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NONSINGULAR ATTITUDE FILTERING USING MODIFIED
RODRIGUES PARAMETERS

Christopher D. Karlgaard‡ and Hanspeter Schaub§

A method to estimate the general rigid body attitude using a minimal Modified
Rodrigues Parameters (MRP) coordinate set is presented. The singularity avoid-
ance technique is based on the stereographic projection properties of the MRP set,
and makes use of a simple mapping relationship between MRP representations.
Previous work has used the MRP duality to avoid singular attitude descriptions
but has ignored the associated covariance transformation. This paper presents a
mapping to transform the state covariance matrix between these two representa-
tions as the attitude description is mapped between the two possible MRP sets.
Second–order covariance transformations suitable for divided difference filtering
are also provided. The MRP filter formulation based on extended Kalman filtering
and divided is compared with a standard multiplicative quaternion Kalman filter
in an example problem.

INTRODUCTION

Attitude estimation techniques often make use of quaternions for the representing the attitude,
for several reasons including globally nonsingular kinematics and linear state propagation.1, 2 Tech-
niques making use of quaternions as state variables are complicated by the quaternion constraint.
The usual approach to satisfying the constraint is to estimate an error quaternion at each measure-
ment update and then form the true quaternion estimate from the composition of the estimated error
quaternion with the predicted quaternion based on the state transition matrix. Assuming small er-
rors allows for the first three components of the quaternion to be estimated independently of the
fourth component, which is essentially amounts to a linearization using small angle assumptions.
Recently, constrained filtering approaches have been investigated by Zanetti and Bishop3 and Majji
and Mortari.4 These approaches use a Lagrange multiplier formulation to solve a constrained fil-
tering problem for all four components of the error quaternion, rather than using a linearization in
order to enforce the quaternion norm constraint.

Other attitude parameterizations can be used, provided that a singularity avoidance method is
employed to provide a valid attitude description at any condition. One representation with several
attractive features are the Modified Rodrigues Parameters (MRP).5 The MRPs have several interest-
ing properties. Firstly, the MRPs constitute a minimal three parameter set of variables that describe
the orientation of a rigid body and are nonsingular for any rotation other than multiples of 2π. Tsio-
tras and Longuski6 discuss that the MRPs can be viewed as the result of a stereographic projection
of the unit quaternion sphere onto a three-dimensional hyperplane. Schaub and Junkins7 use this
insight to formulate a family of attitude coordinates called the Stereographic Orientation Parame-
ters (SOP), which contain the MRPs as one particular solution of symmetric SOPs. As part of this
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development it is noted that the MRPs are not unique, but rather there are always two possible MRP
sets that can describe a particular orientation. This alternate MRP is known as the shadow MRP
set. The shadow MRP set is singular for zero rotations, but is non-singular for rotations of 2π. This
property allows for the development of a singularity avoidance method by switching to and from the
shadow MRP set. For example, this switching procedure allows for non–singular optimal attitude
control problems to be formulated using a minimal three–parameter family of MRPs as discussed
in Ref. 8, in which an analytical mapping is developed for the MRP costates.

The application of MRPs to attitude estimation was first explored in Ref. 9 without discussion
of singularity avoidance. Other examples make use of MRPs for representing attitude error rather
than the global attitude, preferring to keep track of the quaternion.10, 11 In these cases the MRP
singularity is never encountered in practice but the additional computations to transform the MRP
error estimate to the quaternion may not always be desirable. The two MRP sets are applied to
attitude estimation problems as a singularity avoidance procedure in Refs. 12,13,14. In these cases,
the transformation of the covariance matrix at the switching point has been ignored. The purpose of
this paper is to introduce the covariance transformation to accompany the shadow MRP mapping for
singularity avoidance in attitude estimation problems. The covariance transformation is introduced
for Kalman filtering problems by using a first–order analytical mapping of the MRP and gyroscope
bias state covariance to and from the shadow MRP set. Subsequently, a divided difference covari-
ance transformation is introduced, suitable for the first and second–order divided difference filters
introduced in Refs. 15 and 16. Numerical examples are provided that demonstrate the singularity
avoidance technique applied to the spacecraft attitude estimation problem.

REVIEW OF MODIFIED RODRIGUES PARAMETER KINEMATICS

The MRPs are defined in terms of the quaternions (q1, q2, q3, q4) as

σ =
q

1 + q4
= e tan

(
θ

4

)
(1)

where q = (q1, q2, q3) is the vector part of the quaternion, q4 is the scalar part of the quaternion, e
is the principal rotation axis, and θ is the principal rotation angle.

The shadow MRP set is defined as7, 5

σS = − σ

σTσ
= e tan

(
θ − 2π

4

)
(2)

Note that the MRP set σ behaves nearly linearly (with respect to θ) near the zero rotation and
grows infinitely large after a revolution, while the shadow MRP set σS behaves linearly about 2π
and is singular about the zero rotation. Further, while ‖σ‖ < 1 (or > 1), σ describes the short (or
long) rotation back to the origin, the shadow set σS describes the opposite rotation. The MRP and
shadow MRP set can also be described as the inner and outer MRPs,17 respectively, where inner
refers to the MRP set within the unit sphere (‖σ‖ < 1) and outer refers to the MRP set outside the
unit sphere (‖σ‖ > 1). Both inner and outer sets lie on the unit sphere when ‖σ‖ = 1.

As proposed in Ref. 7, the shadow MRP set can be exploited to yield a globally non–singular
attitude description with a minimal three–parameter coordinate set at the expense of a discontinuity.
To avoid the singularity, the MRP set is switched to the shadow set before reaching the singularity.
A convenient switching condition is the unit magnitude surface ‖σ‖ = 1, such that the composite
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Figure 1. MRP Illustration as the Result of a Stereographic Projection

MRP description always satisfies ‖σ(t)‖ ≤ 1. This surface represents all possible orientations
where the body has performed a principal rotation relative to the origin of θ = π. Note that on this
surface there are two possible MRP sets that describe the same attitude.

Both sets of MRPs satisfy the same kinematic differential equation5

σ̇ =
1
4
B (σ)ω =

1
4
[(

1− σTσ
)
I + 2σ× + 2σσT

]
ω (3)

where ω is the angular velocity and σ× is the skew-symmetric cross product matrix.

Aside from providing a non–singular attitude description, another advantage of the combined
MRP set restricted to ‖σ(t)‖ ≤ 1 is that they behave nearly linearly for a large set of orientations.
Figure 2 illustrates tan (θ/4) and the linearized θ/4 for rotations up to θ = π.
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Figure 2. Illustration of the weakly nonlinear behavior of the MRPs restricted to ‖σ‖ ≤ 1.
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Having the analytical mapping between two possible MRP sets allows for two attitude motion
descriptions to be solved simultaneously, using only one integration of the kinematic equations.
After integrating the kinematic equations, the MRP set can be switched if ‖σ‖ ≥ 1 and then the
integration can continue. Note that the mapping in Eq. (2) is valid for any non–singular switching
point. This observation allows the integration procedure to avoid the need to track the ‖σ‖ = 1
surface crossing precisely. Instead, the mapping step is performed only if the MRP set falls outside
this surface.

Note that in general, the MRP can switched to the shadow set at any surface of ‖σ‖ ≥ 1. The
shadow MRP mapping cannot be performed at conditions ‖σ‖ < 1. For example, suppose a switch-
ing condition of ‖σ‖ = 1/2 is specified. It follows from Eq. (2) that ‖σS‖ = 2. Since 2 > 1/2,
the MRP must immediately be switched back again and the cycle continues indefinitely. The most
convenient switching condition is ‖σ‖ ≥ 1 since that corresponds to the principal rotation angle of
π. However they may be certain circumstances where other switching surfaces are favorable for a
particular application. Therefore the covariance transformations developed in the following section
are kept to the general case of any switching surface greater than one.

Note that it is possible to construct other minimal attitude coordinate sets which are even more
linear with respect to the principal rotation angle θ than the MRPs. Reference 18 calls them the
Higher Order Rodrigues Parameters (HORPs). Parameters τ can be developed which are written as

τ = e tan
(

θ

2N

)
(4)

where N ≥ 1 is an integer value. These HORPs also contain multiple sets of possible values
which can be used to avoid singular attitude descriptions. The MRP covariance mapping methods
developed in this paper could be used for the HORP descriptions as well, but are not developed in
this work.

ATTITUDE ESTIMATION USING MODIFIED RODRIGUES PARAMETERS

In order to use the MRP shadow set singularity avoidance technique for attitude estimation, a
mapping must also be developed in order to transform the MRP state estimate error covariance
matrix into the shadow set MRP state estimate error covariance matrix. In previous applications of
the MRPs to attitude estimation problems, the state covariance matrix has implicitly been kept fixed
during this switching to the shadow set.14 The following section describes the application of the
shadow MRP set for singularity avoidance in the Kalman filter, including a first–order covariance
transformation to accompany the MRP singularity avoidance mapping.

Kalman Filter Formulation

In typical attitude estimation problems, a gyroscope is used to sense the inertial angular velocity
which is in turn used to integrate the kinematic equations of motion (3). A common approximation
to the gyroscope dynamics is Farrenkopf’s model,19 which considers the measured angular velocity
to be of the form

ω̃ = ω + β + ηω (5)

β̇ = ηβ (6)
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where ω̃ is the sensed inertial angular velocity, ω is the true inertial angular velocity, β is the
measurement bias, and ηω and ηβ are unbiased and uncorrelated random noise vectors. In this
formulation, the state dynamics are expressed as

ẋ = f (x, t) + g (x,η, t) (7)

where x = [σ,β]T , η =
[
ηω,ηβ

]T , and

f (x, t) =
{

(1/4)B (σ) (ω̃ − β)
0

}
(8)

g (x,η, t) =
{ − (1/4)B (σ)ηω

ηβ

}
(9)

It is assumed that a star tracker or some other generic attitude sensor is available to provide
corrections to the attitude estimates formed by direct numerical integration of the angular velocity
measurements, which are subject to error buildup due to integrating errors in the estimated bias and
the random noise. The attitude sensing device is assumed to output an estimated MRP that relates
the orientation of the body to the inertial frame. The estimates are assumed to be unbiased but with
a superimposed random measurement noise. The output from such a sensor can be expressed as
σ̃ = σ + δσ where σ is the MRP representing the true orientation, σ̃ is the “measured” MRP, and
δσ is an error MRP with covariance matrix denoted by R. For instance, the measured MRP could
be an output from the algorithm described in Ref. 20, involving vector measurements. If discrete–
time measurements of the MRP are available, then they can be incorporated into the state estimates
using the extended Kalman filter, with state updates given by21

x̂k = x̄k +Kk (σ̃ −Hkx̄k) (10)

P̂ k = (I −KkHk) P̄ k (11)

where x̂k is the corrected state estimate after the measurement update at time tk, P̂ k is the cor-
rected state covariance matrix, x̄k is the state prediction based on integration of the angular velocity
measurements, P̄ k is the predicted state covariance matrix,Hk = [ I 0 ], andKk is the Kalman
gain matrix,

Kk = P̄ kH
T
k

(
HkP̄ kHk +Rk

)
(12)

The state predictions between MRP measurements can be determined by means of numerical
integration of Eq. (7), or alternatively by means of analytical propagation using quaternion kine-
matics, as suggested in Ref. 12. The latter approach saves on the computation required of numerical
integration by making use of the quaternion state transition matrix for propagating between the
measurement points.

A first–order covariance prediction can be found by linearizing the Eq. (7), yielding

δẋ = F δx+Gη (13)

where

F =
∂f

∂x

∣∣∣∣
x=x̄

=
[

(1/2)
[
σ̄ω̄T − ω̄σ̄T − ω̄× + ω̄T σ̄I

]
−(1/4)B (σ̄)

0 0

]
(14)

G =
∂g

∂η

∣∣∣∣
x=x̄,η=0

=
[
− (1/4)B (σ̄) 0

0 I

]
(15)
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where ω̄ = ω̃ − β̄, and δx = x− x̄.

The discrete–time covariance propagation between MRP measurements is

P̄ k+1 = ΦkP̄ kΦT
k + Q̃k (16)

where Φk is the state transition matrix and Q̃k is the process noise covariance matrix. Both of these
quantities can be determined jointly through the relation21, 22

exp
([
−F GQGT

0 F T

]
δt

)
=
[
A11 A12

0 A22

]
=
[
A11 Φ−1

k Q̃k

0 ΦT
k

]
(17)

leading to the result Φk = AT
22 and Q̃k = ΦkA12, whereQ = E

[
ηηT

]
and δt = tk+1 − tk.

During the course of state propagation or following the state update, the state can be switched to
the shadow state if certain conditions are met, namely if ‖σ‖ > σr where σr is a threshold value.
The shadow set transformation is given by xS = λ (x), where

λ (x) =

{
−
(
σTσ

)−1
σ

β

}
(18)

To examine the covariance transformation at the switching point, let the covariance matrix P̄ k be
decomposed into sub-matrices with the structure

P̄ k =
[
P σσ P σβ

P T
σβ P ββ

]
(19)

where P σσ is the covariance matrix of the MRP state, P ββ is the covariance matrix of the bias
state, and P σβ is the cross-correlation matrix between the MRP and the bias state. It follows that
the covariance mapping to the shadow MRP set in the neighborhood of the reference MRP condition
is given by

P̄
S
k = ΛP̄ kΛT =

[
Λ11 0
0 I

] [
P σσ P σb

P T
σβ P ββ

] [
ΛT

11 0
0 I

]
=

[
Λ11P σσΛT

11 Λ11P σβ

P T
σbΛ

T
11 P ββ

]
(20)

where

Λ =
∂λ

∂x
=
[ (

2σ−4σσT − σ−2I
)

0
0 I

]
(21)

and Λ11 = 2σ−4σσT − σ−2I .

Note that this covariance mapping scales all MRP components. Assume that σ = ‖σ‖ is small,
and the associated covariance components are small as well indicating good attitude knowledge.
Then the corresponding shadow MRP set is stretched toward infinity due to σ being near zero. The
associated covariance matrix for the shadow set is large as well, reflecting the large changes in
coordinate values in the neighborhood of the singularity. The rate bias covariance is held constant
during the MRP mapping, which is expected since the bias estimate itself is held constant in Eq. (18).
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Divided Difference Filter Formulation

The Divided Difference Filter is one of several new estimation techniques that are collectively
known as Sigma–Point Kalman Filters (SPKF). The divided difference filter arises from an alter-
nate approach to the nonlinear state estimation and filtering problems than the EKF. Whereas the
EKF is based on first–order Taylor series approximations, the divided difference filter relies on mul-
tidimensional interpolation formulas to approximate the nonlinear transformations. As a result of
this approach, the filter does not require knowledge or existence of the partial derivatives of the
system dynamics and measurement equations. In addition, it is straightforward to develop second–
order filters by making use of higher–order interpolation formulas. SPKF–class filters have been
applied to attitude estimation problems in Refs. 11, 14 and 23.

The First–Order (DD1) and Second–Order (DD2) Divided Difference Filters15, 16 are reviewed in
this section. The filter equations rely upon a discrete representation of the system dynamics, given
by

xk+1 = φ (xk,ηk, tk) (22)

σk = h (xk, δσk, tk) (23)

The following square-root decompositions of the covariance matrices are defined as

P̂ k = ŜxkŜ
T
xk

(24)

P̄ k = S̄xkS̄
T
xk

(25)

Qk = SηkS
T
ηk

(26)

Rk = SδσkS
T
δσk

(27)

Also, the jth column of s̄xk is referred to as s̄xkj ; likewise for the other matrices.

First–Order Divided Difference Filter The DD1 filter makes use of first–order divided differ-
ences to approximate the system and measurement dynamics rather than the first–order Taylor series
expansions used in the EKF. The following matrices of first–order divided differences are defined
as

S′xx̂ki,j
=

1
2c
[
φi
(
x̂+ cŝxj , η̄k, tk

)
− φi

(
x̂k − cŝxj , η̄k, tk

)]
(28)

S′xηki,j
=

1
2c
[
φi
(
x̂k, η̄k + csηj , tk

)
− φi

(
x̂k, η̄k − csηj , tk

)]
(29)

S′σx̄ki,j
=

1
2c
[
hi
(
x̄k + cs̄xj , δσ̄k, tk

)
− hi

(
x̄k − cs̄xj , δσ̄k, tk

)]
(30)

S′σδσki,j
=

1
2c
[
hi
(
x̄k, δσ̄k + csδσj , tk

)
− hi

(
x̄k, δσ̄k − csδσj , tk

)]
(31)

where c is the divided–difference perturbing parameter.

The state, state root–covariance, measurement, and measurement root-covariance predictions are
given by

x̄k+1 = φ (x̂k, η̄k, tk) (32)

S̄xk+1
= H

([
S′xx̂k S′xηk

])
(33)

σ̄k = h (x̄k, δσ̄k, tk) (34)

Sσk = H
([
S′σx̄k S′σδσk

])
(35)
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whereH(·) represents a Householder transformation of the argument matrix.15, 16

The state and root-covariance measurement update equations are given by

x̂k = x̄k +Kk (σ̃k − σ̄k) (36)

Ŝxk = H
([
S̄xk −KkS

′
σxk

KkS
′
σδσk

])
(37)

whereKk = S̄xkS
′T
σx̄k

(
SσkS

T
σk

)−1
is the Kalman gain matrix.

Second–Order Divided Difference Filter The DD2 filter makes use of second–order divided dif-
ferences to approximate nonlinear transformation of the state and covariance. The matrices of
second–order divided differences are defined as

S′′xx̂ki,j
=
√
c2 − 1
2c2

[
φi
(
x̂k + cŝxj , η̄k, tk

)
+ φi

(
x̂k − cŝxj , η̄k, tk

)
−2φi (x̂k, η̄k, tk)] (38)

S′′xηki,j
=
√
c2 − 1
2c2

[
φi
(
x̂k, η̄k + csηj , tk

)
+ φi

(
x̂k, η̄k − csηj , tk

)
−2φi (x̂k, η̄k, tk)] (39)

S′′σx̄ki,j
=
√
c2 − 1
2c2

[
hi
(
x̄+ cs̄xj , δσ̄k, tk

)
+ hi

(
x̄− cs̄xj , δσ̄k, tk

)
−2hi (x̄k, δσ̄k, tk)] (40)

S′′σδσki,j
=
√
c2 − 1
2c2

[
hi
(
x̄k, δσ̄k + csσj , tk

)
+ hi

(
x̄k, δσ̄k − csσj , tk

)
−2hi (x̄k, δσ̄k, tk)] (41)

The state, state root–covariance, measurement, and measurement covariance predictions are given
by

x̄k+1 =
(
c2 − nx − nη

c2

)
φ (x̂k, η̄k, tk)

+
1

2c2

nx∑
j=1

[
φ
(
x̂k + cŝxkj , η̄k, tk

)
+ φ

(
x̂k − cŝxkj , η̄k, tk

)]

+
1

2c2

nη∑
j=1

[
φ
(
x̂k, η̄k + csηkj , tk

)
+ φ

(
x̂k, η̄k − csηkj , tk

)]
(42)

S̄xk+1
= H

([
S′xx̂k S′xηk S′′xx̂k S′′xηk

])
(43)

σ̄k =
(
c2 − nx − nσ

c2

)
h (x̄k, δσ̄k, tk)

+
1

2c2

nx∑
j=1

[
h
(
x̄k + cs̄xkj , δσ̄k, tk

)
+ h

(
x̄k − cs̄xkj , δσ̄k, tk

)]
+

1
2c2

nσ∑
j=1

[
h
(
x̄k, δσ̄k + csσkj , tk

)
+ h

(
x̄k, δσ̄k − csσkj , tk

)]
(44)

Sσk = H
([
S′σx̄k S′σδσk S′′σx̄k S′′σδσk

])
(45)
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where nx is the size of the state dimension, nη is the size of the process noise dimension, and nσ is
the size of the measurement noise dimension.

Lastly, the state and root-covariance update equations are given by

x̂k = x̄k +Kk (σ̃k − σ̄k) (46)

Ŝxk = H
([
S̄xk −KkS

′
σxk

KkS
′
σδσk

KkS
′′
σxk

KkS
′′
σδσk

])
(47)

whereKk = S̄xkS
′T
σx̄k

(
SσkS

T
σk

)−1
is the Kalman gain matrix.

Note that in the MRP pseudo–measurement model, h (x̄k, δσ̄k, tk) is a linear function of the
state and measurement noise. Therefore, S′′σx̄ki,j = S′′σδσki,j

= 0 and σ̄k = h (x̄k, δσ̄k, tk), which
implies that the DD2 measurement update is identical to that of the DD1 filter. Due to the weakly
nonlinear behavior of the MRP state dynamics, the second–order terms in the state and covariance
predictions remain non–zero. For this reasons it is expected that the DD2 filter provides better
performance than the DD1 filter.

Covariance Transformation Following the development in Ref. 15 and 16, a first–order divided
difference transformation of the state covariance matrix to the shadow state covariance matrix suit-
able for the DD1 filter is given by

P̂
S1
k =

1
4c2

n∑
j=1

[
λ
(
x̂k + cŝxj

)
− λ

(
x̂k − cŝxj

)] [
λ
(
x̂k + cŝxj

)
− λ

(
x̂k − cŝxj

)]T (48)

Similarly the second–order transformation suitable for the DD2 filter is

P̂
S2
k = P̂

S1
k +

c2 − 1
4c4

n∑
j=1

[
λ
(
x̂k + hŝxj

)
+ λ

(
x̂k − cŝxj

)
− 2λ (x̂k)

]
·
[
λ
(
x̂k + cŝxj

)
+ λ

(
x̂k − hŝxj

)
− 2λ (x̂k)

]T (49)

Following these covariance transformations at the switching point, the square–root decomposi-
tions of the state covariance can be calculated from Eqs. (24) and (25), which are in turn used to
continue the state propagations forward in time according to Eqs. (28), (30), (38), (40), (42) and
(44) until the next measurement update.

Robustness Considerations

Note that the development of the EKF, DD1, and DD2 filters in the preceding sections implicitly
assume that the measurement noise distributions are Gaussian. In practice this assumption is never
satisfied exactly, which can quickly degrade the filter performance and can lead to divergence in
extreme cases. Techniques based on Huber’s generalized maximum likelihood method have been
generalized to Kalman filtering and divided–difference filtering24 in order reduce the sensitivity of
the filter to deviations in the assumed distributions, at a slight increase in computational burden. The
same techniques can be applied here to MRP–based attitude filtering by modifying the state update
equations in the EKF and DDF according to Ref. 24. Further robustness discussion is beyond the
scope of this paper.
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Figure 3. True Principal Rotation Angle and MRPs

EXAMPLE PROBLEM

This section describes an example problem that illustrates the MRP–based estimation techniques
using the shadow set transformation for singularity avoidance. In this problem, consider a spacecraft
rotating with an angular velocity of 1 deg/s about the body z-axis over a period of 1000 s. The
simulation parameters are shown in Table 1. The true principal rotation angle and true MRP time
history are shown in Fig. 3. Note that there are several shadow set transformations apparent in
Fig. 3(b) in order to keep the MRP value within the unit sphere.

The results of a 2000 case Monte-Carlo simulation are shown Fig. 4. Figure 4(a) shows the
root mean square (RMS) total attitude angle error and Fig. 4(b) shows RMS of the norm of the
gyroscope bias estimate error. The Monte-Carlo simulations involve five filtering techniques: a
standard Quaternion Multiplicative Extended Kalman Filter (QM-EKF),1 a Quaternion Constrained
Extended Kalman Filter (QC-EKF),4 an extended Kalman filter based on the MRP formulation
discussed in this paper (MRP-EKF), and first and second–order divided difference filters using the
MRP formulation (MRP-DD1 and MRP-DD2, respectively). In these plots, the RMS errors of the
filters are shown in the solid curves while the predicted RMS error based on the filter covariance
matrix are shown in the dashed curves. In this case, the QM–EKF and the MRP–EKF exhibit nearly
the same overall performance. This result is not a surprise because both filters involve similar first–
order approximations of the state dynamics and measurement noise. However, it can be seen in the
detailed plot over the first 50 s of the simulation, Fig. 4(c) and (d), that the MRP–EKF converges
faster than the QM–EKF to the steady state error level. This enhanced convergence rate is due to
the fact that the MRP formulation does not require a linearization in order to enforce the quaternion
norm constraint. Similarly, the QC–EKF converges to the steady state error faster then the QM–
EKF over all, though its initial convergence rate is slower. The MRP–DD1 filter does not meet the
same level of performance as that of the MRP–EKF case. This result is not particularly bothersome
since the DD1 filter performance is usually worse than that of the EKF as seen in Refs. 15, 16 and
24. The MRP–DD2 filter exhibits the best performance overall, which is to be expected since it is
a second–order filter and as a result can better capture the system nonlinearities. The uncertainty
predictions based on the covariance matrix do not match the actual RMS for any of the filter results.
The uncertainties can be tuned to better match the actual performance either offline or by using an
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Table 1. Simulation Parameters

Variable Value

Gyroscope Sample Rate 10 Hz
MRP Sample Rate 1 Hz
σ2
ω 10−13 rad2/s
σ2
β 10−15 rad2/s3

σ2
s 7.16·10−5 rad2

P̂ σσ0 diag
([

0.0122 0.0122 0.0122
])

rad2

P̂ ββ0 diag
([

2.35 2.35 2.35
])
· 10−9 rad2/s2

P̂ σβ0 0 rad2/s
σ0

[
0 0 0

]T rad
β0

[
0 0 0

]T rad/s

adaptive approach to estimate the process noise covariance.25

As discussed in earlier sections, the MRP switching condition can occur for any value of σr ≥ 1.
Figure 5 shows the estimator performance for values of σr ranging from 1 to 1000. The results are
shown only for the EKF formulation of the MRP attitude filter. Clearly the estimator performance
degrades as the switching surface grows in magnitude, and it can be inferred from the results that the
limiting case σr →∞ leads to infinite estimation error since the MRP is reaching the neighborhood
of the singularity. Similar trends occur for the DD1 and DD2 formulations. Based on these results
there does not seem to be any benefit for using a MRP switching surface greater than the unit sphere
but for some particular applications it may be preferable to do so. Having a general MRP covariance
switching solution, however, also use to switch at any time where ‖σ‖ > 1. It is not required to
intercept the ‖σ‖ = 1 surface precisely, making the numerical implementation far easier.

Previous applications of the MRP singularity avoidance based on the shadow set transformation
have neglected the covariance mapping associated with the transformation. Fig. 6 shows a compar-
ison of the MRP–based EKF with and without the covariance transformation to illustrate the issues
associated with neglecting the transformation. At the first switching point a sharp bend can clearly
be seen in the case without the covariance transformation after which the estimator performance is
degraded relative to the case that includes the proper covariance transformation. This bend is due to
the fact that elements of the covariance matrix must change sign during the shadow mapping since
the MRP state representation changes sign during the mapping. Therefore the estimates that neglect
the covariance transformation develop systematic error and are no longer optimal. The results are
shown only for the EKF–based filter, similar behavior is found for the DD1 and DD2 filters.

Table 2 shows a comparison of the computational costs of each filter applied to this problem. The
mean computation time is calculated for each Monte-Carlo set and then divided by the QM–EKF
time to provide a relative cost comparison ratio. Also the standard deviation of the computation
times are provided to show the confidence intervals. The MRP–based EKF formulation described
in this paper requires slightly less computation on average than the quaternion–based EKF. These
cost savings are consistent with the results of Ref. 26, which found a reduced computation using
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Figure 4. Comparison of MRP-based filters and Quaternion–based filter

the Rodrigues parameters for attitude estimation compared with the quaternion filter. The DD1 and
DD2 filters require roughly the same computational cost which is consistent with Ref. 24. In this
case the divided difference filters are each about an order of magnitude more expensive than the
EKF.

CONCLUSIONS

This paper discusses singularity avoidance for attitude estimation based on the stereographic pro-
jection properties of the Modified Rodrigues Parameters (MRP). In this formulation, a globally
nonsingular attitude representation is available using a simple switching procedure to the shadow
MRP set to avoid singularities. The switching procedure includes a transformation to map the state
covariance between the two representations, including gyroscope bias estimates. Covariance trans-
formations are provided for the extended Kalman filter, as well as the first and second–order divided
difference filters. An example problem illustrates the effectiveness of the singularity avoidance pro-
cedure, enabling globally non–singular attitude estimation with a minimal attitude representation.
The MRP extended Kalman filter with proper state and covariance switching yields a faster ini-
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Figure 5. Comparison of MRP-based filter with varying σr
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Figure 6. Comparison of MRP-based filter with and without the covariance transformation

tial convergence than the classic multiplicative or the newer constrained quaternion filter, with the
computational loads being slightly reduced as well.
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