
American Institute of
Aeronautics and Astronautics

AAS 14-446

DISCRETIZED INPUT SHAPING FOR A LARGE
THRUST TETHERED DEBRIS OBJECT

Lee Jasper and Hanspeter Schaub

AAS/AIAA Space Flight Mechanics
Meeting

Santa Fe, NM January 26 - 30, 2014
AAS Publications Office, P.O. Box 28130, San Diego, CA 92198



AAS 14-446
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Lee Jasper∗ and Hanspeter Schaub†

Towing objects in space has become an increasingly common concept for
many missions. Asteroid retrieval, satellite servicing, and debris removal concepts
often rely on a thrusting vehicle to redirect and steer a passive object. One effec-
tive way to tow the object is through a tether. This study employs a discretized
tether model attached to six degree-of-freedom end bodies. To reduce the risk of
a post-burn collision between the end bodies, thrust input shaping methods using
continuous, discrete, and impulsive thrust profiles are considered. On-orbit simu-
lations in a near-Earth orbit show the tethered system achieves oscillations about
a gravity gradient alignment, reducing the post-burn collision likelihood. Contin-
uous input shaping thrust profiles perform desirably, avoiding post-burn collision
between the end bodies. However, they are not realistic for current day rocket en-
gine capabilities. Impulsive input shaping profiles are considered because thrusters
cannot attain continuous thrust-level modifications. Nevertheless, impulsive input
shaping techniques attain similar performance by avoiding collisions and inducing
gravity gradient motion of the system.

INTRODUCTION

The concept of towing objects in space has been gaining interest because it is useful for a variety
of mission concepts. NASA has proposed several missions to asteroids to study them while de-
veloping deep-space exploration techniques (NASA FY2014 Complete Budget∗). However, NASA
also wants to retrieve an asteroid and return it to a near Earth orbit for easier access.1 There are
several ideas for capturing the asteroid; however, the process of imparting ∆v to the object has
received less attention. Towing also has been proposed for satellite servicing as well as Active
space Debris Removal (ADR).2 The beneficial effects of reducing debris growth by using ADR is
being actively investigated.3, 4, 5 Another active research avenue for ADR are the many challenging
questions about the process of attaching to debris.2, 6, 7, 8 However, there are fewer studies of what
orbit burns to perform to change the debris’ orbit while maintaining a low collision risk. This paper
addresses the dynamics and open-loop thrusting control of towing large end bodies in space while
considering both continuous and discrete/impulsive thrusting profiles.

The tethered-tug concept discussed here focuses on space debris-like objects. However, the basic
concept is applicable to small asteroid and satellite towing mission concepts. Figure 1 demonstrates
the towing mission concept where a craft, capable of actively thrusting (referred to as the ‘tug’), is
tethered to the passive object: debris, asteroid, or satellite to be serviced.

∗Ph.D. Candidate, Aerospace Engineering Sciences Department, University of Colorado, Boulder, CO USA.
†Professor, Aerospace Engineering Sciences Department, University of Colorado, Boulder, CO USA.

∗http://www.nasa.gov/news/budget/index.html
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Figure 1. Examples of tethered tug concepts

When specifically considering the ADR mission, Figure 1(a), the tug could be a rocket that is
assumed to have deployed its payload and completed its primary mission. Its secondary mission
goal is to use the remaining fuel reserves to rendezvous with a debris object with similar orbital
parameters. After attaching a tether to the debris object the tug thrusts, lowering the periapsis of
both objects. The tug will then change the periapsis so that drag forces cause both objects to deorbit
within 25 years. Depending upon initial starting altitude and amount of reserve fuel available to the
active upper stage, the debris-tug system could be deorbited within half an orbit.9, 10, 11

There have been several proposed ADR methods2, 6, 7, 8, 9, 11 that utilize harpoons, mechanical
grapples, or nets to grab the debris object. There has been particularly encouraging results from
the Astrium Harpoon system12 demonstrating the capability to penetrate metal while supporting
large loads. While the study of the debris capture system is beyond the scope of this research, all of
these methods are likely to use tethers to connect the debris to the ADR craft because tethers are a
very effective means to change the orbital momentum of on-orbit objects.

One of the primary challenges of the tethered-tug system is collision avoidance between the end
bodies. During the thrusting maneuver the tether is strained. When the thrust is no longer present the
tether will restore itself to zero strain, pulling the tug and debris together. References 9 and 13 show
the strain-collision behavior in more detail. Therefore, it is important to reduce post-thrust strain and
relative motion between the bodies to remove collision potential. This is done through input shaping
of the open-loop thrust profile. An input shaped control or thrust profile can be designed such that
the primary natural frequency(ies) of the flexible body are not excited by the control input.14, 15

Figure 2 shows the thrusting profiles considered in this paper including a step input (Figure 2(a)),
continuously notched input (Figure 2(b)), a discrete thrust level based upon the notch which also
behaves like a Posicast controller (Figure 2(c)), and an impulsive/bang-bang method (Figure 2(d)).

There have been multiple studies of input shaping on flexible bodies, primarily led by Singhose
or Singh.14, 15, 16, 17, 18, 19, 20 Jasper and Schaub13 demonstrate the effectiveness of an input shaping
strategy using a continuously varying thruster profile on the tethered-tug system while creating a
very robust control to variable debris, or asteroid, mass. However, this continuous, smooth thrust
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Figure 2. Example thrust profiles considered

profile is unachievable by current-day engines. The improved post-burn dynamics such as reduced
jerk on the tether attachments and faster settling onto a smooth nadir-aligned oscillation shown
with this continuous thrust shaping motivate exploring discretized and bang-bang input shaping
thrust profiles. The discretized thruster profile could be implemented with a cluster of thrusters.
For example, having 3 thrusters that can be turned on individually would provide 3 discrete levels
of thrust. The bang-bang thruster profile with time delays would be suitable for a single on-off
thruster implementation. Watanabe et. al21 and Singhose14 have also specifically demonstrated
input shaping for tethered systems. These studies focus on convolution of multiple impulses to
achieve the desired performance. This paper expands upon these studies by analyzing convolution of
multiple delay transfer functions, known as a Posicast system, and how such an open-loop deorbiting
thrust profile is applicable for space-based towing applications. Bang-bang input shaping is also
explored in high-thrust environments with rigid body end masses. Further, the continuous notch
profile presented by Reference 13 is discretized so that only a set of discrete thrust-level steps are
implemented. The later is considered as a simple reference case to illustrate the benefits of the more
rigorous discrete-step and bang-bang input shaping profiles. The effectiveness of the input shaping
methods is analyzed in deep-space simulations to understand the difference in performance between
each method. On-orbit studies are then explored to consider the low Earth orbit ADR application.

TETHERED-TUG SYSTEM MODEL

The tethered-tug system consists of a thrusting vehicle, the object to tow, and a tether between
the two (Figure 1). The tug and the towed object are modeled as rigid bodies that are capable of
rotation and translation. The tether is then discretized into multiple lumped point masses connected
by visco-elastic forces, as shown in Figure 3.

The tether starts taut at the beginning of thrusting in this study because a slack tether results in an
undesirable whipping behavior.9, 13 Further, the thrusting body has active attitude control to ensure
the thrust vector points in the desired direction, while thrusting occurs. The attitude control is turned
off when the thruster is off.
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Figure 3. Discretized tether model example with 2 tether masses

Discretized Tether Model

The analysis of tethered systems (also known as Tethered Systems in Space or TSS) is often bro-
ken into three models to describe tether motion: continuum, finite element, and discrete mass.22

Continuum models usually consider partial differential equations and the solutions to these are ei-
ther extremely difficult to analytically solve or are beyond the scope of this research. Finite element
models (FEM) can produce high-accuracy results, however their proper implementation can be diffi-
cult and FEM is generally computationally intensive. This research focuses on the gross behavior of
a space tether which can be adequately described with discretely lumped masses which approximate
the tether flexing and whipping.

Discrete-mass representations of tethers are used frequently. Reference 23 creates a discrete mass
model to describe a distributed, tethered infrared telescope. Their system differs from the tethered-
tug because it is a rotating, variable tether length system. Further, Reference 23 only considers
small point masses on the ends of the tethers. The tethered-tug research considers a very different
formation with large rigid body end masses, providing different, challenging dynamics. Williams22

provides a very similar discrete mass tether to what is used within this thesis research, however
Williams’ tether is designed as a space elevator anchored to the Earth. The towing system explored
here focuses on tether lengths that are much smaller with vastly different end mass behavior. Tethers
have been used underwater for years, and there are even similar discrete mass models developed for
these underwater tethers.24, 25, 26 However buoyancy, surface wave motion, and other environmental
inputs create different dynamics. The system developed for this research is capable of modeling
higher-order tether modes while capturing large rigid end body motion on both ends of the tether.
Further, this research focuses on towing large bodies, something that has not been studied.

The translational equations of motion, caused by the tether, for the system in Figure 3 can be
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expressed as

R̈i = 1
mi

(KS(|Ri+1 −Ri| − L0,i)êi,i+1)

R̈i+1 = 1
mi+1

(
KS(|Ri+2 −Ri+1| − L0,i+1)êi+1,i+2 −miR̈i

)
...

R̈N = 1
mN

(−KS(|RN −RN−1| − L0,N )êN−1,N )

(1)

where N is the number of masses and ê defined as

êi,j =
Rj −Ri

|Rj −Ri|
(2)

These are only part of the equations of motion used for the numerical simulation used in this paper.
Gravity and the thrust control acceleration are also present as well as the rigid body dynamics for
the tug and debris.

The natural frequency ωn of the system can be found by taking the complicated three-dimensional
model in Figure 3 and simplifying it to a one-dimensional problem, as in Figure 4.
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Figure 4. Discretized tether model example with 2 tether masses

The separation between the bodies can now be expressed as

Li = |Ri+1 −Ri| − L0

Li = xi+1 − xi − L0

L̇i = ẋi+1 − ẋi
L̈i = ẍi+1 − ẍi

(3)

assuming all unstretched tether lengths, L0, are the same. Ri is the position vector of mass i. Using
the linearization in Eq. (3), the discrete mass model in a state space representation is given in Eq. (4).
Here n is the number of links between each mass. Therefore, if there are four masses (N = 4), there
are three tether links and n = 3.

Ẋ = [A]X + [B]u (4)
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The variables in Eq. 4 are given below.

X2n×1 =



L1
...
Ln
L̇1
...
...
L̇n


[B]2n×1 =



0
...

0n
1
02
...

0n


u = FT

m1

FT is the thrust force, applied only to m1. The matrix [A] can be broken up into four smaller
matrices:

[A]2n×2n =

[
[0]n×n [I]n×n

[A2,1]n×n [0]n×n

]
The acceleration caused by the visco-elastic spring force is given in Eq. 5, is entirely position
dependent.

[A2,1] = KS



− (mi+mi+1)
mimi+1

1
mi+1

0n−1 · · · 0n

1
mi+1

− (mi+1+mi+2)
mi+1mi+2

1
mi+2

. . .
...

0n−1
. . . . . . . . . 0n−1

...
. . . 1

mn−1
− (mn−1+mn)

mn−1mn

1
mn

0n · · · 0n−1
1
mn

− (mn+mn+1)
mnmn+1


(5)

mi is each body’s mass and the spring constant KS is expressed in Eq. (6)

KS =
EA

L0
(6)

with units of N
m . Here L0 is the initial, unstretched (equidistant) length of the tether between each

mass,E is the Young’s modulus of elasticity for the tether, andA is the cross sectional area. Because
Eq. (4) models a tether as a spring, it is only accurate while the tether is in tension. When the
separation distance is less than L0, all spring forces go to zero. This is also only correct while in
tension. There is no damping present while the separation between two masses is less than L0.

Tether Modes

Input shaping relies upon knowledge of a system’s fundamental modes. The model of the system
is based upon a linear spring-mass system (when in tension) allowing for easy computation of the
modes through Eigenvalue analysis. However, as more nodes are added to the tether, the character-
istic equation for the Eigenvalue analysis becomes difficult to analytically solve.27, 28 Adding more
than two or three nodes to the tether will make the system not analytically solvable for the higher
order modes. Because the first mode of the system contains the most energy, the inability to find the
higher modes is not overly important and does not reduce the performance of input shaping.13
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As an example, the Eigen-frequencies ωn of a three body (single tether mass) system are:

ωn =


0
0

±
√

KSZ1 +KSZ2

±
√

KSZ3 +KSZ4

 (7)

where

Z1 = (m2m3+m1(m2+2m3))
2m1m2m3

Z2 =

√
m2

1m
2
2−2m1m2

2m3+(4m2
1+m

2
2)m

2
3

2m1m2m3

Z3 = (−2m1m3−m2(m1+m3)
2m1m2m3

Z4 =

√
−2m1m2

2m3+m2
2m

2
3+m

2
1(m

2
2+4m2

3)

2m1m2m3

The repeated 0 roots relate to the DC offset present in the formulation of Eq. (4). Because Eq. (4)
is formulated from the positions of the bodies, the equations naturally assume that zero tether force
corresponds to separation distances between the masses that add up to the full tether length (i.e. L0).
Therefore the bodies have a constant, DC offset in their positions. The complex pair(s) in Eq. (8)
represent the purely oscillatory motion, as expected from a spring-mass system. Eq. (8) has two sets
of complex pairs due to the fact that a three body (single tether node) system has two modes: one
from the full tether length and one from the addition of the tether mass.

TUG THRUSTER INPUTER SHAPING METHODS

Continuous Input Shaping Overview

Reference 13 found that the first fundamental mode of the tethered tug system causes the most
motion between the bodies. By creating a doubly notched thrust profile, where the notched frequen-
cies span a range around the fundamental mode, a robust control design that can withstand errors
in knowledge of the mass of the towed object. This is very advantageous because the mass of a
debris object or an asteroid is likely to only be an approximate value. The double notch filter is used
throughout this paper for the ‘continuous’ and ‘discrete’ notch controls.

A double notch allows for knowledge errors in the mass of the towed object, which are likely
when towing an asteroid or debris. A double notch is effectively created by notching two frequencies
at once or by multiplying two notch filters together, in the frequency domain, that have different cut-
off frequencies. (This places two zeros around the primary pole of the system.)

g(s) =
(s2 + ω2

c1)(s
2 + ω2

c2)

(s2 + BW1s+ ω2
c1)(s

2 + BW2s+ ω2
c2)

(8)

where s is the frequency, ωc1 is the first cut-off or notch frequency, ωc2 is the second cut-off or
notch frequency, and BW1 and BW2 are the bandwidths for each notch. (Performing an Eigen
value analysis on the dynamics matrix [A] in Eq. (4) yields the natural frequency that the double
notch should be centered around.) Eq. (8) can be converted into the discrete domain and the time
domain in many ways. This process is not discussed here, but a trapezoidal differencing method is
used.29
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The frequency domain response of the double notch can be seen in Figure 5 (see Table 1 for
simulation parameters). The center frequency range was determined by an Eigen value sensitivity
analysis to a change in debris mass. Reference 13 shows that an expected tow mass of 1500 kg
can vary by as much as ±500 kg and still see minimal relative motion between the two end bodies,
when using a double notch.
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Figure 5. Double notch centered about first fundamental mode of system

With this method, the thruster throttle is assumed to be capable of achieving all thrust magni-
tudes that are commanded. This is unrealistic for present day high-thrust engines which are only
able to operate in on-off control modes. Because of this fact, three other thrusting methods are pre-
sented. The first method simply takes the desired continuous double notch profile (Figure 2(b)) and
discretizes it (Figure 2(c)). The performance of this method becomes a benchmark to compare the
following two more rigorous input shaping methods. The second method uses a Posicast control that
also behaves similarly to Figure 2(c). Here the tug is assumed to have a cluster of several thrusters
that can be engaged individually. Finally, a bang-off-bang profile (Figure 2(d)) is used. This sce-
nario assumes a single thruster is present, but it can be turned on and off again repeatedly. While the
discretized notch profile attempts to behave like the notch, the Posicast and bang-off-bang profiles
are designed to remove the undesired frequencies and therefore are more rigorous formulations.

Discretized Thrust Input Shaping

For the discretized input shaping control, it is assumed the thruster is only capable of a set number
of thrust levels. For example, with a cluster of 4 equal thrusters, the open-loop towing control is
only capable of stepping the net thrust in 25% increments of the maximum thrust available. This is
implemented by having each thruster individually turn on or off at the desired times. The continuous
model is used as the desired thrust profile but the actual profile is set to specific magnitudes given a
thrust step size. The basic algorithm is given in Eq. 9.

step size = Tstep
desired thrust = Tdesired

τratio = Mid-Point Rounding
(
Tdesired
Tstep

)
Tapplied = τratio ∗ Tstep

(9)

The algorithm uses a simple rounding method. The rounding scheme in Eq. 9 uses a mid-point
method so that if the desired thrust is greater than 50% of Tstep, then the applied thrust will jump
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Figure 6. Applied thrust profiles with different input shaping techniques

to the next step size, otherwise the applied thrust remains at the previous level. This causes the
desired thrust to be above each step size to achieve a new Tapplied level. The difference between the
continuous and discrete applied thrust is demonstrated by Figure 6.

Posicast Input Shaping

As shown by Singh,15 a time delay system can be used as an open loop control on a system.

A0 +
N∑
i=1

Aie
−sTi = 0 (10)

Singh demonstrates a number of Posicast methods to properly actuate a system, as well as make the
control more robust to modeling errors. Singh also generally considers moving a system from one
position to another. However, this paper expands upon these works by formulating a robust Posi-
cast, open-loop input shaper, that achieves a desired velocity without exciting natural frequencies.
Because the first mode of the tethered system has been shown to be the most important,13 a Posicast
controller is developed only for the first mode.

The Posicast input shaping profile operates on the assumption that a step input control/thrust
profile is given to the controller. The controller then takes the step and manipulates it so that it does
not excite undesirable modes. The thrust profile created by the Posicast control is shown in Figure 6
but in the time scale shown, it is harder to differentiate between the impulsive profiles and the step
input. It should be emphasized that the Posicast profile does behave similarly to the illustration in
Figure 2(c).

Assuming there are only two end bodies with a spring force between them, the equations of
motion are simplified to:

ẍ1 = 1
m1

(K(x2 − x1 − L0)− FT )

ẍ2 = 1
m2

(−K(x2 − x1 − L0))
(11)

The separation distance between the two end bodies is defined as L = x2 − x1 − L0, where L0 is
the unstretched length, a constant. The resulting tether flexing dynamics is written as

L̈ = ẍ2 − ẍ1
L̈ = −Km1+m2

m1m2
L+ FT

m1

(12)
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where
√
Km1+m2

m1m2
is the natural frequency of a two body spring-mass system. Taking the Laplace

Transform of the system in Eq. (12) gives the transfer function

H(s) =
L

u(s)
=

1

s2 +Km1+m2
m1m2

(13)

Eq. (13) shows that the poles of the system occur at s = ±
√
−Km1+m2

m1m2
= ±jωn, where

j =
√
−1. The most basic Posicast controller uses only one time delay and is solved as an example.

A single delay takes the form
A0 +A1e

−sT = 0 (14)

Plugging in s to Eq. (10) the exponential term can be written as

ejωnT = cos(ωnT ) + j sin(ωnT ) (15)

To solve the system, Eq. (15) is separated into real and imaginary components.

Real A0 +A1 cos(ωnT ) = 0
Imaginary A1 sin(ωnT ) = 0

(16)

This quickly results in the solutions for A0 and T if A1 is defined to equal 1, the maximum normal-
ized input.

T = (2n− 1) π
ωn

A0 = − cos(ωnT ) = − cos ((2n− 1)π)
(17)

However, the time delay control from Eq. (14) is very sensitive to modeling errors therefore
several delays are given to make the system more robust. To make the system solvable, Singh15

specifies that each time delay is only a multiple of the single delay T , from Eq. (17). The controller
designed for the tethered tug system is shown in Eq. (18).

A0 +A1e
−sT +A2e

−2sT +A3e
−3sT +A4e

−4sT = 0 (18)

To solve this system for the impulse amplitudes, Ai, several equations are required. Note that
implementing the system in Eq. (18) would require 5 thrusters, one for each amplitude Ai. The real
and imaginary parts are found again, as in Eq. (16). However three more constraints are defined:

d
dωn

(Real) = 0
d
dωn

(Imaginary) = 0

A0 +A1 +A2 +A3 +A4 = 1

(19)

The derivatives of the real and imaginary components of Eq. (18) add robustness by reducing the
size of the residual vibration in the system after an input has been added. The constraint that all of
the amplitudes sum to one is used so that the input is not scaled but equal to its full value after all
delays have occurred. Solving this system of equations, the amplitudes are found to be

A0 = 1
16 csc

(
Tωn
2

)4
A1 = −1

4 cos(Tωn) csc
(
Tωn
2

)4
A2 = 1

8(2 + cos(2Tωn)) csc
(
Tωn
2

)4
A3 = −1

4 cos(Tωn) csc
(
Tωn
2

)4
A4 = 1

16 csc
(
Tωn
2

)4
(20)
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To turn this development into a velocity control instead of a position control, the amplitudes from
Eq. (20) are used at the beginning and end of the step input thrust profile to achieve a ramping on
and off as shown in Figure 2(c). The duration of the burn is nearly the same as the step input but is
extended by 8T to account for the ramp on/off behavior.

Bang-off-bang Input Shaping

The bang-off-bang controller creates a profile that can be implemented by a single thruster that
can repeatably be turned on and off. This method also assumes that a step input is given to the
controller that is then modified to not excite system modes. Singh15 demonstrates several ways
to create a bang-off-bang controller; however, the basic principle is to find a linear system’s state
transition matrix and control matrix. Combining these matrices with several constraints, like those
in Eq. (19), yields a system that can be solved as a linear programming problem. Full details are
given by Singh, however, an abbreviated derivation is given for clarity. Further, the thrust profile is
shown in Figure 6 but is better illustrated by Figure 2(d).

Given initial and final conditions, x0 and xf and a system of the form in Eq. (4), the problem can
be set up as follows. We wish to minimize the maneuver time, so

Minimize fT t (21)

where t is the maneuver time vector and f is a vector that defines the given time we wish to mini-
mize. In this case, since it is desired to minimize the total time, f is a vector of zeros except the last
value, which is a 1 corresponding to the last time. Singh then discretizes the continuous system of
Eq. (4), obtaining

xk+1 = [AD]xk + [BD]uk (22)

where [AD] is the discrete dynamics matrix and [BD] is the discrete control matrix. Writing the
system in terms of the initial condition

xk+1 = [AD]x0 +

k∑
i=1

[AD]k−i[BD]ui (23)

The summation of inputs can be rewritten and solved for as a matrix giving

[
[AD]N−1[BD] [AD]N−2[BD] · · · [AD][BD] [BD]

]

u1
u2
...
uN

 = xf − [AD]Nx0 (24)

The system given in Eq. (24) allows the user to specify the initial and final conditions (x0, xf )
and it is solvable using linear programming techniques, in the form of Mu = b. However to be
useful as a bang-off-bang system, several additional constraints are required. One is that the inputs
end in either zero or one. This is enforced by adding a row to [M ] that is all zeros except for the
last column, which is a one. The [b] matrix also has an additional value added that is either a zero
or one. This allows for the final control value uN to be specified as whatever value is designated
in [b]. The second constraint is on the input sizes. To create a bang-off-bang control, the inputs u
are required to be bounded between zero and one. (To create a bang-bang control, the inputs can be
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bounded between negative and positive one.) The value of one is used so that the user defined input
is used in its entirety and not scaled.

To create a velocity control bang-off-bang profile, the linear programming problem is solved
twice. To begin thrusting while avoiding exciting system modes

· x0 = 0

· xf = L1

· The final input uN is specified to be 1

The value L1 is defined simply from the approximate separation distances seen from the other
control methods, like the continuous notch. The tether usually ends up stretching less than a meter,
for a 1000 m tether. The selection of this value does not drastically affect the performance of the
system, unless it is larger than the stretch distance possible given the thrust magnitude and the tether
material properties. The final control input is kept at one for the burn duration to achieve the desired
∆v. The linear programming problem is then solved again to end thrusting using

· x0 = L1

· xf = 0

· The final input uN is specified to be 0

NUMERICAL SIMULATION RESULTS

To demonstrate the effectiveness of each thrusting method (continuous, discretized, and impul-
sive), numerical simulations are performed. The basic system parameters are given in Table 1 and
are modeled after a Soyuz upper stage for the tug vehicle, and a Cosmos rocket body for the debris
object.

Table 1. Vehicle, Tether and Simulation Parameters

Tug Mass 2500 kg

Tug Inertia diag[10208, 10208, 2813] kg m2

Debris Mass 1500 kg

Debris Inertia diag[1285, 6829, 6812] kg m2

1000 m
Tether Length

equal space between masses

Tether Material Kevlar

E 1470 GPa

Tether Diameter 3.2 mm

Tether Mass 11.822 kg†

Thrust 2009 N

∆v 100 m/s

Starting Altitude 800 km (circular)
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If Eq. 8 is analyzed given the values in Table 1, the natural frequencies of the system are obtained.
It is interesting to note that the fundamental frequency is the same between the two-body, three-body,
or four-body cases. This turns out to be (for two bodies: m1 = 2500 kg, m2 = 1500 kg; for three
bodies: m1 = 2500 kg, m2 = 11.82 kg, and m3 = 1500 kg, for four bodies: m1 = 2500 kg,
m2a + m2b = 5.91 + 5.91 = 11.82 kg, and m3 = 1500 kg) ωn1 = 0.19 Hz. The three node
case also has its second mode at ωn2 = 3.43 Hz. The first mode is of greatest concern and is the
frequency that all input-shaping methods attempt to reduce.

Note that the simulations shown utilize the following:

· The trapezoidal difference method is used to go from the frequency domain to discrete time,
for the notch filter input-shapers
· The attitude on the tug (m1) is maintained while thrusting occurs
· The discretized notch filter uses a mid-point round up discretization (Eq. (9))
· The ∆v applied is equal to 100 m/s. Based upon input-shaping method, this can vary the

thrusting duration

The time T that results from Eq. (17), and is used to implement the profiles of Eq. (18) and Eq. (24),
is about 2.83 s. This means that the Posicast amplitudes change, and the bang-bang profile switches
using T as the baseline actuation time. For a five step Posicast system, the ramp on or off takes just
over 14 s.

Deep Space Results

Deep space simulations (in the absence of a gravity field) are conducted because they are infor-
mative for showing the effectiveness of a given thrusting method. Deep space is also relevant for
the asteroid towing concept (Figure 1(b)). When a step input thrust profile is used, as in Figure 2(a),
it excites all modes present in the flexible tether system causing relative motion between the two
bodies. In deep space, this generally results in a collision. However, input shaping the thrust profile
can remove these excitable frequencies from the thrust profile, reducing the relative motion. This
is demonstrated in Figure 7. Note that the tether tension profile follows the thrust profile. Further,
there is almost no relative motion between the two end bodies, as shown by the separation distance
remaining near 1000 m. Figure 7 also considers the double notch with a mass knowledge error of
500 kg (the debris is expected to be 2000 kg but it is really 1500 kg), again showing the effectiveness
of this method.

Figure 8 shows four non-continuous thrust system responses. (Figure 6 gives the profiles used.)
In Figure 8(a) and Figure 8(b) the continuous notch profile used to generate Figure 7 has been
discretized into 100 N and 1000 N steps. The 100 N step size was chosen to study a relatively small
discretization that could follow the desired continuous profile somewhat effectively. The 1000 N
step size was chosen because it is much more likely that a realistic thruster is capable of a small
range of different thrusts. A ∼2000 N thrust could be attained by coupling two, 1000 N thrusters
and turning them on at desirable times.

Altering the continuous thrust profiles to discrete steps is moderately effective in reducing post-
burn relative velocity even when introducing these discrete thrusting steps. The 100 N discretization
sees greater than 900 m of separation between the two end bodies, showing that there was only a

†http://www.matweb.com/index.aspx
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Figure 7. Relative motion and tether tension response between tug and debris using
a continuous double notch spanning .14 ≤ ωc ≤ .22Hz. Expected debris mass of
2000 kg (ωn = .17 Hz), actual mass is 1500 kg (ωn = .19 Hz). 2009 N thrust, with 2
discrete tether masses

small amount of tension remaining in the tether at the end of the thrusting duration. However, the
much cruder 1000 N discretization of the continuous thrust profile experiences much more relative
motion, and a collision between the tug and one of the tether masses at about 1000 s. This shows
the 1000 N discretization appears to be too crude of a discretization, even though it is more practical
for current-day engine capabilities.

When considering the impulsive input shaping methods in Figure 8(c) and Figure 8(d), it can be
seen that these thrust profiles (Figure 6) produce very desirable behavior. The Posicast controller
only sees about 7 m of drift over the time span considered, while the bang-off-bang profile sees about
100 m of drift. These results are exciting because they demonstrate that input shaping controllers
can be designed with profiles that are more reasonable for current-day engine capabilities.

Figure 9 shows the frequency domain response of the tug mass, given the different thrust profiles.
Figure 9(a) shows a step input exciting the modes of the tethered-tug system. The primary mode
occurs at 0.19 Hz and has a fairly large magnitude. The double notch in Figure 9(b) reduces this first
mode by about two orders of magnitude in power, thus creating the tiny relative motion in Figure 7.
The magnitude of the first mode in the 100 N discretized frequency response (Figure 9(c)) is only
slightly attenuated from the step input. However, this is enough to produce small relative motion,
as shown by Figure 8(a). The 1000 N discretization response (Figure 9(d)) has very little difference
from the step input, and therefore experiences a post-burn collision quite quickly. Figure 9(e) shows
the Posicast frequency response, which also shows a very attenuated fundamental mode (0.19 Hz),
comparable to the continuous double notch in Figure 9(b). This again demonstrates that impulsive
input shaping is a viable method to controlling the tethered-tug system. While some other frequen-
cies do appear amplified, they are not around the fundamental mode of the system, and therefore do
not adversely affect the system as modeled. Figure 9(f) shows the bang-off-bang frequency response
which does not see nearly as much attenuation as the Posicast or double notch profile, but it does
attenuate the fundamental mode enough to see reduced relative motion between the two bodies, as
shown in Figure 8(d).

On-Orbit Results

Deep space simulations motivate the use of a given thrust profile for on-orbit analyses. How-
ever, the orbital dynamics create interesting behavior that is not predicted by deep space analysis,
including the tendency toward a gravity gradient, or nadir alignment, of the tethered system.13 Even
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(a) 100 N step discrete double notch spanning .14 ≤ ωc ≤
.22Hz
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(b) 1000 N step discrete double notch spanning .14 ≤
ωc ≤ .22Hz, collision at about 1000 s
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(c) Robust Posicast thrust shaping, Eq. (18)
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(d) Bang-off-bang thrust shaping, Eq. (24)

Figure 8. Relative motion and tether tension response between tug and debris. Ex-
pected debris mass of 2000 kg (ωn = .17 Hz), actual mass is 1500 kg (ωn = .19 Hz,
green line(s) oscillation frequency). 2009 N thrust, with 2 discrete tether masses

though the 100 N discretized thrust profile had better performance in a deep space environment, it
is not realistic performance for a thruster. Therefore, the 1000 N discretization is used in the on-
orbit analysis. The 1000 N discretized, Robust Posicast, and bang-off-bang thrust profiles are used,
unaltered from their deep-space implementation.

Figure 10 shows the relative separation distance and tension present in the tethered-tug system
for a continuous and discrete notch, as well as the two impulsive shaped thrust profile. Reference 13
shows that the continuous notch tends towards a nadir alignment of the system, which is a stable
configuration that does not allow the two craft to collide. However, as shown by Figure 10(a) the
two end masses do get close before they stabilize into a nadir alignment. What is very exciting about
the discretized thruster, Figure 10(b), is that the 1000 N discretized thrust that did not work well in
deep space, performs fairly well in orbit. This is likely due to larger differences in relative motion
post-maneuver that cause the two craft to stay further separated. Figure 10(c) and Figure 10(d) show
the Robust Posicast and bang-off-bang solutions. These again, demonstrate admirable performance
as they both achieve gravity gradient motion without having the end bodies approaching each other,
as occurs with Figure 10(a). Further, the impulsive methods are more benign experiencing lower
tension (1400 N versus more than 2000 N) and faster settling to gravity gradient oscillations with
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(a) Step-input thrust profile
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(b) Double notch spanning .14 ≤ ωc ≤ .22Hz
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(c) 100 N discretized double notch spanning .14 ≤ ωc ≤
.22Hz
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(d) 1000 N discretized double notch spanning .14 ≤
ωc ≤ .22Hz
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(e) Robust Posicast thrust shaping
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(f) Bang-off-bang thrust shaping

Figure 9. Tug vehicle frequency response to 2009 N thrust, with 2 discrete tether
masses, in deep space
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(a) Double notch spanning .14 ≤ ωc ≤ .22Hz
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(b) 1000 N discretized double notch spanning .14 ≤ ωc ≤
.22Hz
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(c) Robust Posicast thrust shaping
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(d) Bang-off-bang thrust shaping

Figure 10. Relative motion and tether tension response between tug and debris for
four orbits. Tether ωn = .19 Hz. 2009 N thrust, with 2 discrete tether masses

end body separations near the full length of the tether.

Figure 11 shows the angle between the end masses and their alignment to nadir. Using that
angle as a metric for how well each thrusting method achieves the nadir alignment, it is clear that
the 1000 N discretized notch gets close to nadir alignment. The discretized thrust does have more
variability in separation distance (Figure 10(a)) between the two end bodies however they will not
collide in a nadir alignment. The step input (no shaping) does not settle into a gravity gradient
motion and has much more dynamic response, compared to Figure 10.13 The Robust Posicast and
bang-off-bang profiles settle into a gravity gradient oscillation more quickly than either of the notch
profiles. Their oscillations are larger, however, the oscillation size is not generally important, as long
as the system maintains separation between the bodies. It should be emphasized that no damping is
modeled so that the natural tether and end-body dynamics are observed.

CONCLUSION

Towing objects in space through the use of tethers is feasible. Tethered towing can be used for on-
orbit servicing and orbit raising, active debris removal, and potentially asteroid retrieval. Avoiding
excessive motion and collisions between the two large end masses is critical. A step input thrust
creates non-ideal motion and results in collisions, in a deep space environment. Input shaping can
effectively reduce the flexing motion of a flexible body as shown by a notch filter that reduces all
relative motion and helps the system settle into a nadir alignment when on-orbit. Unfortunately, the
continuous thrusting profile required by the notch filter is not realistic with current rocket engine
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technology. Therefore a discretized version of the notch filter is implemented. In deep space, the
discretized thrust achieves variable results depending upon the resolution of the discretization, often
encountering end body collision concerns. On-orbit, the discretization helps the system maintain
separation distance between the end bodies but it does not achieve an ideal nadir alignment.

The utilization of impulsive input shaping techniques successfully attenuate the first natural fre-
quency of the tethered-tug system providing reduced relative motion and tether tension while being
more realistic for current-day rocket technology capabilities. The impulsive techniques are also use-
ful in both deep-space and on-orbit applications, without alteration. This makes these techniques
appear incredibly reasonable to use for this system. Further, this paper has shown that a multitude
of thrust profiles can be successfully implemented to control this system while avoiding collisions.
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