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ABSTRACT

In order to reduce the debris population in LEO, reme-
diation is necessary. An active debris removal method is
explored that utilizes fuel reserves on a recently launched
upper stage to rendezvous with, and tether to, debris.
The system’s tethered dynamics are explored using a dis-
cretized tether model attached to six degree of freedom
end bodies. The thrust output is shaped to remove the
spectral energy at the natural frequencies of the tether,
significantly reducing the post-burn relative motion be-
tween the vehicles. The sensitivity of the input shaping
performance due to imperfect knowledge of the debris
mass demonstrates that a double notch spanning multi-
ple frequencies around the first mode is necessary to be
robust to unknown debris mass. On-orbit simulations
show that input shaping helps the tethered system achieve
smooth oscillations about a gravity gradient alignment,
reducing collision likelihood.
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1. INTRODUCTION

Space debris is becoming a major concern for orbital
assets. While there are about 22,000 objects currently
tracked, there are may thousands of dangerous debris ob-
jects in orbit[1]. In recent years, the creation of debris is
on the rise, largely due to two major catastrophic events:
the Fengyun 1C anti-satellite test (ASAT)[2] that created
over 3300 objects[3] and the Cosmos-Iridium collision[4]
that created over 1700 objects[5].

Because of these events and the continued heavy use of
low Earth orbit (LEO), the debris cascade effect pre-
dicted by Kessler[6] is occurring[7]. Mitigation meth-
ods have been shown to be important, but offer only
partial solutions to reducing the future debris environ-
ment. Active Debris Removal (ADR) of five or more
large objects per year is shown to be an effective way
to reduce the debris population[8]. Some proposed
methods[9, 10, 11, 12, 13, 14] utilize harpoons, mechan-
ical grapples, or nets to grab the debris object. While the
study of the debris capture system is beyond the scope of

this paper, all of these methods are likely to use tethers to
connect the debris to the ADR craft to avoid close prox-
imity operations between the tug and a tumbling object.
While tethers have been studied for years[15]and actually
flown on several missions[16], their use in a high force,
high thrust environment has been unexplored.

To deorbit debris, the tethers must operate in short-term
high stress environments during the large thrust maneu-
vers (⇠2000 N). This paper models the tether dynamics
using a series of spring-mass components to discretize the
tether into multiple, small masses to simulate higher or-
der modes of the tether (similar models used in [17, 18]).
The ends of the tether have two, six degree of freedom
large rigid bodies: one is the ADR craft and the other
is the debris. The ADR craft provides thrust that, trans-
ferred through the tether, changes the periapsis of the
debris object and reduces both objects’ orbital lifetimes.
Ideally, the ADR craft is a rocket body with remaining
fuel reserves that has recently put its payload into orbit.
The remaining fuel is used to rendezvous with, and de-
orbit, the debris. The concept is shown in Figure 1. De-
pending upon initial starting altitude and amount of fuel
available to the ADR craft, the debris-tug system could
be deorbited within a single orbit revolution. The tethered
tug-debris architecture therefore provides a cost-effective
ADR system because it deorbits two pieces of potential
debris for each mission.

The challenge with using a tethered tug is avoiding post-
burn collision between the debris and tug. The strain put
into the tether by the thrust will result in the tether pulling
the two bodies towards each other post-thrust. Reduc-
ing strain and the relative motion between the bodies is
necessary to remove collision potential. This paper re-
duces the complex on-orbit, six degree-of-freedom dy-
namics problem to a one-dimensional deep space sce-
nario to analyse the challenges of implementing input-
shaped thrusting on a multi-mode, tethered tug-debris
system. In particular, the mass of the debris objects is
not well known and the effect of this uncertainty on the
post-burn relative velocity can be explored in deep space
simulations. Finally, deep space is a reasonable first order
assumption for approximating the dynamics of the teth-
ered system during thrusting because the thrust maneuver
only lasts a few minutes. The orbital motion and the deep
space motion will not vary significantly in this time as
low Earth orbits have periods around 2 hours.
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Figure 1. Tethered Tug-Debris Concept

The study also briefly investigates how the post-burn rel-
ative motion evolves if the tethered tug-debris is in LEO.
Of interest is investigating how the post-burn relative ve-
locities impact the motion over a few orbits. The tether
is also assumed to be taut in this study because a slack
tether results in an undesirable whipping behavior, which
will not be explored in this paper. Higher order tether
modes, whipping motion and end body rotation are all left
to future study. Such studies warrant their own investiga-
tion because with the rotational motion of the end bod-
ies, the tether stiffness becomes a function of the tether
tension. This greatly complicates the use of input shap-
ing techniques. Rather, the presented analysis uses a
lumped mass model to set up the input-shaped maneuver,
while the simulations use a higher-fidelity model which
accounts for the full relative translational and rotational
motion.

2. TETHER MODEL

The tether is modeled as multiple, discrete point masses.
Based upon the tether material and volume the overall
mass can be found. This is split into one or more, equally
spaced mass particles, commonly referred to as a lumped-
mass model[17, 18]. Each point mass is connected to
its nearest neighbors through a spring. This is shown in
Figure 2. This model allows for flexing of the tether as
well as the general motion of the tether due to thrusting
forces.

For this paper the tug, debris, tether, and simulation pa-
rameters are given in Table 1 and Table 2. In Table 1
the mass and inertia values for the Tug are similar to
the Soyuz upper stage rocket and the debris values are
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Figure 2. Tether model: Two rigid bodies, two tether
point mass

close to the Cosmos-3M 2nd stage. Kevlar is used as
the tether material because it is commonly used in tether
analysis[19] and the diameter of 3mm is chosen to with-
stand the stresses experienced. In Table 2 a ⇠2000 N
thrust is chosen to be representative for the Soyuz up-
per stage thrusters while achieving the worst case, maxi-
mum tether tension, as described in Reference 11. (Note
that the ’step-input’ thrust linearly ramps on and off, to
and from the max thrust over a period of 1 second.) The
�v capability is based upon the fuel reserves that may be
available in the Soyuz after delivering a payload to orbit.
Finally, the starting altitude of 800 km is based upon the
known high density of Cosmos rocket bodies at that al-
titude and the fact that they are considered high priority
targets for ADR[20].

Table 1. Vehicle Parameters
Tug Mass 2500 kg
Tug Inertia diag[10208, 10208, 2813] kg m2

Debris Mass 1500 kg
Debris Inertia diag[1285, 6829, 6812] kg m2

1000 m
Tether Length

equal space between masses
Tether Material Kevlar

Young’s Modulus 1470 GPa
Tether Diameter 3 mm

Tether Cross
7.0686e�6m2

Sectional Area
Tether Mass 11.822 kg1

Table 2. Simulation Parameters
Thrust 2009 N
�v 100 m/s

Starting Altitude 800 km (circular)

Modeling n bodies with two rigid end-masses, n� 2 dis-
crete tether masses, and a spring-like tether, the equations
of motion are shown in Eq. (1).

ẋ = [A]x + [B] (1)

1http://www.matweb.com/index.aspx
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can be expressed as shown in
Eq. (2).
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Here L0i is the initial, unstretched length of the tether
between each mass, E is the Young’s Modulus of Elas-
ticity for the tether, and A is the cross sectional area. In
this study, all L0i are the same. Because Eq. (1) models
a tether as a spring, it is only accurate while the tether
is in tension. Eq. (3) demonstrates that the tether spring
force for each element is reduced to zero when there is no
tension, creating an overall nonlinearity in the system.
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Because the tether only pulls on the masses when in ten-
sion, and does not provide a ’pushing’ force when in
compression, collisions between the large end-masses be-
comes possible. This is undesired as collisions could
cause more orbital debris, something that is unacceptable
from an ADR system. It therefore becomes important to
study the complex tether dynamics between high-force
and slack tether motion and then control those dynamics.
Figure 3 demonstrates that the deep space motion simu-
lation between the masses results in collisions. The sim-
ulation used to produce Figure 3 uses two discrete tether
masses. A general bang-bang thrust profile leaves tension
in the tether which pulls the masses together, causing a
collision.

When thrusting, the system oscillates between zero tether
tension, to high tension. This oscillation occurs at the
natural frequency(ies) of the system. Therefore, one very
effective way to reduce this motion, and collisions, is to
remove these natural frequencies.

3. THRUSTER INPUT-SHAPING

Input shaping is a common way to remove an undesired
frequency response in a linear system[21, 22]. For this
specific application, a notch filter is used to remove the
natural frequency of the tethered system. A brief sum-
mary of a notch filter is given for ease of reference.

In the frequency domain, a first order notch filter is de-
fined as:

g(s) =
s

2 + !

2
c

s

2 + BWs + !

2
c

(4)

where s is the frequency, !

c

is the cut-off or notch fre-
quency, and BW is the bandwidth of the notch filter.

It is also helpful to be able to notch two frequencies at
once. This is simply created by multiplying two notch
filters together, in the frequency domain, that have differ-
ent cut-off frequencies.
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!

c1 is the first cut-off or notch frequency, !

c2 is the sec-
ond cut-off or notch frequency, and BW1 and BW2 are
the bandwidths for each notch. Eq. (4) and Eq. (5) can be
converted into the discrete domain and the time domain
in many ways. This process is not discussed here.

In order to properly reduce motion between the tug and
debris, the system’s natural frequencies (Eigenvalues)
must be known. Because the tether system is modeled
as a linear spring when in tension, Eigenvalue analysis
lends itself perfectly to this model.

Unfortunately, it becomes very difficult to analytically
solve for the Eigenvalues and frequencies of the tether
as more nodes are added. The Abel-Ruffini theorem
demonstrates that there are no general algebraic solutions
to polynomials of degree five and higher[23, 24]. This
means that it is not likely that the full set of Eigenval-
ues for tether discretizations beyond three or four nodes
is analytically achievable. However, this is not a ma-
jor concern because the majority of the energy and dy-
namics of the system come from the first few modes, or
Eigenvalues. Therefore, the primary modes of interest
can be analytically computed for any system. Further,
these modes will be the same, independent of the number
of discretized nodes placed on the tether.

The Eigen-frequencies !
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of a three body (single tether
mass) system are:
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The repeated 0 roots relate to the DC offset present in
the formulation of Eq. (1). Because Eq. (1) is formulated
from the positions of the bodies, the equations naturally
assume that zero tether force corresponds to separation
distances between the masses that add up to the full tether
length (i.e. L0). Therefore the bodies have a constant, DC
offset in their positions. The complex pair(s) in Eq. (7)
represent the purely oscillatory motion, as expected from
a spring-mass system. Eq. (7) has two sets of complex
pairs due to the fact that a three body (single tether node)
system has two modes: one from the full tether length
and one the addition of the tether mass.

Again, it is interesting to note that the fundamental fre-
quency is the same between the two-body, three-body,
or four-body cases. This turns out to be (for two bod-
ies: m1 = 2500 kg, m2 = 1500 kg; for three bodies:
m1 = 2500 kg, m2 = 11.82 kg, and m3 = 1500 kg, for
four bodies: m1 = 2500 kg, m2a

+m2b

= 5.91+5.91 =
11.82 kg, and m3 = 1500 kg) !

n1 = .19 Hz. The three
node case also has its second mode at !

n2 = 3.43 Hz.
Therefore, these can become the notched frequencies
used in the input-shaping approach.
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Figure 3. Relative motion and tether tension response
between tug and debris for a step input 2009 N thrust,
with 2 discrete tether masses

4. NUMERICAL RESULTS

4.1. Towing Results

To demonstrate why input shaping (notching) is required,
consider Figure 3 where no shaping method is used dur-
ing thrusting. Here the thruster cuts off at �v = 100 m/s
while there still is tension in the tether. The restoring
spring force in the tether will pull all masses together and

eventually cause a collision, as seen beyond 1000 s in
Figure 3. It therefore becomes imperative to reduce the
remaining tether tension to stop post thrust relative mo-
tion between the masses. Jasper et. al[11] demonstrate
that the thrust magnitude could (based upon the tether
properties and rigid body end masses) be set to achieve
the desired �v without leaving the tether in tension. This
method required well known system properties and the
ability to very specifically set the thrust value.

As an alternate control method, the thrust profile could
include filtering so that the fundamental frequencies of
the tethered system are removed. Using a notch fil-
ter (Eq. (4)), the first fundamental mode, shown in Fig-
ure 5(a) at !

n

= .19 Hz, is removed and the behav-
ior becomes much more desirable. Figure 4 and Fig-
ure 5(b) show the improvement in the post thrust dynam-
ics. The relative motion between the tug and the first dis-
crete tether mass is significantly reduced, shown in Fig-
ure 4 and there is less than a meter of relative drift be-
tween the two. This result is very similar for the relative
motion between the other tether masses and the debris.
Figure 5(b) demonstrates the dramatic difference in the
response profile. The fundamental mode, seen as the first
peak in Figure 5(a), is heavily attenuated in Figure 5(b).

Figure 6 compares the tether mass frequency responses.
Note that this response is very similar between both tether
masses modeled, therefore only one set of plots is shown.
The tether masses are shown here to generally move and
oscillate at higher frequencies than the larger rigid bod-
ies. The notching has less of an effect on their behavior
however there are subtle reductions in the profile below
1 Hz in Figure 6(b). Figure 7 compares the debris be-
havior between bang-bang and notched thrust profiles. In
Figure 7(b) it is also obvious that the first mode at .19 Hz
has been significantly attenuated, as desired.
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Figure 4. Relative motion and tether tension response
between tug and debris for a single notch with the cut off
frequency at the first mode. 2009 N thrust, with 2 discrete
tether masses

4.2. Eigen-Frequency Sensitivity

The notching shown in Figure 5(b) presents an ideal case
where all system parameters are well known. However, if
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(a) Step-input thrust profile
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(b) Notch at !c = .19Hz

Figure 5. Tug vehicle frequency response to 2009 N
thrust, with 2 discrete tether masses

the Eigenvalues in Eq. (7) are not well known, the natural
frequencies can change from what is expected, lowering
the effectiveness of the notch filter. The debris mass (m3

in Eq. (7)) will be the least well known value in the com-
putations. The linear sensitivity of the natural frequency
in Eq. (7) can be found by taking the partial of the nat-
ural frequency with respect to m3 and evaluating at the
expected values (given in Table 1, where the expected
debris mass m3e

= 1500 kg). Eq. (7), shows the lin-
ear change in the natural frequency given the true debris
mass m3t

.
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Evaluating Eq. (7) from m3t

= 600 � 2400 kg, Figure 8
shows that the mass of the debris can vary by 900 kg
(60%) and it will only change the first mode by .03 Hz.
Because the first mode contains the most energy for the
system this mode will be focused on. Given the tether
properties, masses of the tug and debris, the first mode
should occur near .19 Hz. It turns out that a variance of
.03 Hz in the first mode is enough to cause the notch fil-
ter to have significant performance problems. One robust
method to avoid sensitivity issues is to add a second notch
in the region of the first mode.

To design a double notch around the first mode, Figure 8
is used to determine the potential range over which the
first mode can vary. When two notches are placed near
each other, they effectively attenuate a range of frequen-
cies. This behavior can be seen in Figure 9 where fre-
quencies .14 Hz – .22 Hz are very heavily notched. While
there is reduced attenuation between these two frequen-
cies it is still very large, peaking near -58 dB. This is
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(a) Step-input thrust profile
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(b) Notch at !c = .19Hz

Figure 6. Tether mass frequency response to 2009 N
thrust, with 2 discrete tether masses

sufficient to reduce the first mode’s energy.

Using this type of double notch while including errors in
debris mass knowledge, significant reductions in relative
motion are still produced (Figure 10). Figure 10(a) shows
that the single notch placed at the expected, but incorrect,
natural frequency experiences small but noticeable col-
lapse of the system. Conversely, Figure 10(b) shows that
the double notch effectively reduces the motion between
the masses, even though the exact natural frequency is not
well known. It turns out that the relative motion of the
masses are reduced nearly as well as the perfect single
notch of Figure 4. The performance difference between
the single notch and the double notch spanning a wide
range of frequencies can be seen in Figure 11. The dou-
ble notch experiences more attenuation of the first mode.
The double notch frequency response does see less atten-
uation near .2 Hz, in the same location as the ’hump’ in
Figure 9, which is expected.

Notching does cause phase lag in the thrust profiles and
the system responses. Therefore the thrust period of a
step input is shorter than a single or double notch. This
behavior is shown in Figure 12. It takes the step input (no
shaping) about 201 seconds to achieve a �v = 100 m/s
while the single notch takes 238 seconds and the double
notch 283 seconds to reach within about 1% of a 0 N
thrust. This means that it takes less than five minutes
for any of these methods to perform their burn, a time
duration which is very short when considering an orbital
period around 90 minutes in LEO.

This demonstrates that the double notch spanning the
possible range of the first mode can effectively reduce
collision potential between the masses with large uncer-
tainties in the debris mass. This also demonstrates that
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(a) Step-input thrust profile
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(b) Notch at !c = .19Hz

Figure 7. Debris object frequency response to 2009 N
thrust, with 2 discrete tether masses
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(a) Single notch, !c = .17Hz
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(b) Double notch spanning .14  !c  .22Hz

Figure 10. Relative motion and tether tension response
between tug and debris for an expected debris mass of
2000 kg (!

n

= .17 Hz), actual mass is 1500 kg (!
n

=
.19 Hz). 2009 N thrust, with 2 discrete tether masses
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(a) Single notch, !c = .17Hz
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(b) Double notch spanning .14  !c  .22Hz

Figure 11. Tug vehicle frequency response with 2 dis-
crete tether masses. Expected !

n

= .17 Hz, actual
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= .19 Hz
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the first mode is the most important and should be the fo-
cus of reducing relative motion between objects that are
tethered. What is truly significant about determining that
the first mode is really the only mode that needs to be
notched is that this is the most simple mode to model
and analyze. While tether models can become very com-
plex (using partial differential equations and finite ele-
ment solvers) the first mode is the only mode that really
needs to be considered. This may help to drastically re-
duce the analysis required for a tether-tug system.

5. ON-ORBIT THRUST NOTCHING

To show the effectiveness of this method when on-orbit, a
four mass (two tether mass) system is used with a double
notch spanning across the first mode as shown in Fig-
ure 9. While the system’s actual natural frequency is
.19 Hz, the double notch allows for uncertainties in de-
bris mass knowledge. The debris and tug craft are started
in an 800 km circular orbit and a burn is produced in the
anti-velocity direction to lower both object’s orbits. A
�v = 100 m/s lowers the periapsis to about 425 km.

The double notch in Figure 13(b) experiences separa-
tion distances that are just as small as the step-input
thrust of Figure 13(a) which is unexpected from the deep
space simulations. However, there are several new advan-
tages to input shaping that are not apparent in the deep
space simulations. The step input system tumbles but
the notched system quickly settles into a gravity gradient
type configuration where the masses have aligned along
the radial vector, and after one orbit, remain about the full
tether length apart from each other. The notched system’s
oscillation about the radial vector (a nadir alignment) is
shown in Figure 14 where the notched motion oscillates
about 90 degrees from the in-track direction. Conversely,
the step input only experiences tumbling with a large
range of separation distances between the bodies. The
fact that the notched system achieves a gravity gradient
orientation is very encouraging and would help to keep
these masses separated for their orbital lifetime. It is also
encouraging to note that the tether tension forces are no-
ticeably reduced in Figure 13(b) placing less stress on the
entire system.
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Figure 13. Relative motion and tether tension response
between tug and debris for four orbits. Tether !

n

=
.19 Hz. 2009 N thrust, with 2 discrete tether masses

6. CONCLUSIONS

A second stage rocket body with fuel reserves could be
used as an ADR system. With a tether as an energy trans-
fer mechanism and a thrust applied by the rocket, the pe-
riapses of both objects can be significantly lowered. This
allows for drag to affect their orbits more, reducing life-
times. Step input (impulsive) thrust profiles were shown
to be challenging for a tethered ADR system due to the
chaotic motion, collision potential, and high tether ten-
sions induced. It was shown that the majority of the rel-
ative motion that occurred between both craft is due to
the tether’s first fundamental mode. Reducing energy in-
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put into the system at this frequency, through thrust input
shaping, effectively reduced these problems. It was also
shown that the first mode of the tethered system is the
most important to reduce frequency input. This is very
encouraging because this mode is only affected by the
tether material properties and length, not the number of
discretized masses or any other variable property. This
means that the tether motion can be effectively modeled
and studied without incredibly high-fidelity tools.

Input shaping while on-orbit results in the masses achiev-
ing a gravity gradient-like formation which will allow
for separation distances to be maintained between bod-
ies. This is very encouraging and future work may con-
sider a tether with damping and longer lengths of tether
to achieve more stable gravity gradient orientations. It is
therefore likely that this type of ADR system would be
practical to design and implement on-orbit.

ACKNOWLEDGMENTS

The authors would like to acknowledge Valery
Trushkyakov, Professor in the Department of Avi-
ation and Rocket Building, Omsk State Technical
University for his contributions to the tethered rocket
body ADR method.

REFERENCES

1. Stansbery E., (2012). NASA Orbital Debris Program
Office Frequently Asked Questions, NASA Lyndon B.
Johnson Space Center Houston, Texas

2. Pardini C., Anselmo L., (2007). Evolution of the de-
bris cloud generated by the Fengyun-1C fragmentation
event, 20th International Symposium on Space Flight
Dynamics, Goddard Space Flight Center Greenbelt,
MD, NASA CP-2007-214158.

3. Kelso T., (2012). CelesTrak. CSSI Center for Space
Standards and Innovation, http://celestrak.com/

4. Johnson N. L., (2010). Orbital Debris: The Growing
Threat to Space Operations, 33rd Annual AAS Guid-
ance and Control Conference, Breckenridge, CO

5. Pardini C., Anselmo L., (2011). Physical properties
and long-term evolution of the debris clouds produced
by two catastrophic collisions in Earth orbit, Advances
in Space Research, 48, 557–569

6. Kessler D. J., Cour-Palais B. G., (1978). Collision Fre-
quency of Artificial Satellites: The Creation of a Debris
Belt, Geophysical Research, 83(A6), 2637–2646

7. Liou J.-C., Johnson N. L., (2006). Risks in space for
orbiting debris, Science, 311, 340–341

8. Liou J.-C., Johnson N. L., Hill N., (2010). Controlling
the growth of future LEO debris populations with active
debris removal, Acta Astronautica, 66(5-6) 648–653

9. Alary D., (2012). Astrium’s views on OOS & ADR,
European On-Orbit Satellite Servicing and Active De-
bris Removal Conference, Brussels, Belgium

10. Bonnal C., Koppel C. R., (2012). Getting rid of
large debris: a safe low cost alternative, 2nd European
Workshop on Active Debris Removal, Quentin, Paris,
France, paper 3.2

11. Jasper L., Schaub H., Seubert C., Trushlyakov V.,
Yutkin E., (2012). Tethered Tug for Large Low Earth
Orbit Debris Removal, AAS/AIAA Astrodynamics Spe-
cialists Conference, Charleston, SC, No. AAS 12-252

12. Reed J., Busquets J., White C., (2012). Grappling
System for Capturing Heavy Space Debris, 2nd Euro-
pean Workshop on Active Debris Removal, Quentin,
Paris, France, paper 4.2

13. Retat I., Bischof B., Starke J., Froth WP., Bennell K.,
(2012). Net Capture System, 2nd European Workshop
on Active Debris Removal, Quentin, Paris, France, pa-
per 4.3

14. Trushlyakov V., Makarov J., Raykunov G., Sha-
trov J., Baranovo D., (2012). The development of au-
tonomous onboard systems for the controlled deorbit-
ing of stages separating parts of space launch vehi-
cle, 2nd European Workshop on Active Debris Removal,
Quentin, Paris, France, paper 2.5

15. Cartmell M. P., McKenzie D. J., (2008). A Review of
Space Tether Research, Elsevier Progress in Aerospace
Sciences, 44, 1–21.

16. Cosmo M., Lorenzini E., (1997). Tetheres in Space
Handbook, Smithsonian Astrophysical Observatory,
Prepared for NASA Marshall Space Flight Center,
Cambridge, MA, ed. 3

17. Kim M., Hall C. D., (2003). Control of a rotating
variable-length tethered system, Advances in the Astro-
nautical Sciences, 114, 1713–1732.

18. Williams, P., (2009). Dynamic multibody modeling
for tethered space elevators, Acta Astronautica, 65,
399–422.

19. Carroll J. A., Oldson J. C., (1995). Tethers for Small
Satellite Applications, AIAA/USU Small Satellite Con-
ference, Logan, Utah

20. Liou J.-C., (2011). An active debris removal para-
metric study for LEO environment remediation, Ad-
vances in Space Research, 47(11), 1865–1876

21. Singhose W. E., Banerjee A. K., Seering W. P.,
(1997). Slewing Flexible Spacecraft with Deflection-
Limiting Input Shaping, Journal of Guidance, Control,
and Dynamics, 20(2), 291–298

22. Lewis D., Parker G. G., Driessen B., Robinett R.
D, (1999). Comparison of Command Shaping Con-
trollers for Suppressing Payload Sway in a Rotary
Boom Crane, International Conference on Control Ap-
plications Kohala Coast Hawaii, 719–724

23. Ore O., (1957). Niels Henrik Abel: Mathematician
Extraordinary, U of Minnesota Press, ed. 1

24. Ayoub R. G., (1980). Paolo Ruffinis contributions
to the quintic, Archive for History of Exact Sciences,
23(3), 253–277


