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This paper investigates the orbit radial stabilization of a 2-craft
virtual Coulomb structure about circular orbits and at Earth-Moon li-
bration points. A generic Lyapunov feedback controller is designed for
asymptotically stabilizing an orbit radial configuration about circular or-
bits and collinear libration points. The new feedback controller at the
libration points is provided as a generic control law in which circular
Earth orbit control form a special case. This control law can withstand
differential solar perturbation effects on the two-craft formation. Elec-
trostatic Coulomb forces acting in the longitudinal direction control the
relative distance between the two satellites and inertial electric propul-
sion thrusting acting in the transverse directions control the in-plane and
out-of-plane attitude motions. The electrostatic virtual tether between
the two craft is capable of both tensile and compressive forces. Using the
Lyapunov’s second method the feedback control law guarantees closed
loop stability. Numerical simulations using the non-linear control law
are presented for circular orbits and at an Earth-Moon collinear libra-
tion point.

I. Introduction

In the presence of differential solar radiation pressure effects, this paper investigates the application of
non-linear control techniques in stabilizing a two-craft formation virtually connected by an electrostatic
(Coulomb) force. The basic idea of Coulomb propulsion of free-flying vehicles is to control the spacecraft
formation shape and size using the inter-spacecraft forces created by electrostatically charging the spacecraft
to different potentials.!? For tight formation control of spacecraft separation distances on the order of 100
metres or less, this propellant-less thrusting is an attractive solution over conventional electric propulsion or
chemical thrusting which can cause thruster plume contamination of the neighbouring spacecraft. Coulomb
propulsion has several advantages: it is a highly efficient system with a renewable energy source with I,
values ranging up to 102 seconds, it requires very little electrical power requirements (one Watt or less),
and it has a very high bandwidth for relative motion control with charge transition times on the order
of milli-seconds.! These advantages enable high precision, close-proximity formation flying with several
potential applications in space technologies such as high accuracy wide-field-of-view optical interferometry
missions, spacecraft cluster control, as well as rendezvous and docking maneuvers. Coulomb propulsion has
its drawbacks. The formation dynamics are highly coupled and non-linear and Coulomb formation flying
concept is feasible in less dense plasma environments at geostationery orbit (GEO) altitudes or higher.
Moreover, as the electrostatic forces are internal to the formation, Coulomb forces cannot be used to reorient
a full formation to a new orientation and external forces such as thrusters or differential gravity gradient
torques must be used.

In 2002, Parker and King presented the Coulomb propulsion concept to control a cluster of free-flying
spacecraft in References 1 and 2. They present analytic solutions for Hill-frame invariant three and five-craft
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static Coulomb formations with symmetry assumptions. The pre-defined craft locations in the formation
and constant charges in the rotating Hill frame perfectly cancel all relative motion of the charged spacecraft.
References 3-5 present more systematic analytic solutions for two, three, and four-spacecraft formations and
demonstrate numerically possible formations with as many as 9 craft in GEO orbits. The open-loop static
Coulomb formations are all numerically unstable. Reference 6 formulates necessary conditions to achieve such
static Coulomb formations with constant charges. Reference 7 present closed-loop feedback stabilized virtual
Coulomb structure solutions for in-orbit two-craft configurations (radial, along-track and orbit normal). For
an orbit radial Coulomb tether configuration, a charge feedback law stabilize the relative distance between
the satellites exploiting the differential gravitational attraction to stabilize the in-plane attitude motion.
Along the orbit-normal and the along-track directions, to asymptotically stabilize the satellite formation
shape and attitude, the authors present hybrid feedback control laws which combine conventional thrusters
and Coulomb forces. Furthermore, Reference 7 investigates the linear dynamics and stability analysis of
expansion and contraction reconfiguration maneuvers for all three equilibrium configurations using linearized
time-varying dynamical models. In such reconfiguration maneuvers, stability regions limit the Coulomb
tether expansion and contraction rates.

Tether formations at the libration points are useful for remote sensing missions to establish a long-baseline
imaging capability or to ensure better stationkeeping configurations. Reference 8 considers the equilibrium
configurations of a rigid tethered system near all five libration points and carries out the stability analysis
when it is near the translunar libration point. Also, the NIAC report in Reference 1 analyzes the suitability
of Coulomb control for a static collinear five-vehicle formation at Earth-Sun Lagrange points where the
formation local dynamics ignore gravity. Furthermore, Reference 9 presents compatibility results of using
Coulomb satellites with electric propulsion and autonomous path planning techniques at the libration points
for formation keeping and reconfiguration of swarms of satellites. At Geostationary Orbits (GEO) the Debye
length varies between 80-1400 m, with a mean of about 180 m which constrains the maximum possible
formation length.'® In the interplanetary space at Earth-moon libration points, the Debye length varies
between 10-40 m."!! But despite the low value of the Debye length, multi-craft equilibrium formations
are reported to exist at the Earth-Sun L; Lagrange point.” Furthermore, as a consequence of discussions
in Reference 12, the effective Debye lengths in deep space still yield charged relative motion dynamics
that are primarily influenced through classical electrostatics. Reference 13 shows that for a two spacecraft
Coulomb formation at the gravitational three-body libration points, three equilibrium configurations exist
(radial, along-track and orbit normal). And Reference 14 present the linearized radial, along-track and
orbit-normal dynamics and stability of a 2-craft Coulomb tether formation at Earth-Moon libration points.
The assumption for the linearized study is that the sunlit areas of the two-craft are equal such that the
differential solar radiation pressure on the formation is zero.

Differential solar drag is the largest disturbance acting on a tether formation at GEO and at libration
points (Sun-Earth or Earth-Moon).!%1? For example, on a typical micro-craft in Earth orbit the maximum
solar torque magnitude of about 10~° Nm is essentially constant with orbit altitude.!® The gravity gradient
torque is inversely proportional to the orbit radius cubed, but in low orbits has a maximum magnitude on
the order of solar torque, and above an altitude of about 20,000 kilometers it becomes relatively insignificant
(less than 1%).15 Therefore, at libration point distances, in the presence of a differential solar drag on the
formation, the gravity gradient torques may no longer be sufficient to stabilize the in-plane motion of a
2-craft virtual Coulomb structure in the radial equilibrium position. Moreover, in the presence of differential
solar drag on a two craft Coulomb formation in circular orbits, Reference 7 shows that the states are bounded
with the charge feedback law. These limitations motivate us to study the non-linear dynamics and stability
analysis of an orbit-radial two-craft Coulomb formation about circular orbits and at Earth-Moon libration
points.

References 16 and 17 use a Lyapunov approach for tether deployment and retrieval in circular orbits. In
their study, tether mass and flexibility, solar radiation pressure as well as aerodynamic effects are neglected.
The Lyapunov feedback control method use a Lyapunov function based on a first integral of motion of the
dynamical system. The control laws are simple and utilize tether tension control as well as out-of-plane
thrusting. In this paper, a similar approach is taken to stabilize the formation shape and size in circular
orbits and at the libration points in the presence of differential solar radiation pressure affects. The goal is
to design a generic Lyapunov feedback controller that can withstand differential solar perturbation effects
and to asymptotically stabilize an orbit radial 2-craft Coulomb structure about circular orbits and collinear
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libration points. First the generic non-linear equations of motion for a two spacecraft Coulomb formation at
the libration points are presented. This general framework for two-craft dynamics at the collinear libration
points present circular Earth orbit dynamics as a special case. Then the environmental torques due to
gravity gradient forces and solar radiation pressure affects at GEO and at Earth-Moon libration points are
discussed. Of interest is to study if the gravity gradient forces on a radial equilibrium two-craft Coulomb
tether formation are sufficient to withstand the differential solar drag affects. Numerical results show the
gravity gradient and differential solar drag force magnitudes on the formation. Finally, a generic controller is
designed that can withstand differential solar perturbation effects in orbit radial configuration about circular
orbits and at Earth-Moon collinear libration points. Numerical simulations validate the Lyapunov controller
performance.

II. Equations of Motion - Circular Orbits and Collinear Libration Points

The equations of motion for a two spacecraft Coulomb formation at collinear Earth-Moon libration points
are derived in Reference 14. They are presented here incorporating the differential solar radiation pressure
perturbations. Defining L to be the distance between the two Satellites and L, the reference separation
distance, the nondimensional separation distance variable [ is set to L . The nondimensional time variable
is 7 = Qt where 2 is the constant angular velocity of the Earth- Moon barycenter And assuming fqg, fay
and fg to be the non-dimensional differential solar perturbations in body frame, the non-linear equations
governing the roll angle 6 out of the orbital plane, the pitch angle v in the orbital plane, and the separation
distance [ are

’

0" + 2%9/ +cosOsinO((1+ )% + 30 cos? ) = 7 + % (1a)
" cos® 0 — 2cos (1 + ') (6 sinf — %cos 0) + 30cos? §sin 1 cosh = uTw + dew (1b)
V=10 + (14 ) cos 0 — (1 = 3eos® os® ) = —u — fa (1c)

where the prime denotes the derivative with respect to non-dimensional time. And w;, uy and ug are the non-
dimensional body frame control variables. The control variable wu; is associated with Coulomb propulsion,
and uy and ug are related to electric propulsion. The equations of motion are coupled non-linear ordinary
differential equations that define the motion of a two-craft Coulomb formation at any of the three collinear
Lagrangian points. The parameter o is a positive constant that depends on the collinear Lagrangian point
(L1, Lo, L3) under consideration. It is defined as

1—v n v (2)
O— fr—
-
where v = VA + M and 1 — m with M; and Ms being the dominant masses of the two gravitational

primaries, Earth and Moon. And d is the distance between the two primaries with r,, being the x position
of a collinear libration point with respect to the barycenter.

Interestingly, for 7o = 17, the equations turn out to be the same equations that were found in Reference
7 for orbit radial 2-craft formation at GEO. Thus, the non-linear equations of motion about orbit radial
equilibrium in Egs. (1) form a general framework that covers both circular GEO and colinear libration point
departure motion. By changing the constant ¢ either motion is described.

If the two-craft formation is aligned in the radial direction, the formation remains statically fixed relative
to the rotating orbiting frame O provided the non-linear equations Eq. (1) satisfy the following radial
equilibrium conditions

0=0=0"=p=yp =y =1'=1"=0 and I=1= L= Ly (3)

Eq. (1c) provides the nominal product of charges Q,of = ¢1¢2 needed to achieve this static Coulomb formation

ast4

L mimso

Qref = - (20 + 1) Qz (4)

k mi + meo

3 oF 11



Thus, the satellites appear frozen with respect to the rotating frame when the charge product Q. satisfies
Eq. (4). Since the charge product term is negative it implies that the spacecraft charges will have opposite
charge signs and also, an infinite number of charge pairs can satisfy Qe = q1g2. Although unequal charges
are possible between the two crafts, in this study, the charge magnitudes are set equal.

III. Environmental Torques - GEO and Libration Points

This section discusses environmental torques due to gravity gradient and solar radiation pressure effects
on a two-craft formation. The gravity gradient torque expressions and solar radiation pressure models at
GEO and at Earth-Moon libration points are presented. To study whether the gravity gradient forces on a
radial equilibrium two-craft Coulomb tether formation are sufficient to withstand the solar drag affects, the
magnitudes of gravity gradient forces at GEO heights and libration point distances are compared against the
differential solar drag forces on the formation. Numerical results show the gravity gradient and differential
solar drag force magnitudes on the formation at GEO and at Earth-Moon libration points.

A. Gravity Gradient Torques

The gravity gradient torque expression at GEO is obtained from'8

Lg, TeaTes(I33 — Io2)
3GM, "¢ ¢
BLe = |Lg,| = 5 reires(l11 — Is3) (5)
Lg, ¢ reire2(l22 — In1)

where 7.1, 7. and r.3 are the B frame components of a two-craft formation center of mass position vector 7,
in GEO. G is the gravity constant and M, is the mass of the planet Earth. The body frame inertia matrix

of a two-craft formation in radial equilibrium is”
0 0 0
Brn=1{o 1 0 (6)
0 0 I

where I = %LQ and m1, my are the masses of the two spacecraft.
Using Eq. (5), the gravity gradient torque of a radial equilibrium two-craft Coulomb tether formation at
GEO becomes

0
BLe =302 | —Icosfsin 6 cos? (7)
—Icosfcosysiny

where Q0? = £ with p = GM..
Similarly, the gravity gradient torque expression at libration points is

5 Lg, 3GM, Teares3 (33 — Iz2) 3G M, T:CQT:CS(I?)?) — I)
Leg=|La,| = —5— |rares(in —I33) | + —5— |reres(Iin — Is3) (8)
o] 7 Ll tw)] 7 |
where 7.1, T2, Tez and r'c;, 7";2 and 7";3 are the B frame components of a two-craft formation center of mass
position vectors r. and 7, at a collinear libration point from the two primaries in the plane.
Using Eq. (8), the gravity gradient torque of a radial equilibrium two-craft Coulomb tether formation at

a collinear libration point becomes

0
BLe =3(02 + Q%) | —Icosfsinfcos®y (9)
—Icos B cossiny

where QF = £3 and 02 = T‘f% with p1 = GM7 and ps = GMs.
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B. Solar Radiation Pressure (SRP)

At GEO, the inertial acceleration vector aggp in m/s? due to the effects of solar radiation pressure (SRP)
is given as” 19

C,AF r
—3 (10)

me |z

ASRpP = —

where r is the inertial position vector from the sun to the orbiting planet in AU, m is the mass of the
spacecraft in kg, and A is the cross-sectional area of the spacecraft that is facing the sun in m?. The
constant F' = 1372.5398 Watts/m? is the solar radiation flux, ¢ = 299792458 m/s is the speed of light, and

C, = 1.3 is the radiation pressure coefficient. To compare the results at GEO from Reference 7, as shown

12327,
ik

Figure 1: Sun’s Position and the Orientation of the Cylindrical Craft

in Figure 1, the craft are modeled as cylinders of radius 0.5 m, height of 1 m and mass of 150 kg. For craft
1, the cylindrical surface with a square cross-sectional area of 1 m? is constantly facing the sun, whereas for
craft 2, it is the top of the cylinder with circular cross-sectional of 0.257 m? that is facing the sun.

In the Earth-Moon system, the solar radiation pressure model is much different from that of the GEO
environment. In the vicinity of the collinear libration points, the sun lines are treated as parallel lines. In
order to describe the relative motion of the satellite with respect to the formation center of mass, a rotating
Hill orbit frame O : {é,,0¢,6r} whose origin coincides with the Lo libration point is chosen as shown
in Figure 2. This rotating coordinate system orbits the Earth-Moon barycenter O with constant orbital
angular velocity €. In addition, the Earth-Moon system orbits the Sun with an angular velocity of Qp.
Consequently, the incident Sun line rotates in the orbit frame with a net angular velocity of ws = Q — Qp.
A notable difference in the Earth-Moon system is that the direction of the incident sun line s will vary
continuously with respect to the O frame as

s = [cos(wst), — sin(wst), 0] (11)
s Incident SM;‘W
o Moon

Q,
\ o
Sun / Earth

Figure 2: Solar Radiation Pressure in the Vicinity of Lo

The solar torque on each craft depends on the orientation of the craft-normal relative to the orbit frame.
The orientation of each craft with respect to the orbit frame is defined in terms of a cone angle § and a clock
angle v, as shown in Figure 3.1%:2% For this study, the cone and clock angles (8, ) for each craft are fixed.
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Figure 3: Cone and Clock Angles of the Craft-normal relative to the Orbit Frame

Therefore, the components of aggp for a craft in the Earth-Moon orbit frame are given by!?2°
ASRPre = ASRPmax COS~ Y CoS(wst — ) (12a)
aSRPat = —OSRPmax COS> 7Y sin(wst — y) sin d (12b)
ASRPon = GSRPmax COS> 7y sin(wst — ) cos & (12¢)
where asrpmax = |asrp|, asrpre 1S the component in orbit radial direction, agrpat is in the direction of

orbital velocity (along-track), and the component asgpon is in the orbit normal direction. Egs. (12) show
that the SRP acceleration in the Earth-Moon system is periodic and time varying.

C. Numerical Simulation
The solar drag and gravity gradient force magnitudes for nominal conditions are illustrated in the following
numerical simulation. The simulation parameters and the values used are listed in Table 1.

Table 1: Input Parameters Used in the Simulation

Parameter Value Units
my 150 kg
ma 150 kg
Lref 25 m
ke 8.99 x 107 No?

o (GEO) 1

o (Ly) 3.190432478

Qret (GEO) —2.079105 uC?

Q:ret (La) —0.006816 uC?
Q (GEO) 7.2915 x 107° | rad/sec
Q (L) 2.661699 x 1076 | rad/sec

5L(0) 0.5 m

¥ (0) 0.1 rad

0(0) 0.1 rad

Figure 4(a) shows the time histories of gravity gradient forces and differential solar drag on a two-craft
formation in the GEO environment. For the nominal separation distance, the gravity gradient force is
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computed from the torque expression in Eq. (5) and the differential solar drag force is computed using Eq.
(10). For craft 1, a square cross-sectional area of 1 m? is constantly facing the sun, and, for craft 2, the
circular cross-sectional of area of 0.257 m? is facing the sun. It clearly shows that the gravity gradient forces
are sufficient to withstand the solar drag in the GEO environment. The results in Figure 4(b) are obtained
by fixing the craft 1 cross-sectional area and varying the craft 2 cross-sectional area from 1 m? to 2 m?.
These results indicate that even after increasing the solar drag, the combination of the maximum gravity

gradient force and the reference Coulomb force magnitude obtained from Eq. (4) are sufficient to stabilize
the formation.

5 10° ‘ ‘ ‘
Gravity Gradient Reference Coulomb Force
4 — ~ Solar Drag 1 1
é 3t é 10 Gravity Gradient - =
8 8 -
2 2t 2 ~
5?2 & 10 o 1
-~ Solar Drag
1r 7/
—1
0 . . . 10 : . : :
0 05 1 15 ) 1 1.2 14 1‘62 1.8 2
Time [orbits] Craft 2 Area [m’]

a) Time Histories of Gravity Gradient and Solar Drag b) Force Magnitudes as a Function of Craft Area Ratio
Forces

Figure 4: Radial Equilibrium Simulation Results at GEO for Nominal Initial Conditions

Figure 5(a) shows the time histories of gravity gradient forces and differential solar drag for a two-craft
formation at the Earth-Moon L, libration point environment. It clearly shows that the gravity gradient
forces are very weak, and thus cannot withstand the solar drag at Lo. The results in Figure 5(b) also
indicate that the maximum gravity gradient force magnitude and the reference Coulomb force magnitude on
each craft are not sufficient for stabilizing the formation. Therefore, unless equal sunlit surface areas of the
two-craft are assumed such that the differential solar drag is zero, the charged feedback control law used in
Reference 14 will not be able to stabilize the two-craft formation at the libration points. Consequently, for
unequal sunlit surface areas of the two-craft a full state feedback control is required that uses larger Coulomb
forces in the longitudinal direction and electric propulsion thrusters for transverse control.

Gravity Gradient _ —— = " Solar Drag

— '~ Solar Drag

Forces [uN]
Forces [uN]

Reference Coulomb Force

Gravity Gradient

0 05 1 15 2 25 ! 1.2 L4 16 18 2
Time [orbits] Craft 2 Area [m’]

a) Time Histories of Gravity Gradient and Solar Drag b) Force Magnitudes as a Function of Craft Area Ratio
Forces

Figure 5: Radial Equilibrium Simulation Results at Earth-Moon L, for Nominal Initial Con-
ditions

IV. Lyapunov Feedback Control

A generic controller is designed in this section that can withstand differential solar perturbation for
orbit radial configuration about circular orbits and at Earth-Moon collinear libration points. Numerical
simulations are shown to validate the controller performance.
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A. Feedback Control Development

Lyapunov’s second method is used to develop a feedback control law for stabilizing a radial equilibrium
two-craft Coulomb tether formation. The aim is to design a control law that takes into consideration
constant solar radiation pressure effects at GEO as well as time varying solar radiation pressure disturbances
at libration points. As presented in Reference 14, the kinetic energy for a two-craft Coulomb tether formation
is not just a quadratic function of the velocities. Using the analytical approach discussed for the restricted
three-body problem in Reference 21, the nondimensional Hamiltonian # for a two-craft tether formation in
body coordinates is obtained as

A 1 ! ’ ’
H= §(l ? + 12 (3 2c0529+3000529 sin?¢ + 6 ? + (14 30)sin?0 — (1 4 20)) (13)

where ¢ is a positive constant that depends on the collinear Lagrangian point chosen. For "¢ = 17, the
equation turns out to be the same equation that was found in Reference 16 for circular Earth orbits. Since the
Lagrangian for a two-craft tether formation does not contain time explicitly,?! it follows that the Hamiltonian
is constant. Therefore, the two-craft Coulomb tether formation possesses a Jacobi integral in place of the
energy integral as a constant of motion.

References 16 and 17 use the Hamiltonian as a Lyapunov function for stability analysis. Before the
Hamiltonian is used as a Lyapunov function at libration points, its positive definiteness must be ascertained.
Based on the constant of motion in Eq. (13), a Lyapunov function Viy, is defined as

1. ~ - /
i(l ? + Ki(1—1p)* + (Ko + 1*)(¢ ? cos? 0 + 30 cos? 6 sin” 1) (14

+607 + (1+30)sin?0))

Viyp =

where [ > 0 is the desired final value of , K, is a positive constant and Ko can either be positive or zero.
Wyp is clearly positive definite, and Viy, = 0 at the local radial equilibrium conditions in Eq. (3). Assuming
fai, faw and fge to be the non-dimensional differential solar perturbations in body frame, the time derivative
of Wyyp is

’ ! ~ KQ ’ ’ 2 /2

Vigp =L (L+20) —wp — far + K1 (1 = 1)) — 27(1/1 (1+1% )cos”0+6 )
(15)

ug  fap
l

+0 (Ko + l2)(7 + ) 1y (Ko + 12)(u7¢ + fclll)

As mentioned before, the control variable u; is associated with Coulomb propulsion acting in the longitudinal
direction, and uy and wug utilize electric propulsion acting in the transverse directions.

The following control laws for u;, uy and ug can be selected

~, K. ’ ’ ’2 ~
u = (1+20)+ K (I —1;) — 272@ (149 )cos?0+0") + K3l — fu (16a)
Uw = —f(5lw, — fdll) (16b)
ug = —K4l0 — fap (16¢)

where Kg,, K, and Kj are positive constants.
Using these control laws, Eq. (15) leads to

12

, ~ ~ ~ 12 ~ 12
Vigp = —BKsl " — (Ko + ) (K4~ + K5 ) (17)

yp

Proper choice of the gains guarantees the stability of the closed-loop system.
Substituting the control laws from Eq. (16) into the dynamics from Egs. (1), the closed-loop system of
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equations thus obtained are

’

0" + 2%9’ +cosf sinf((1+11)+30cos?h) + Ksf =0 (18a)

" cos® § + 2 cos G(IZICOSQ — 6 sin0)(1+ 1)) + 30cos® 0 cos ) singh + K51p =0 (18b)
U 10 + (14 ¢)2cos? 8 — o(1 — 3eos? 9 cos? 1)) + (1 + 200 + K1 (1 — 1)

—@(wl(l-l-w/)cos?H-i-@/z)—I—f(gl/ =0 (18¢)

l

These closed-loop system of equations can be used for three dimensional control of a 2-craft virtual Coulomb
structure about circular orbits and at Earth-Moon libration points. Furthermore, they can be used either
for station-keeping or for 2-craft expansion and contraction reconfigurations.

B. Numerical Simulation

With the Lyapunov feedback law in Eq. (16), Figure 6 shows the simulation results in the GEO environ-
ment and Figure 7 shows the results at Lo libration point. The gain settings used for both the environments
are K; = 2, Koy = 0, Ky = 4, K, =2and K5 = 2. Figure 6(a) shows the Coulomb tether motion at GEO.
The in-plane pitch motion 1, out-of-plane motion 6, and the separation distance deviation §L asymptomat-
ically converged to zero. The attitude motion converged in less than 0.5 orbits, whereas, the separation
distance converged in about 1.3 orbits. Similar results are observed at Ly in Figure 7(a).

Figures 6(b) and 7(b) illustrate the spacecraft control charge g; usage for the non-linear simulation.
Because the solar drag perturbations on the two-craft formation exhibit cyclic behaviour as shown in Figure
6(c), the charge results depicted in Figure 6(b) also exhibit cyclic nature and do not converge to the static
equilibrium reference value ¢1,. The cyclic nature is more predominant at Lo in Figures 7(b) and 7(c).
Furthermore, the micro-Coulomb charge requirements are easily realizable in practice. Figures 6(d) and 7(d)
illustrate the Coulomb force utilization for longitudinal control and inertial thrusters usage for in-plane and
out-of-plane control. Therefore, Coulomb control and transverse control (micro-thrusters) forces are on the
order of micro-Newtons. Transverse control can be implemented either using Colloid or PPT micro-thrusters.

V. Conclusion

The stabilization of a two-craft Coulomb formation in the presence of differential solar drag is studied
for orbit-radial equilibrium about circular orbits and at libration points. Previous research assumes that
the two-craft areas exposed to sunlight are equal such that the differential solar radiation pressure is zero.
This paper assumes that the differential solar drag on the two-craft formation is not zero. And in the
presence of SRP disturbances, a Lyapunov feedback control method is presented for feedback stabilization of
a radial equilibrium two-craft Coulomb tether formation about circular orbits and at libration points. The
method uses a Lyapunov function based on a first integral of motion of the two-craft Coulomb formation. The
controller designed using this method works very well and the control law utilizes a three-dimensional control
(separation distance, in-plane and out-of-plane motion). The Lyapunov feedback control law obtained has
a o parameter which varies for each collinear libration point. Interestingly, setting "o = 1”7 yields a control
law for orbit-radial equilibrium in Earth circular orbits. Therefore, the Lyapunov control law at the libration
points is provided as a generic control law in which circular Earth orbit control forms a special case. In the
numerical simulations, it is recommended that the control gains be chosen such that the pitch and roll angles
do not exceed 90 degrees. This will ensure that undesirable equilibrium points are not reached. Depending
on the desired final separation distance between the craft, the gains for the Coulomb propulsion control
law should be appropriately adjusted. Assuming differential solar drag effects, numerical simulations are
presented that illustrate the stabilization of a two-craft Coulomb formation in the GEO environment and at
Lo libration point.
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