tanygin and G. M Beatty. Gpu-accelerated compu-
tation of srp forces with graphical encoding of surface
normals. In Astrodynamics 2015 : proceedings of the
AAS/AIAA Astrodynamics Specialist Conference held Au-
gust 9-13, 2015, Vail, Colorado, U.S.A, number AU-
GUST. AAS/AIAA Astrodynamics Specialist Conference,
At Vail, CO, 2015.

[15] Patrick W. Kenneally and Hanspeter Schaub. High geo-
metric fidelity modeling of solar radiation pressure using
graphics processing unit. Winter Conference. American
Astronomical Society, AAS, 2016.

IAC-17,C1,4,3,x40634 Page 10 of 11

68th International Astronautical Congress, Adelaide, Australia.
Copyright c©2017 by Mr. Patrick Kenneally. Published by the IAF, with permission and released to the IAF to publish in all forms.

[16] Brian Smits. Efficiency Issues for Ray Tracing. Journal of
Graphics Tools, 3(2):1–14, 1999.

[17] T L Kay and J T Kajiya. Ray Tracing Complex
Scenes. Computer Graphics (SIGGRAPH ’86 Proceed-
ings), 20(4):169–278, 1986.

[18] Tomas Moller and Ben Trumbore. Fast , Minimum Storage
Ray / Triangle Intersection. Journal of Graphics Tools,
2(1):21–28, 1997.

[19] Bong Wie. Space Vehicle Dynamics and Control. Ameri-
can Institute of Aeronautics and Astronautics, Reston, VA,
2008.

[20] Tung-Han You, Eric Graat, Allen Halsell, Dolan High-
smith, Stacia Long, Ram Bhat, Stuart Demcak, Earl Higa,
Neil Mottinger, and Moriba Jah. Mars reconnaissance or-
biter interplanetary cruise navigation. In 20th International
Symposium on Space Flight Dynamics, 2007.

[21] Chris Gregg and Kim M. Hazelwood. Where is the data?
why you cannot debate cpu vs. gpu performance without
the answer. In ISPASS 2011 - IEEE International Sympo-
sium on Performance Analysis of Systems and Software,
pages 134–144, 04 2011.

IAC-17,C1,4,3,x40634 Page 11 of 11

	Introduction
	Parallel Ray-Tracing
	Algorithm Components
	Acceleration Structures
	Bounding Volume Intersection
	Triangle Facet Intersection

	Computing Solar Radiation Pressure
	Force and Torque Computation

	Initial Model Validation
	Computational Performance
	Conclusions

