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Optimal Reconfigurations of Two-Craft
Coulomb Formation in Circular Orbits

Ravi Inampudi∗ and Hanspeter Schaub†

Optimal reconfigurations of a two-spacecraft Coulomb formation are de-
termined by applying nonlinear optimal control techniques. The objective of
these reconfigurations is to maneuver the two-craft formation between two
charged equilibria configurations. The four optimality criteria considered are
minimum time, minimum acceleration of the separation distance, minimum
Coulomb and electric propulsion fuel usage, and minimum electrical power
consumption. The reconfiguration between equilibra is first considered by
varying the desired separation distance. In a radial relative equilibrium con-
figuration, only the Coulomb force is required to control the in-plane motion
and to steer the satellites from their initial to their final radial position. In this
reconfiguration maneuver, the gravity gradient torque is exploited to stabilize
the in-plane motion. For along-track and orbit normal equilibrium locations,
the reconfiguration maneuver requires hybrid controls. Here the Coulomb
force is varied to control the separation distance and inertial micro-thrusters
are activated for control in the transverse directions. Second, a reconfigura-
tion involving hybrid control is used to maneuver the crafts from any initial
equilibrium position to a final one. The goal is to determine optimal maneu-
vers maximizing the use of Coulomb propulsion while minimizing the electric
propulsion usage. The two-point boundary value problem optimization for-
mulation is numerically solved via pseudo-spectral methods. Pontryagin’s
Minimum Principle verifies the open loop solutions’ optimality.

I. Introduction
The concept of using Electrostatic propulsion to control satellite formations with separation distances on

the order of dozens of meters is introduced in References 1 and 2. Active spacecraft charge transfer generates
inter-spacecraft Coulomb forces to control the spacecraft formation shape and size. At small separation dis-
tances between spacecraft, such propellant-less thrusting is an attractive solution over conventional electric
propulsion to avoid thruster plume contamination of the neighbouring spacecraft. Furthermore, Coulomb
propulsion is a highly efficient system with a renewable energy source, Isp values ranging up to 1013 sec-
onds, and it has very little electrical power requirements (one Watt or less). These advantages enable high
precision, close-proximity formation flying with several potential applications in space technologies; for
example, high accuracy wide-field-of-view optical interferometry missions, spacecraft cluster control, as
well as rendezvous and docking maneuvers. Despite these advantages, Coulomb propulsion has a few
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drawbacks. The formation dynamics are highly coupled and nonlinear; dependence of the inter-spacecraft
Coulomb forces of the whole formation on each and every spacecraft’s position and charge; and feasibility
of Coulomb formation flying concept in less dense plasma environments at geostationery orbit (GEO) alti-
tudes or higher. Moreover, as the electrostatic forces are internal to the formation, Coulomb forces cannot be
used to reorient a full formation to a new orientation. Therefore, to reorient a Coulomb formation, external
forces such as thrusters or differential gravity gradient torques must be used.

Parker and King1, 2 present analytic open-loop solutions for Hill-frame invariant static Coulomb forma-
tions with symmetry assumptions. The charges required to maintain the formation shape are held constant
and the spacecraft are placed at pre-defined locations in the rotating Hill frame. Consequently, the Coulomb
forces perfectly cancel all relative motion of the charged spacecraft, causing the static Coulomb formation
to appear fixed as seen in the Hill frame. References 10, 11, 12, 13 present systematic analytic solutions for
two, three, and four-spacecraft formations. Furthermore, Berryman and Schaub15 numerically demonstrate
that charged equilibria with as many as nine craft are possible in GEO orbits. The open-loop static Coulomb
formations are all dynamically unstable without a feedback control law to stabilize the motion. Reference
4 develops a charge control law to reposition a charged body using three charged drones. The control law
neglects the orbital mechanics and considers only Coulomb attraction as the dominant force acting on a
system. Reference 20 explores a different Coulomb force deployment technique in which a chief satellite
repositions small deputy spacecraft from an initial configuration near the chief to a specified shape outward
from the chief. References 19 and 21 propose a distributed navigation technique called Equilibrium Shaping
(ES) to drive a swarm of satellites to a desired configuration in space. This method exploits a decentralized
path-planning algorithm requiring a small amount of communication between the satellites and gives each
satellite the autonomous ability to decide a position in the target formation. The method is demonstrated
though numerical simulations and suitable for very large swarms of spacecraft; however, each spacecraft
pursues suboptimal maneuvers due to the highly decentralized scheme, and the control algorithm does not
have analytical stability guarantees.

Stabilization techniques of two-craft virtual Coulomb structure in equilibrium configurations (radial,
along-track, and orbit normal) are studied in Reference 17. About an orbit radial direction, to stabilize
the relative separation distance a charge feedback law is used exploiting the differential gravitational at-
traction to stabilize the in-plane attitude. Along the orbit-normal and the along-track directions, the charge
feedback law and the differential gravitational accelerations are inadequate to stabilize the in-plane mo-
tion. Therefore, for asymptotic in-plane stabilization, hybrid feedback control laws are used which combine
conventional thrusters and Coulomb forces. Furthermore, Reference 17 investigates the linear dynamics and
stability analysis of reconfiguration maneuvers for all three equilibrium configurations using linearized time-
varying dynamical models. In such reconfiguration maneuvers as shown in Figure 1(a), varying electrostatic
Coulomb forces can increase or decrease the relative distance between the two satellites. These Coulomb
tether expansion and contraction rates affect the stability of the virtual structure within particular limits,
and the reconfigurations thus obtained are suboptimal. Moreover, such linearized models could not be used
in the nonlinear regime to perform reconfigurations such as a radial to along-track reconfiguration shown
in Figure 1(b). Therefore, optimal control techniques could provide an alternative direction to determine
optimized reconfiguration maneuvers for constrained nonlinear systems.

Optimal control problems concerning deployment/retrieval of a tethered subsatellite using various per-
formance metrics are considered in References 26, 27 and 28. However, such solutions are not unique and
depend on the performance index chosen to solve the optimal control problem. Reference 28 provides a
comprehensive study of the effect of different performance indices on the optimal deployment and retrieval
dynamics. For example, for a rigid tether, minimizing the length acceleration or minimizing functions of the
tension acceleration appear to give good trajectories in terms of the maximum variations in the states and
accelerations. Furthermore, optimal design problems in space applications almost always imply minimizing
fuel use, which dictates the engineering feasibility of any mission.29 Also, Reference 29 discusses how
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Figure 1: Two-Craft Reconfiguration Maneuvers

to choose proper minimum-fuel cost functions for correct problem formulation, and if a zero-cost (no fuel
use needed) optimal trajectory is found, then it is the globally optimal solution. Using the pseudo-spectral
method, a successful numerical implementation of an optimal control problem is demonstrated in Refer-
ence 33, where minimum-time reorientation of an asymmetric rigid body is considered. Therefore, prior
work26, 27, 28, 29, 33 motivates to explore the problems of repositioning or reorientation of Coulomb space
structures using optimal control techniques.

Specifically, optimal reconfigurations of a two spacecraft Coulomb formation shown in Figure 1 are in-
vestigated in this paper using the calculus of variations approach with a Legendre pseudo-spectral method to
numerically solve the optimal control problem. The objective is to use four performance measures to study
optimal two-craft reconfigurations maximizing Coulomb propulsion usage for longitudinal maneuvers while
utilizing minimum electric propulsion for transverse maneuvers. Therefore, the optimal reconfigurations of
a two spacecraft formation using minimum-time, minimum-acceleration, minimum-fuel, and minimum-
power performance measures are investigated by means of spectral methods. The paper is organized as
follows. The basic optimal control problem for the general nonlinear system is discussed with given state-
control constraints while minimizing a performance measure. Also, the necessary conditions for optimal
control are presented which are derived from the application of Pontryagin’s Minimum Principle, after which
the nondimensionalized nonlinear equations of motion are derived for a two spacecraft Coulomb formation.
Next, for two-craft reconfigurations, the optimal control problem formulation, various performance criteria,
Pontryagin’s necessary conditions, and the solution method are discussed. Finally, the open-loop numeri-
cal solutions of a two-craft formation in GEO circular orbits are presented and verified with Pontryagin’s
necessary conditions.

II. The Optimal Control Problem
The general family of optimal control problems considered in this paper can be stated as follows:22, 23, 25

determine the state-control function pair, x(t),u(t) over [t0, tf ] that minimize the cost functional,

J [x(t),u(t)] = E(x(tf ), tf ) +
∫ tf

to

F (x(t),u(t))dt (1)
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subject to

equations of motion f(x(t),u(t))− ẋ(t) = 0 (2)

boundary constraints b(x(t0),x(tf )) = 0 (3)

where the functions E and F are called the endpoint cost and running cost respectively. The calculus
of variations method can be used in solving the optimal control problem (OCP) subject to the conditions
imposed at the initial and final time. Using this method, the cost functional takes a second form in terms
of the adjoint variables. So, to conveniently formulate the problem and solve it as a two point boundary
problem a control (or Pontryagin’s) Hamiltonian is defined as

H(x(t),u(t),λ(t)) = F (x(t),u(t)) + λT (t)f(x(t),u(t)) (4)

where λ(t) are the adjoint variables. The vanishing of the gradient of the Hamiltonian H provides the
Pontryagin’s necessary conditions for optimal control. Thus the state, adjoint and transversality necessary
conditions for an optimal solution for all t ∈ [t∗0, t

∗
f ] are defined as:

ẋ∗(t) =
∂H
∂λ

(x∗(t),u∗(t),λ∗(t)) (5)

λ̇∗(t) = −∂H
∂x

(x∗(t),u∗(t),λ∗(t)) (6)[
∂E

∂x
(x∗(tf ), tf )− λ∗(tf )

]T
δxf +

[
H(x∗(tf ),u∗(tf ),λ∗(tf )) +

∂E

∂t
(x∗(tf ), tf )

]
δtf = 0 (7)

where x∗(t), u∗(t), and λ∗(t) is an optimal solution that satisfies the above necessary conditions.

III. Two-Craft Nonlinear Equations of Motion
The equations of motion for a two spacecraft Coulomb formation with hybrid thrusting (both elec-

trostatic and inertial thrusting) are briefly derived in this section. The notation is similar to that used in
Reference 17. In order to describe the relative motion of the satellite with respect to the formation center of
mass a rotating Hill orbit frame O : {ôr, ôθ, ôh} as shown in Figure 2 is chosen.17 The formation center
of mass is assumed to be the origin of this rotating Cartesian coordinate system and the relative position
vector of the ith satellite is defined as ρi = (xi, yi, zi)

T ; where the xi component is in the ôr direction (orbit
radial), the yi is component in the ôθ direction of orbital velocity (along-track), and the component zi is in
the ôh direction (orbit normal). The orbit frame origin coincides with the formation center of mass, and the
center of mass position vector rc is assumed to have a constant orbital rate of Ω =

√
GMe/r3c , where G is

the gravity constant and Me is the Earth’s mass.
Assume that the two-craft formation is treated as a rigid body and aligned in the radial direction. For this

orbit nadir aligned formation, consider a body fixed coordinate frame B : {b̂1, b̂2, b̂3} where b̂1 is aligned
with the relative position vector ρ1 of mass m1. In this configuration, theO and B frame orientation vectors
are exactly aligned. Furthermore, the relative attitude between the B and O frames is represented using the
3-2-1 Euler angle notation (ψ−pitch, θ− roll, φ−yaw). Using the direction cosine matrix expression given
in Reference 17 to relate the O frame to B frame, the position vectors of mass m1 and m2 in the O frame
are expressed as

Oρ1 =

x1

y1

z1

 =
m2L

m1 +m2

cos θ cosψ
cos θ sinψ
− sin θ

 (8a)

Oρ2 =

x2

y2

z2

 =
m1L

m1 +m2

− cos θ cosψ
− cos θ sinψ

sin θ

 (8b)
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Figure 2: Euler Angles Representing the Attitude of Coulomb Tether with Respect to the Orbit
Frame17

Furthermore, using the transport theorem,13 the inertial velocity of mass mi expressed in the O frame
components becomes

Ovi =

 ẋi − Ωyi
ẏi + Ω (xi + rc)

żi

 (9)

Using Eqs. (8) and (9), the kinetic energy of the system is given by

T =
1
2

m1m2

m1 +m2

[
L̇2 + L2(θ̇2 + (ψ̇ + Ω)2 cos2 θ)

]
+

1
2

(m1 +m2) Ω2r2c (10)

The gravitational potential energy retaining up to the second order terms is given by

Vg = − µ
rc

(m1 +m2) +
1
2
µ

r3c

m1m2

m1 +m2
L2(1− 3 cos2 θ cos2 ψ) (11)

and the associated Coulomb potential for the two-craft formation is1

Vc = kc
q1q2
L

exp(−L/λd) (12)

where qi is the satellite charge and the parameter kc = 8.99 × 109 Nm2/C2 is Coulomb’s constant. The
exponential term in the expression depends on the Debye length parameter λd which controls the lower
bound on the electrostatic field strength of plasma shielding between the craft. At Geostationary Orbits
(GEO) the Debye length vary between 80-1400 m, with a mean of about 180 m.5 The Coulomb spacecraft
formation studied in this paper is assumed to be orbiting on high Earth orbits.

The nonlinear equations of motion are deduced from the Lagrangian L = T − (Vg + Vc) of the system
in the following form

d
dt
∂L
∂q̇i
− ∂L
∂qi

= Qi (13)

qi = (L,ψ, θ) (i = 1 . . . 3)

where Qi is the generalized force in the qith-degree of freedom excluding gravitational effects. For the
circular orbit case, the nonlinear equations governing the separation distance L, the pitch angle ψ in the
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orbital plane, and roll angle θ out-of-the orbital plane are

L̈− L(θ̇2 + (Ω + ψ̇)2 cos2 θ − Ω2(1− 3 cos2 θ cos2 ψ)) =
QL
m

(14a)

ψ̈ cos2 θ − 2θ̇ sin θ cos θ(Ω + ψ̇) + 2
L̇

L
cos2 θ(Ω + ψ̇) + 3Ω2 cos2 θ cosψ sinψ =

Qψ
mL2

(14b)

θ̈ + 2
L̇

L
θ̇ + cos θ sin θ((Ω + ψ̇)2 + 3Ω2 cos2 ψ ) =

Qθ
mL2

(14c)

where m = m1m2
m1+m2

, and QL, Qψ, Qθ are the generalized forces associated with L, ψ and θ, respectively.
For a two spacecraft Coulomb formation, with Fcf being the Coulomb force acting between the two crafts,
QL = −Fcf, and is expressed as

Fcf = −kc
q1q2
L2

exp(−L/λd)
(

1 +
L

λd

)
(15)

And Qψ = FψL and Qθ = FθL where Fψ and Fθ are the electric propulsion (EP) thrusting forces that
introduce net formation torques in the ψ and θ directions. Note that to avoid any potential plume exhaust
impingement issues both the EP thruster forces are directed in orthogonal directions to the formation line of
sight vector.

Further, to prevent numerical difficulties with very small numbers, Eqs. (14a) - (14c) are rescaled by
defining the following nondimensional variables:

τ = Ωt, l =
L

Lref
, ul =

Fcf

mΩ2Lref
, uψ =

Fψ
mΩ2Lref

, uθ =
Fθ

mΩ2Lref
(16)

where Lref is the reference tether length. Therefore the radial equilibrium non-dimensional equations of
motion become

l
′′ − l(θ′

2
+ (1 + ψ

′
)2 cos2 θ − (1− 3 cos2 θ cos2 ψ)) = −ul (17a)

ψ
′′
cos2 θ + 2 cos θ(

l
′

l
cos θ − θ′ sin θ)(1 + ψ

′
) + 3cos2 θ cosψ sinψ =

uψ
l

(17b)

θ
′′

+ 2
l
′

l
θ
′
+ cos θ sin θ((1 + ψ

′
)2 + 3 cos2 ψ ) =

uθ
l

(17c)

where the prime denotes the derivative with respect to non-dimensional time. And ul, uψ and uθ are the
non-dimensional control variables. The control variable ul is associated with Coulomb propulsion, and uψ
and uθ are related to electric propulsion. The equations of motion are coupled nonlinear ordinary differential
equations.

Further, if the two-craft formation is treated as a rigid body and is aligned in one of the three equilibrium
configurations (radial, along-track or orbitnormal directions), the ideal product of charges needed to achieve
such static Coulomb formations are obtained from Eqs. (17) as

(q1q2)radial = −3Ω2L
3

kc
m

(
λd

L+ λd

)
exp(L/λd) (18a)

(q1q2)along-track = 0 (18b)

(q1q2)orbitnormal = Ω2L
3

kc
m

(
λd

L+ λd

)
exp(L/λd) (18c)

Reference 17 obtained Eqs. (18) using the linearized dynamical models. Because the above constraints
yield an infinite number of charge solutions, equal charges in magnitude across the craft are chosen. For
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instance, for a radial equilibrium configuration assuming equal charges in magnitude and using Eqs. (15)
and (18a) yields

q1 =
√
|(q1q2)radial| (19)

q2 = −q1 (20)

IV. Reconfiguration Maneuvers
The formulation of any optimal control problem involves equations describing the dynamics of the

system, the cost to be minimized, and any constraints which must be met to consider a solution valid. This
section discusses the optimal control problem formulation for optimal two-craft formation reconfigurations,
the four performance criteria used (minimum time, minimum acceleration, minimum propulsion fuel, and
minimum power consumption), the Pontryagin’s necessary conditions that any candidate optimal solution
must satisfy, and the solution method of the optimal control problem.

A. Problem Statement
An optimum reconfiguration maneuver drives the two craft formation from its initial position given by

x(τ0) = x0 at nondimensional initial time τ0 to its final position given by x(τf ) = xf at final time τf ,
while minimizing a cost function, subject to dynamical constraints. The state vector x is defined as

x = (ψ,ψ
′
, l, l

′
, θ, θ

′
)T (21)

The four cost functions are defined below, and the dynamical constraints are presented in Eqs. (17). If uψmax
and uθmax are the maximum thrust forces due to electric propulsion and ulmax is the maximum thrust force
due to Coulomb propulsion, then the control constraints are given by

−uψmax ≤ uψ ≤ uψmax (22a)

−ulmax ≤ ul ≤ ulmax (22b)

−uθmax ≤ uθ ≤ uθmax (22c)

If the unconstrained control appears non-linearly in either the state dynamics or the performance criterion
(final time can be either fixed or free), the resulting optimal control solution results in continuous control.
However, if the constrained control appears linearly, then the resulting optimal control solution results in
bang-bang type controller.22, 23

B. Measures of Optimality
Four measures of optimality are defined here that minimize a performance criterion (cost function)

subject to dynamical constraints. The optimality criteria are minimum time, minimum acceleration of the
separation distance between the two craft, minimum Coulomb and electric propulsion fuel consumption
(modeled as the L1-norm of the control acceleration) and minimum power consumption.

• Minimum Time

Minimum time cost function belong to an important class of solutions for reconfiguration maneuvers.
They set the lower bound on achievable time and the optimal control to obtain minimum-time response
is maximum effort throughout the interval of operation.23 The cost function to minimize is

J =
∫ τf

τ0

dτ (23)

Generally time-optimal control solutions are of a bang-bang type.

7 OF 18
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS



• Minimum Length Acceleration

For a 2-craft virtual Coulomb structure, it is desirable to keep the deployment/retrieval dynamics as
smooth as possible for reconfigurations, so that the Coriolis forces balance the gravity gradient forces.
Hence, minimizing the length acceleration is convenient performance measure to study. The cost
function for a 2-craft Coulomb structure is

J =
∫ τf

τo

(l
′′
)2dτ (24)

which minimizes the total length acceleration, l
′′
, appearing as a quadratic function.

• Minimum Propulsion Fuel

This optimization criterion seeks to minimize the Coulomb and electric propulsion thrust magnitudes;
the Coulomb thrust acts in the longitudinal direction and the electric propulsion thrusts are orthogonal
to the formation line of sight vector in the ψ and θ directions of the rotating body frame. A thrust
magnitude is directly related to the propulsion mass and the control acceleration. The minimum fuel
cost function is expressed as

J =
∫ τf

τ0

(Wcp |ul|+Wep |uψ|+Wep |uθ|)dτ (25)

whereWcp andWep are the weights associated with Coulomb propulsion and electric propulsion satis-
fying the condition Wcp +Wep = 1. Since the cost associated with Coulomb propulsion is negligible
compared to the electric propulsion (Isp values of 108–1013 seconds versus 103–104 seconds), the
weight associated with Coulomb propulsion is set to Wcp = 0, and accordingly Wep = 1. However,
for a radial equilibrium-to-equilibrium expansion or contraction reconfiguration there is no electric
propulsion usage as such maneuvers require no inertial thrusting. Hence the minimum propulsion
fuel cost function is not modeled for the radial-to-radial equilibrium reconfiguration cases. For other
equilibrium-to-equilibrium reconfiguration maneuvers, the cost function becomes the fuel usage of
the EP propulsion system:

J =
∫ τf

τ0

(|uψ|+ |uθ|)dτ (26)

The cost function used here is the L1 norm of the control instead of the quadratic cost function (L2

norm squared), because L1 measures fuel use and is thus the correct cost function for minimum fuel
control. A quadratic cost-optimal controller takes more fuel.29 Furthermore, quadratic cost controllers
are continuous controllers which create new system engineering problems such as inducing undesir-
able effects on precision pointing payloads.29 Therefore, the choice for the cost function formulation
is the l1 based L1 norm (‖u(τ)‖L1 =

∫
‖u(τ)‖l1 dτ =

∫
(|u1(τ)|+ . . .+ |un(τ)|)dτ ).

Furthermore, the derivative of the l1 based L1 norm is discontinuous at zero, but the introduction of
more control variables resolves this issue.36 For example, in the ψ direction, the control vector is
represented with two positive variables, a positive and negative measure of the control acceleration
directed along the orthogonal directions to the formation line of sight vector. Both positive com-
ponents have a lower bound of zero and an upper bound uψmax. As a consequence, the augmented
control variables’ derivatives are continuous and make the problem a smooth, nonlinear programming
problem to solve. Also, only the negative or positive part of the control in one direction is nonzero at
any given point in time.
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• Minimum Propulsion Power The objective of this performance measure is to minimize total electric
power required to engage the Coulomb and electric propulsion methods. The cost function is

J =
∫ τf

τ0

(Pcp + Pep)dτ (27)

Assuming that the radii of the two-craft are the same, the Coulomb propulsion power Pcp required to
maintain the spacecraft at some steady-state potential Vsc is1

Pcp = |VscIe| (28)

where the spacecraft potential Vsc and the current emitted Ie are given by

V 2
sc = −kculmΩ2exp(L/λd)

L2

r2sc

( λd
L+ λd

)
(29)

Ie = 4πr2scJp (30)

where rsc is the spacecraft radius in m, and Jp is the plasma current density in A/m2. In the presence
of the photoelectric effect, Jp as a function of the spacecraft potential is1

Jp =

{
Je0 exp(−e|Vsc|

kTe
)− Ji0 (1 + e|Vsc|

kTi
)− Jpe0 for Vsc < 0

Je0 (1 + eVsc
kTe

)− Ji0 exp(−eVsc
kTi

)− Jpe0 exp(−eVsc
kTpe

)(1 + eVsc
kTpe

) for Vsc > 0
(31)

with the electron, ion and photoelectron saturation currents given by Je0 = ene

√
kTe

2πme
, Ji0 =

−eni

√
kTi

2πmi
and Jpe0. The various plasma constants in Eq. (31) are the electron charge e in C,

ion(electron) density ni(e) in m−3, Boltzmann constant k in J/K, ion(electron) temperature Ti(e) in
K, Tpe is temperature of photoelectrons in K and the ion(electron) density mi(e) in kg. The experi-
mental values of these plasma parameters during average GEO environment conditions are given in
Reference 1.

The electric propulsion (EP) power Pep is dependent on the control acceleration magnitude (|uψ| +
|uθ|), thruster efficiency η, and specific impulse Isp. Thus, Pep is modeled as37

Pep = mΩ2Lref
(|uψ|+ |uθ|)ve

2η
(32)

where ve = gIsp is the engine exhaust velocity. Xenon is assumed to be the propellant utilized for the
EP system and the thruster efficiency η is determined by the relation

η =
bv2

e

v2
e + d2

(33)

where b = 0.81 and d = 13.5km/s are propellant-dependant coefficients derived from theoretical and
experimental data.37 For EP systems using xenon, the typical specific impulse limits are 1000s ≤
Isp ≤ 7000s.37 Isp is assumed to be constant over the entire maneuver which implies a fixed engine
operating with no throttling. For this optimization criteria, the Coulomb and electric propulsion power
levels are assumed to be of the same order (between 1 to 10 Watts).
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C. Pontryagin’s Necessary Conditions
Since the cost functions and the dynamical constraints do not explicitly depend on time, a necessary

condition at an optimal solution where the cost functional is at a minimum is ∂H
∂t = 0. This condition

along with the transversality condition in Eq. (7) provides the Hamiltonian function value at the optimal
state-control function pair. At an optimal state-control function pair, for minimum time cost function the
Hamiltonian function value is -1, and for minimum acceleration, minimum fuel, and minimum power cost
functions the Hamiltonian function value is 0. These constant Hamiltonian function values for different
performance criteria are later used to check the optimality of the numerical results.

D. Solution Method
Optimal control problems can rarely be solved analytically, and numerical methods are needed in such

cases to solve them.24 The first step is to discretize the problem, which is to define the system at discrete
points which results in a finite number of variables because the system variables are only defined at the
discrete points. The number of variables for the optimal control problem is then the number of variables in
the system times the number of discretization points. The consequence of discretizing the optimal control
problems explored here are nonlinearly unconstrained and constrained optimization problems. The unstable
dynamics of the two-craft Coulomb formation require a more accurate representation of the maneuver to
solve the problem. The optimal control problems in this paper are solved by the Legendre pseudo-spectral
method.25, 30, 31 Legendre pseudo-spectral method has the property that the solution will satisfy the necessary
optimality conditions and eliminates traditional difficulties in solving for the costates in the optimal control
problem.32 Each optimal control problem in this paper is solved using the commerical software package
DIDO. This powerful computational tool discretizes the problem by using the Legendre pseudo-spectral
method and solves it using SNOPT, a sequential quadratic programming solver.25 DIDO generates spectrally
accurate solutions whose extremality can be verified using Pontryagin’s Minimum Principle. Moreover, this
tool can solve non-smooth problems that have state/control discontinuities where these discontinuities can
be seen in bang-bang controls.

V. Numerical Study
This section presents numerical simulations illustrating three different optimal reconfigurations of a

2-craft Coulomb virtual tether formation in circular GEO orbits: radial spacecraft separation distance ex-
pansion and contraction maneuvers, radial to along-track maneuver with constant separation distance at the
initial and final positions, and family of radial to along-track maneuvers. For each reconfiguration maneu-
ver, four different performance criteria are considered for which optimal control solutions, associated state
trajectories, and spacecraft charge time histories are presented. Eqs. (17) provide the equations of motion
for these reconfiguration maneuvers. Table 1 provides the simulation parameters and their values. For each
equilibrium-to-equilibrium reconfiguration, the Coulomb propulsion thruster limit is fixed at a maximum
equilibrium value of the maneuver. Therefore, the Coulomb thruster limit could vary depending on the
maneuver under consideration, and from Eqs. (15) and (18), this limit is computed directly from the max-
imum equilibrium charge that can be produced. For example, for a radial-to-radial expansion, where the
radial spacecraft separation distance is expanded from 25m to 35m, the charges vary from 1.45µC at 25m to
2.41µC at 35m which correspond to Coulomb forces of 29.91µN and 41.87µN respectively. Consequently,
for this expansion, the Coulomb thruster limit is fixed at 41.87µN. For a similar expansion from 75m to
100m, the charges vary from 7.75µC to 12.21µC with Coulomb forces of 89.72µN and 119.62µN, and
hence the limit is fixed at 119.62µN. For electric propulsion, a Colloid micro-thruster is used with a fixed
limit of 30µN. Both the Coulomb and electric propulsion thruster limits can clearly go higher but such
choices yield controls dominated by the respective thrusters. Furthermore, the perturbation forces due to the
J2 gravitational attraction and the solar radiation pressure at GEO are not considered in this simulation.
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Table 1: Simulation Parameters Used for Reconfiguration Maneuvers

Parameter Value Units

m1 150 kg
m2 150 kg
Linitial 25 m
ulmax 30 µN
uψmax 30 µN
uθmax 30 µN
Isp(EP) 2000 sec
kc 8.99× 109 Nm2

C2

Ω 7.2915× 10−5 rad/sec

A. Radial Spacecraft Separation Distance Expansion and Contraction Maneuver
This example illustrates how to optimally reconfigure a 2-craft Coulomb virtual tether formation to

move the craft apart or closer using the Coulomb force and exploiting the gravity gradient to stabilize the
formation. Numerical simulations are performed for two sets of maneuvers, expanding the radial Coulomb
formation from an initial 25m to a final 35m and contracting the formation from a separation distance of
25m to 15m. The initial and final attitude values as well as the initial and final rates are set to zero through

ψi = ψf = θi = θf = ψ̇i = ψ̇f = θ̇i = θ̇f = L̇i = L̇f = 0 (34)

For minimum-time, minimum-acceleration and minimum-power performance criteria, Figure 3 shows the
candidate control solutions, in-plane trajectories, state histories, and the spacecraft charge time histories
for an expansion maneuver in which the inter-craft distance increases from 25m to 35m. The solutions are
obtained for a choice of 100 nodes. The candidate control solutions in Figure 3(a) for minimum-time and
minimum-power criteria display bang-bang characteristics, whereas, the minimum-acceleration criterion
yields a continuous control solution. An end of a maneuver is denoted by a square box for the respective
performance criterion. Since the variations in the out-of-plane rotation angles (not shown) are negligible (on
the order of 10−13 rad), only the in-plane trajectories are shown in Figure 3(b). The state histories in Figure
3(c) show that the boundary conditions are satisfied with viable variations of the in-plane rotation angles
and the separation distances. The charge on craft 2 will be equal and opposite to that of craft 1. Figure 3(d)
shows the spacecraft charge time histories for one of the crafts. Since the magnitude of the control charges
is on the order of micro-Coulombs, charge emission devices can be used in practice for implementation.

To verify that the control solution for each performance measure indeed drives the system from its known
initial to the desired end state, the initial conditions and control solutions are used as input to the ode45 Mat-
lab subroutine and the results are propagated. The propagated results (not shown) closely matched the
pseudospectral approximations of the states, confirming the feasibility and convergence of the original solu-
tions. Given the feasibility of the optimized solutions, the necessary conditions for optimality are examined.
As previously stated, one such test is the approximate constancy of the Hamiltonian, whose theoretical con-
stant value depends on the performance criterion. For the three performance measures, Table 2 shows that
this necessary condition is indeed met. Table 2 also shows the optimal time required to complete the maneu-
ver, maximum separation distance acceleration, and mean (root-mean-square - RMS) Coulomb propulsion
thrust and power required. With the minimum-time criterion, the expansion is finished in 0.7437 orbits.
Also, as an improvement over such a radial-expansion reconfiguration result of 1.8 days in Reference 17,
which uses linearized time-varying dynamical models, the time taken using optimal control techniques is
0.74 days. Furthermore, optimal control techniques use variable separation distance rates as opposed to the
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Figure 3: Simulation Results for Expanding the Radial Spacecraft Separation Distance from 25m to
35m. ( — Min Time, – – Min Acceleration, – · – ·Min Power)

constant rates used in Reference 17. The mean CP thrust and power required for the minimum-time crite-
rion are high, and are low for the minimum-acceleration maneuver. For the minimum-acceleration criterion,
the maximum Coulomb thrust needed at the end of the maneuver is 1µN greater than the radial equilibrium
value of 41.8682µN at 35m. This discrepancy is necessary to overcome the formation’s rotational dynamics,
and at the end of the maneuver, the controls should explicitly drop down to the equilibrium value. Moreover,
the maximum power requirements on the order of 10 Watts can be met by the Coulomb propulsion devices.

Table 2: Results for Expanding the Radial Spacecraft Separation Distance from 25m to 35m.

Cost Final Time tf Max L
′′

CP Thrust CP Power Mean Hamiltonian
[RMS] [RMS]

orbits m
s2 µN W

Min Time 0.7437 4.9465× 10−7 40.0020 9.1459 −1.0024
Min Acceleration 0.7958 0.1390× 10−7 36.7071 7.8051 −0.0056
Min Power 0.7554 3.9872× 10−7 39.5856 9.0571 −0.000095

Figure 4 shows the control solutions, state trajectories, and the spacecraft charge time histories for a
contraction maneuver in which the inter-craft distance decreases from 25m to 15m. The optimal solutions
are symmetric to those of the expansion maneuver solutions. From the results of Table 3, the contrac-
tion maneuver for the minimum-time criterion finished in 0.5648 orbits. Also, as an improvement over
such radial-contraction reconfiguration results from Reference 17 which take 1.8 days, the time taken us-
ing optimal control techniques is 0.56 days. However, the contraction took 1.27 days to complete for the
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minimum-acceleration cost function. Similar to the expansion maneuver, the mean CP thrust and power
required are highest for minimum-time criterion and are lowest for the minimum-acceleration criterion. For
the minimum-time and minimum-power criteria, the maximum Coulomb thrust of 30.9027µN at the begin-
ning of the maneuver is 1µN greater than the radial equilibrium value of 29.9059µN at 25m. This extra
thrust is required at the beginning of the contraction to overcome the angular momentum which causes the
in-plane motion to destabilize. At the end of the maneuver at 15m, the controls should explicitly drop down
to the equilibrium value of 17.9435µN. Since the separation distances in the contraction maneuver are less
than those of the expansion maneuver, the maximum power requirements are about 4 Watts.
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Figure 4: Simulation Results for Contracting the Radial Spacecraft Separation Distance from 25m to
15m. ( — Min Time, – – Min Acceleration, – · – ·Min Power)

Table 3: Results for Contracting the Radial Spacecraft Separation Distance from 25m to 15m.

Cost Final Time tf Max L
′′

CP Thrust CP Power Mean Hamiltonian
[RMS] [RMS]

orbits m
s2 µN W

Min Time 0.5648 3.0733× 10−7 27.8111 3.0155 −0.9976
Min Acceleration 1.2732 0.6118× 10−8 24.1775 2.4624 0.0021
Min Power 0.5769 2.3924× 10−7 26.9050 2.8901 −0.000015
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B. Radial to Along-track Maneuver

The next example illustrates an optimal radial to along-track maneuver with the following boundary
conditions

Li = Lf = 25 m, ψi = 0 rad, ψf = −π/2 rad (35a)

θi = θf = ψ̇i = ψ̇f = θ̇i = θ̇f = L̇i = L̇f = 0 (35b)

To utilize the rotational formation dynamics, the final in-plane attitude angle ψf is set to −π/2 rad.
Figure 5 shows the simulation results for a radial to along-track reconfiguration with a fixed separation
distance of 25m at the initial and final equilibrium positions. The results for all four cost functions are
obtained for a choice of 75 nodes. Figure 5(a) shows that the minimum-fuel maneuver uses maximum
Coulomb thrusting, thus minimizing the EP thrusting usage. Figure 5(b) illustrates the in-plane trajectories
for this maneuver. It is interesting to note that the minimum-fuel trajectory differs significantly from the
others. The in-plane state histories in Figure 5(c) indicate that the boundary conditions are met. The charge
histories in Figure 5(d) not only show the easily controllable charge magnitudes but also show the charge
sign switching during the reconfiguration.

The propagated results (not shown) using ode45 closely matched the pseudospectral approximation of
the states, thus verifying the feasibility and convergence of the solution. Moreover, as shown in Table 4, the
constancy of the Hamiltonian value is satisfied for each performance measure. The final time required to
complete the maneuver is a minimum of 0.22 days for the minimum-time criterion and is a maximum of 0.54
days for the minimum-acceleration criterion. The RMS power consumption shown in Table 4 indicates that
more Coulomb propulsion is used over electric propulsion. For the maneuver, a maximum of about 4 Watts
for Coulomb thrusting and a maximum of about 0.5 Watt for EP thrusting are utilized, easily meeting the
power requirements of charge emission devices and Colloid thrusters. At the end of the maneuver at 25m
at the along-track equilibrium position, the minimum-time, minimum-fuel and minimum-power controls
should explicitly drop down to the equilibrium value of 0µN. The minimum-acceleration continuous control
dropped down to the equilibrium value at the final time.

Table 4: Results of a Radial to Along-track Maneuver with 25m Separation Distance at the Initial and
Final Positions.

Cost Final Time tf Max L
′′

CP Power EP Power Mean Hamiltonian
[RMS] [RMS]

orbits m
s2 W W

Min Time 0.2259 5.8934× 10−7 3.2953 0.5225 −0.9996
Min Acceleration 0.5440 6.0722× 10−9 2.1579 0.2246 −0.000013
Min Fuel 0.4419 2.5784× 10−7 1.5135 0.3772 0.0448
Min Power 0.3970 3.9874× 10−7 1.5770 0.2121 0.0005

Figure 6 shows the controls and trajectories for the same radial to along-track reconfiguration, but with
the boundary conditions not utilizing the rotational formation dynamics. This implies that the final in-plane
attitude angle ψf is set to π/2 rad. The solutions are shown for all four cost functions and the in-plane
trajectories are not very different to those of the solutions obtained utilizing the rotational formation dy-
namics. However, the control effort required for minimum-time exhibits sharp fluctuations which remained
irrespective of the number of nodes chosen. Furthermore, the simulation times between the two boundary
conditions varied greatly, which are presented in detail in the next section.
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Figure 5: Simulation Results of a Radial to Along-track Maneuver with 25m Separation Distance at
the Initial and Final Positions. (— Min Time, – – Min Acceleration, · · ·Min Fuel, – · – ·Min Power)
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Figure 6: Simulation Results of a Radial to Along-track Maneuver with 25m Separation Distance at
the Initial and Final Positions with Boundary Conditions Not utilizing the Rotational Dynamics. (—
Min Time, – – Min Acceleration, · · ·Min Fuel, – · – ·Min Power)
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C. Family of Radial to Along-track Maneuvers
In this final example, a family of optimal maneuvers from radial to along-track equilibrium positions

are illustrated. Figure 7 displays the Coulomb and electric propulsion controls (RMS) as a function of
varying separation distances for each of the four cost functions. Each maneuver is performed with a fixed
separation distance of 25m at the initial radial position, and varying final separation distances. Furthermore,
the boundary conditions take advantage of the rotational formation dynamics of the two-craft system. The
minimum-time performance measure consistently utilized more Coulomb and electric propulsion compared
to the other measures. Whereas, for the minimum-power cost function, the Coulomb thrust used for two-
craft separation distances between 90m and 125m is negligible (on the order of 10−5µN), and the EP thrust
observed over the same distances is significantly higher. Another observation from Figures 7(a) and 7(b) is
that minimum electric propulsion thrust is required for minimum-fuel cost function. The maneuver is able
to use more Coulomb propulsion due to the exploitation of the rotational formation dynamics.
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Figure 7: In-plane Control Solutions for Family of Maneuvers from Radial to Along-track Equilib-
rium Position with Initial Separation Distance of 25m. (— Min Time, – – Min Acceleration, · · ·Min
Fuel, – · – ·Min Power)

Figure 8 show results for two sets of maneuvers for the minimum-time performance measure. One set of
maneuvers is generated with the boundary conditions taking advantage of the rotational formation dynamics
(natural boundary conditions) and the other set is generated without taking advantage of the rotational for-
mation dynamics (non-natural boundary conditions). Figure 8(a) shows the minimum-time trajectories with
an initial separation distance of 25m between the craft and a final separation distance varying between 25m
and 125m. Figure 8(a) also shows the closed-form natural solution using the Hill’s equations13 in which one
craft is placed in the radial equilibrium position and allowed to drift in the absence of any Coulomb inter-
action with the second craft. Although the two sets of trajectories appear symmetric, collisions may occur
with the other craft with non-natural boundary conditions. Also, the control solutions (not shown) exhibit
sharp fluctuations for each maneuver with non-natural boundary conditions. Moreover, Figure 8(b) shows
the simulation times for each set of maneuvers which are much lower with the natural boundary conditions.
For instance, in a worst-case scenario, with a separation distance of 125m, the simulation times for the non-
natural boundary conditions are almost two orders of magnitude greater than those of obtained using the
natural boundary conditions. Therefore, utilizing the natural formation dynamics yields clean bang-bang
controls, collisionless trajectories and much lower simulation times.

VI. Conclusion
This paper presents an optimal-control framework for the reconfiguration of two-craft formations in cir-

cular orbits. Several in-plane reconfiguration problems are discussed, with each problem discretized using
a Legendre pseudo-spectral method, and the resulting non-linear optimal control problems solved using the
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Figure 8: Minimum-Time Family of Maneuvers from Radial to Along-track Equilibrium Position
with Initial Separation Distance of 25m.

software package DIDO. The feasibility and optimality of the open-loop numerical solutions are verified
with Pontryagin’s Minimum Principle. Four measures of optimality are discussed: minimum reconfigura-
tion time, minimum acceleration of the separation distance, minimum power consumption, and minimum
electric propulsion fuel usage. Results for these cost functions are illustrated for each reconfiguration prob-
lem with the goal of maximizing Coulomb propulsion usage while utilizing minimum electric propulsion.
Because no linearizations are involved with nonlinear optimal control techniques, boundary conditions in the
nonlinear regime hold. Previous Coulomb formation flying work used linearized time-varying dynamical
models. Compared to previous work, the expansion and contraction reconfigurations in the radial direc-
tion are achieved in shorter times. Successful in-plane radial to along-track optimal reconfigurations for
each performance measure are shown along with a family of minimum-time optimal maneuvers. For such
maneuvers, the advantage of using natural formation dynamics in the selection of boundary conditions is
highlighted. The optimal-control framework presented here can be extended to determine two-craft out-of-
plane reconfigurations as well as to reconfigure three-craft formations.
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