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Orbit Radial Dynamic Analysis of Two-Craft Coulomb
Formation at Libration Points

Ravi Inampudi∗ and Hanspeter Schaub†

The linearized orbit radial dynamics and stability analysis of a 2-craft virtual Coulomb
structure at Earth-Moon libration points are investigated. The relative distance between the
two satellites of the Coulomb tether is controlled using electrostatic Coulomb forces. The sepa-
ration distance between the satellites is stabilized with a charge feedback law which maintains
the relative distance at a constant value. The electrostatic virtual tether between the two craft
is capable of both tensile and compressive forces. The gravity gradient torques on the for-
mation due to the two celestial objects is exploited to stabilize the Coulomb tether formation
in the orbit radial direction. Controlling the separation distance stabilizes the in-plane rota-
tion angle; however, the out-of-plane rotational motion is not affected by the spacecraft charge
control law. The new two-craft dynamics at the libration points is provided as a general frame-
work in which circular Earth orbit dynamics form a special case. Furthermore, an alternate
linear control technique for a two-craft Coulomb virtual tether formation’s radial equilibrium
at a collinear libration point is developed and analyzed. Numerical simulations using charge
feedback law are presented at both a collinear and a triangular libration point.

I Introduction
This paper investigates the effectiveness of linear control techniques in stabilizing two spacecraft in a

formation virtually connected by an electrostatic (Coulomb) force moving in the presence of a restricted
three-body system. This novel method of exploiting Coulomb forces for formation flying was introduced
in References 1 and 2 in 2002. Coulomb forces as a fuel efficient method for short-distance actuation in
geostationary regions is discussed in Reference 3 in 1966. Here active charge control is proposed to elec-
trostatically inflate a large reflecting structure. The basic idea of Coulomb propulsion of free-flying vehicles
is to control the spacecraft formation shape and size using the inter-spacecraft forces created by electro-
statically charging the spacecraft to different potentials. This control is achieved by varying the charge of
spacecraft by emitting either positive ions or negative electrons. For tight formation control of spacecraft
separation distances on the order of 100 metres or less, this propellant-less thrusting is an attractive solu-
tion over conventional electric propulsion or chemical thrusting. For instance, at small separation distances
between spacecraft, electric propulsion can cause thruster plume contamination of the neighbouring space-
craft. However, Coulomb propulsion is a highly efficient system with a renewable energy source and Isp
values ranging up to 1013 seconds. Furthermore, it has very little electrical power requirements (one Watt or
less), and has a very high bandwidth for relative motion control with charge transition times on the order of
milli-seconds.1 These advantages enable high precision formation flying with very little fuel consumption,
increasing the lifetime of the mission, and thus, the probability of mission success.

In spite of the many advantages presented by Coulomb propulsion, there are a few drawbacks. The
formation dynamics are highly coupled and nonlinear; nonhomogeneous absolute spacecraft charging at
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geostationary altitudes may cause arcing; and dependence of the inter-spacecraft Coulomb forces of the
whole formation on each and every spacecraft’s position and charge. Furthermore, because the electrostatic
forces are internal to the formation, these Coulomb forces cannot be used to control the center of mass of
a non-orbiting formation. External forces such as thrusters or differential gravity gradient torques are used
to reorient a Coulomb formation. Also, Coulomb formation flying requires a careful balance between the
inter-craft forces and the relative orbital dynamics. While Coulomb propulsion is nearly propellantless, the
non-affine nature of the charge actuation and the strongly coupled non-linear equations of motion result in
challenging and interesting control design problems.

In 2002, Parker and King introduced the Coulomb propulsion concept to control a cluster of free-flying
spacecraft in References 1 and 2. Ever since their pioneering work on Coulomb formations, there have
been many interesting investigations on the dynamics and control problems of Coulomb formation. Parker
and King1, 2 present analytic solutions for Hill-frame invariant static Coulomb formations with symmetry
assumptions. The analytic open-loop solutions presented are for three and five-craft formations, and the
numerical solutions are for a six-craft formation. The charges required to maintain the formation shape are
held constant and the spacecraft are placed at pre-defined locations in the rotating Hill frame. As a result, the
Coulomb forces perfectly cancel all relative motion of the charged spacecraft, causing the static Coulomb
formation to appear fixed as seen in the Hill frame. References 11,12,13,14 present more systematic analytic
solutions for two, three, and four-spacecraft formations. Furthermore, Berryman and Schaub16 numerically
demonstrate that charged equilibria with as many as 9 craft are possible in GEO orbits. The open-loop
static Coulomb formations are all numerically unstable. Using a noncanonical Hamiltonian formulation
of the Coulomb formation dynamics, Reference 10 formulates necessary conditions to achieve such static
Coulomb formations with constant charges. These Hamiltonian formulations are equivalent to finding rigid
body equilibrium conditions in orbit. Reference 18 applies a similar noncanonical Hamiltonian approach to
examine the relative equilibria of a rigid satellite in a circular Keplerian orbit.

Natarajan and Schaub17 present closed-loop feedback stabilized virtual Coulomb structure solutions for
in-orbit two-craft configurations (radial, along-track and orbit normal). They introduce a charge feedback
law to stabilize the relative distance between the satellites exploiting the differential gravitational attrac-
tion to stabilize the attitude of a Coulomb tether formation relative to nadir. Along the orbit-normal and
the along-track directions, the electrostatic line-of-sight actuation between two bodies and the differential
gravitational accelerations are inadequate to stabilize the Coulomb tether length and the formation attitude.
Therefore, to asymptotically stabilize the satellite formation shape and attitude, the authors present hybrid
feedback control laws which combine conventional thrusters and Coulomb forces. Furthermore, Reference
21 shows that for a two spacecraft Coulomb formation at at the gravitational three-body libration points,
three equilibrium configurations exist (radial, along-track and orbit normal). It’s concluded that the simpli-
fied principle axes condition suffice for two craft Coulomb tethers less than 100 meters in length. Therefore,
it is inferred that a second-order gravitational potential model could be used in the development of equa-
tions of motion. This paper investigates the linear dynamics and stability analysis of a two-craft Coulomb
formation at Earth-moon libration points along the orbit-radial direction.

Considering a three-body system, this paper considers a two spacecraft formation near two large masses
rotating around their center of mass. For the Earth-Moon system the three collinear points L1-L3 are un-
stable, while the two equilateral triangle points L4-L5 are stable. These equilibrium points are the libration
points (L1 − L5) in the three-body system. Tether formations at the libration points are useful for remote
sensing missions to establish a long-baseline imaging capability or to ensure better stationkeeping configura-
tions. Reference 19 considers the equilibrium configurations of a rigid tethered system near all five libration
points and carries out the stability analysis when it is near the translunar libration point. Also, the NIAC
report in Reference 1 analyzes the suitability of Coulomb control for a static collinear five-vehicle formation
at Earth-Sun Lagrange points where the formation local dynamics ignore gravity. Furthermore, Reference
20 presents compatibility results of using Coulomb satellites with electric propulsion and autonomous path
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planning techniques at the libration points for formation keeping and reconfiguration of swarms of satellites.
In the interplanetary space at a distance of 1 AU from the Sun, the Debye length is much smaller than that in
a GEO environment (highest Debye length of approximately 40 m); therefore, this constrains the maximum
possible formation length, but despite the low value of the Debye length, multi-craft equilibrium formations
are reported to exist at the Earth-Sun L1 Lagrange point.20

These results motivate us to study the dynamics and control of a two craft Coulomb formation at the
Earth-Moon libration points. In order to stabilize the formation shape at the libration points, a similar active
charge feedback law introduced in Reference 17 for the study of the linear dynamics of orbit radial 2-craft
formations at GEO is applied at the libration point scenario. The goal is to study the orbit radial dynamics
and stability conditions at the libration points and to investigate the presence of any cross coupling effects
that may not exist for circular orbits at GEO. First the nonlinear and linearized equations of motion are
investigated. Of interest how these compare to the earlier circular GEO orbit results, and if these can
be generalized into a single mathematical framework. To stabilize the separation distance, a partial-state
charge feedback control law (separation distance and separation rate only) is studied, followed by linear
stability analysis of coupled attitude and separation distance dynamics. Furthermore, an alternate linear,
full-state feedback control law (in-plane attitude, separation distance, and their rates) is investigated for a
radial equilibrium two-craft Coulomb tether formation at a collinear libration point. The linearized analytical
results are then compared to nonlinear numerical simulations to validate the control performance results.

II Linear Dynamics and Stability Analysis - Collinear Libration Points
II.A Charged Relative Equations of Motion

The linearized equations of motion for a two spacecraft Coulomb formation at a collinear Earth-Moon
libration point are briefly derived in this section. The characteristics of the frames involved in the analysis
and the notation used are summarized.

Let M1 and M2 be the dominant masses of the two gravitational primaries, Earth and Moon. As shown
in Figure 1, ifO is the center of mass of both primaries, any non-rotating frame with origin atO is considered
as an inertial frame. The circular relative motion of primaries occurs in a plane with angular rotation axis.
The synodic frame S : {êr, êθ, êh} is rotating around the O − z axis with the constant angular velocity Ω
defined as

Ω =

√
G (M1 +M2)

d3
(1)

Here G is the gravity constant and d is the distance between the two planets. The primaries are at rest in the
synodic frame at positions M1(−d1, 0, 0) and M2(d2, 0, 0). If r0 = [rx0 , ry0 , rz0 ]T is the position vector in
the synodic frame S of a collinear libration point L2 with respect to the barycenter O, then the two distance
vectors of L2 from the two primaries in the plane are

SR1 =

rx0 + d1

0
0

 and SR2 =

rx0 − d2

0
0

 (2)

In order to describe the relative motion of the satellite with respect to the formation center of mass,
a rotating Hill orbit frame O : {ôr, ôθ, ôh} whose origin coincides with L2 libration point is chosen as
shown in Figure 2. The formation center of mass is assumed to be at the origin of this rotating Cartesian
coordinate system and the relative position vector of the ith satellite is defined as ρi = (xi, yi, zi)

T ; where
the xi component is in the ôr direction (orbit radial), the yi component is in the ôθ direction of orbital
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Figure 1: Stationary Libration points

velocity (along-track), and the component zi is in the ôh direction (orbit normal). Since the orbit frame
origin coincides with the formation center of mass, the center of mass condition is defined as

m1ρ1 +m2ρ2 = 0 (3)

where mi is the satellite mass. Also, for a collinear libration point, the orbit frame and the synodic frames
coincide so that the position vectorsR1 andR2 are equivalent in both frames.
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Figure 2: Euler Angles Representing the Attitude of Coulomb Tether with Respect to the Orbit Frame
at L2

If the two-craft formation is treated as a rigid body and aligned in the radial direction, then, for this orbit
nadir aligned formation, consider a body-fixed coordinate frame B : {b̂1, b̂2, b̂3} where b̂1 is aligned with
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the relative position vector ρ1 of mass m1. Therefore, in this configuration, the O and B frame orientation
vectors are exactly aligned and ρ1 in a body-fixed frame is given by

ρ1 =
m2

m1 +m2
Lb̂1 + 0b̂2 + 0b̂3 (4)

where L is the distance between the satellites 1 and 2. Let the 3-2-1 Euler angles (ψ, θ, φ) be the pitch,
roll and yaw angles which represent the relative attitude between the B and O frames. From the point-mass
assumption of the two-craft, the yaw rotation about b̂1 (angle φ) can be ignored. Then the direction cosine
matrix [BO(ψ, θ)] that relates the O frame to B frame is given by

[BO] =

cos θ cosψ cos θ sinψ − sin θ
− sinψ cosψ 0

sin θ cosψ sin θ sinψ cos θ

 (5)

Consequently, the position vector of mass m1 in the O frame is written as

Oρ1 =

x1

y1

z1

 = [BO]T

 m2
m1+m2

L

0
0

 =
m2L

m1 +m2

cos θ cosψ
cos θ sinψ
− sin θ

 (6)

Using Eq. (3), the position vector of mass m2 in the O frame becomes

Oρ2 =

x2

y2

z2

 =
m1L

m1 +m2

− cos θ cosψ
− cos θ sinψ

sin θ

 (7)

Furthermore, using the transport theorem,14 the inertial velocity of mass mi expressed in the O frame
components becomes

Ovi =

 ẋi − Ωyi
ẏi + Ω (xi + rc)

żi

 (8)

The center of mass position vector rc is assumed to have a constant orbital rate of Ω. The kinetic energy of
the system is given by

T =
1
2
m1 v1 · v1 +

1
2
m2 v2 · v2 (9)

Using Eqs. (6) - (8), Eq. (9) is rewritten as

T =
1
2

m1m2

m1 +m2

[
L̇2 + L2(θ̇2 + (ψ̇ + Ω)2 cos2 θ)

]
+

1
2

(m1 +m2) Ω2r2
c (10)

The gravitational potential energy of the two-craft formation due to the two planets is

Vg = −GM1

(
m1

|R1 + ρ1|
+

m2

|R1 + ρ2|

)
−GM2

(
m1

|R2 + ρ1|
+

m2

|R2 + ρ2|

)
(11)

Substituting µ1 = GM1, µ2 = GM2, ρ1 = m2
m1+m2

Lt1, and ρ2 = m1
m1+m2

Lt2, the expression for 1
|R1+ρ1|

expanded in a Taylor series about the equilibrium point, and retaining up to the second order terms of L
R1

,
becomes

1
|R1 + ρ1|

=
1
R1

{
1− m2

m1 +m2

(
L

R1

)
u1 · t1 +

(
m2

m1 +m2

)(
L

R1

)2

(3 (u1 · t1)2 − 1)

}
(12)
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where

t1 = cos θ cosψ ôr + cos θ sinψ ôθ − sin θ ôh (13)

t2 = − cos θ cosψ ôr − cos θ sinψ ôθ + sin θ ôh (14)

and u1, u2 are the unit vectors in the direction ofR1 andR2.
After carrying out similar approximations for the other terms in Eq. (11), Vg finally becomes

Vg = − µ1

R1

{
(m1 +m2) +

1
2

m1m2

(m1 +m2)

(
L

R1

)2

(3 (u1 · t1)2 − 1)

}

− µ2

R2

{
(m1 +m2) +

1
2

m1m2

(m1 +m2)

(
L

R2

)2

(3 (u2 · t2)2 − 1)

} (15)

and the Coulomb potential for the two-craft formation is1

Vc = kc
q1q2

L
e−L/λd (16)

where qi is the satellite charge and the parameter kc = 8.99 × 109 Nm2/C2 is Coulomb’s constant. The
exponential term in the Coulomb potential depends on the Debye length parameter λd which controls the
electrostatic field strength of plasma shielding between the craft. At Geostationary Orbits (GEO) the Debye
length varies between 80-1400 m, with a mean of about 180 m.6 In the interplanetary space at Earth-
moon libration points, the Debye length varies between 10-40 m.1, 22 Note that the simple point charge
electrostatic field formulation in Eq. (16) assumes that the vehicle potential is small compared to the local
plasma temperature. As discussed in Reference 24, this charge shielding formulation forms a conservative
lower bound on the actual electrostatic force created between two charged bodies. For example, assuming
an actual Debye length of 4 meters causes and 1 meter diameter spheres at 30 kV yields effective Debye
lengths λ̂d which are 3 times larger. As a result, because we are considering kilo-Volt levels of potential,
the effective Debye lengths in deep space still yield charged relative motion dynamics that are primarily
influenced through classical electrostatics.

The non-linear equations of motion are deduced from the Lagrangian L = T − (Vg + Vc) of the system
in the following form

d
dt
∂L
∂q̇i
− ∂L
∂qi

= Qi (17)

qi = (θ, ψ, L) (i = 1 . . . 3)

where Qi is the generalized force in the qith degree of freedom excluding gravitational effects. For the
circularly restricted three-body system, using Eqs. (10), (15) and (16) in Eq. (17), the nonlinear equations
governing the roll angle θ out of the orbital plane, the pitch angle ψ in the orbital plane, and the separation
distance L become

θ̈ + 2θ̇
L̇

L
+ cos θ sin θ((ψ̇ + Ω)2 + 3Ω2σ cos2 ψ) = 0 (18a)

ψ̈ − (ψ̇ + Ω)(2θ̇ tan θ − 2
L̇

L
) + 3Ω2σ sinψ cosψ = 0 (18b)

L̈− L((θ̇2 + (ψ̇ + Ω)2 cos2 θ) + Ω2σ(1− 3 cos2 θ cos2 ψ)) +
kc
m1

Q
1
L2

m1 +m2

m2
= 0 (18c)
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where Q = q1q2, ν = M2
M1+M2

, 1− ν = M1
M1+M2

and

σ =
1− ν
| rx0
d + ν|3

+
ν

| rx0
d − 1 + ν|3

> 0 (19)

is a positive constant that depends on the collinear Lagrangian point chosen. The equations of motion
Eq. (18) are coupled non-linear ordinary differential equations that define the motion of a two-craft Coulomb
formation at any of the three collinear Lagrangian points.

If the two-craft formation is aligned in the radial direction, the formation remains statically fixed relative
to the rotating orbiting frame O provided the non-linear equations Eq. (18) satisfy the following radial
equilibrium conditions

θ = θ̇ = θ̈ = ψ = ψ̇ = ψ̈ = L̇ = L̈ = 0 and L = Lref (20)

Eq. (18c) provides the nominal product of charges Qref = q1q2 needed to achieve this static Coulomb
formation as

Qref = − (2σ + 1) Ω2L
3

kc

m1m2

m1 +m2
(21)

Thus, the satellites appear frozen with respect to the rotating frame when the charge product Qref satisfies
Eq. (21). Since the charge product term is negative it implies that the spacecraft charges will have opposite
charge signs and also, an infinite number of charge pairs can satisfy Qref = q1q2. Although unequal charges
are possible between the two crafts, in this study, the charge magnitudes are set equal.

The linearized version of the nonlinear equations Eq. (18) are obtained by applying a Taylor series
expansion about the equilibrium states given in Eq. (20). Both the roll and pitch equations of motion are
linearized about small roll and pitch angles respectively. The separation distance equations of motion are
linearized about small variations in δL as well as about small variations in the product charge term δQ as
follows

L = Lref + δL (22a)

Q = Qref + δQ (22b)

where mission requirements determine the reference separation length Lref, and Qref is determined through
the constraint Eq. (21) for a particular choice of Lref. Performing the necessary linearizations yields

θ̈ + (1 + 3σ)Ω2θ = 0 (23a)

ψ̈ +
2Ω
Lref

δL̇+ 3σΩ2ψ = 0 (23b)

δL̈− 2ΩLrefψ̇ − 3(2σ + 1)Ω2δL−
( kc
m1

1
L2

ref

m1 +m2

m2

)
δQ = 0 (23c)

Thus, Eqs. (23a) and (23b) are the linearized attitude dynamics of the Coulomb tether body frame B and
Eq. (23c) is the linearized separation distance differential equation about the static nadir reference configu-
ration at a collinear libration point.

Interestingly, for σ = 1, the equations turn out to be the same equations that were found in Reference 17
for orbit radial 2-craft formation at GEO. Thus, the linearized equations of motion for small motions about
orbit radial equilibria in Eqs. (23) form a general framework that covers both circular GEO and colinear
libration point departure motion. By changing the constant σ either motion is described. Furthermore, in
Eq. (23c) the stiffness term on δL is the only difference in the separation distance differential equation
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from Reference 17. Thus, the equations of motion are slightly different at a collinear libration point, but no
significant changes in the stability behavior are expected. And, note that Eq. (23c) provides the necessary
relationship between the change in relative separation of the satellites δL and the additional charge product
δQ required.

It is inferred from these equations that the out-of-plane motion θ(t) is uncoupled from the in-plane
motion (ψ(t) and δL(t)) and is analogous to that of simple oscillatory motion because of the gravity gradient
torques due to the two planets. Also, in this linearized analysis, the decoupling of the roll motion θ(t) from
ψ(t), δL(t) and δQ(t) prevents the control of roll motion using Coulomb charge. Moreover, in a special
case where the satellites are at rest with no Coulomb force between them (Q = δQ(t) = ψ̇ = 0), Eq. (23c)
simplifies to that of an unstable oscillator. Therefore, without any active Coulomb force, the two-craft
formation cannot stay at the specified locations. Furthermore, δL(t) is coupled to the body frame pitch rate
ψ̇(t) and the pitch motion ψ(t) is coupled with the δL(t)) motion which may make it possible to control the
charge for asymptotic stabilization. This coupling effect is analytically proven in the next section using the
controllability properties.

II.B Feedback Control Development
Under the influence of external disturbances such as solar radiation pressure, the two-craft formation

deviates from the desired radial equilibrium configuration. Because the deviations from the desired equi-
librium configuration are small, linear control design techniques are used to stabilize the in-plane motion
without exceeding the charge requirements. In this section, two control laws are designed and compared
which are used to control the in-plane motion. First, the in-plane motion is controlled with Coulomb forces
using a partial-state charge feedback control defining the small charge product variation with a proportional-
derivative feedback control of small separation distances. The Coulomb force acts along the relative position
vector due to the charges of each craft and thus, these Coulomb charges can be used to control the spacecraft
separation distance. Second, using state space methods, a full-state feedback control is designed to control
the combined attitude and separation distance. Full-state feedback control could be used for tighter mission
requirements.

II.B.1 Charge Feedback Control
A proportional-derivative feedback control of δL is designed by defining17

δQ =
m1m2L

2
ref

(m1 +m2) kc
(−C1δL− C2δL̇) (24)

Substituting this expression for δQ in Eq. (23c), the closed-loop separation distance dynamics become

δL̈+ (C1 − 3(2σ + 1)Ω2)δL+ C2δL̇− (2ΩLref)ψ̇ = 0 (25)

Since the δL differential equation does not involve a δL̇ damping term, the derivative feedback is essential
for asymptotic convergence. This charge feedback control law is implemented by determining the charges
q1 and q2. Since Q = q1q2, using Eq. (22b), the spacecraft charges must satisfy

q1q2 = Qref + δQ (26)

whereQref value is evaluated from Eq. (21) while δQ value is given by the charge feedback law expression in
Eq. (24). Due to the above constraint yielding an infinite number of solutions, the following implementation
is used where equal charges in magnitude across the craft are chosen.

q1 =
√
|Qref + δQ| (27)

q2 = −q1 (28)
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Because δQ� Qref and Qref < 0, note that here Qref + δQ < 0 which implies that q1 > 0 and q2 < 0.
In order to prevent numerical difficulties due to a small value of Ω, the linearized attitude dynamics Eqs.

(23a) - (23b) and the closed loop separation distance dynamics given in Eq. (25) are made independent of Ω
by the following transformation

dτ = Ωdt (29a)

(∗)′ =
d(∗)
dτ

=
1
Ω

d(∗)
dt

(29b)

Thus, the orbit rate (Ω) independent linearized equations of motion for a two-craft Coulomb tether formation
at any collinear libration point are given by

θ
′′

+ (1 + 3σ) θ = 0 (30a)

ψ
′′

+
2
Lref

δL
′
+ 3σψ = 0 (30b)

δL
′′

+ C̃2δL
′ − (2Lref)ψ

′
+ (C̃1 − 3(2σ + 1))δL = 0 (30c)

where C̃2 = C2
Ω and C̃1 = C1

Ω2 are non-dimensionalized feedback gains. Routh-Hurwitz stability criteria are
used to fine tune these gain values that satisfy the stability requirements. The characteristic equation for the
coupled δL and ψ equation is

λ4 + C̃2λ
3 + (C̃1 + 1− 3σ)λ2 + 3σC̃2λ+ 3σ(C̃1 − 6σ − 3) = 0 (31)

Roots of Eq. (31) should have negative real parts for asymptotic stability. For all roots to have negative real
parts, a Routh table construction allows one to determine the following necessary constraints on the gains
C̃1 and C̃2

C̃1 > 6σ + 3 (32a)

C̃2 >
√
n− 3(2σ + 1) (32b)

To fix the gain values that satisfy the stability criteria in Eq. (32), near ideal damping conditions are assumed.
Let the scaling factors n and β be positive and real such that the gains are rewritten as

C̃1 = n > 6σ + 3 (33a)

C̃2 = β
√
n− 3(2σ + 1) (33b)

The natural frequency of the ψ equation is
√

3σ and is independent of the choice of C̃1 and C̃2, and the
natural frequency for the δL equation is

√
n− 3(2σ + 1). For the ψ

′
coupling term in the δL equation to

serve as a defacto damping term, a value of n = 9σ+3 will match these frequencies. Also, critical damping
for the δL equation without the ψ

′
term is ensured for β = 2. Therefore, with the inclusion of the ψ

′
term

for effective damping, one expects the value of n and β to be in the vicinity of n = 9σ + 3 and β = 2. At
L2 where σ = 3.190432478, the root locus plots for the coupled equations where the parameters are varied,
n = 26 ensures good rates of convergence for all the modes and β = 2.22 satisfies effective damping for
the modes. The optimal root locus plot is shown in Figure 3.

II.B.2 Application of LQR Design
In order to investigate the stability and control using the state feedback controller, a two-craft Coulomb

tether formation at a collinear libration point must be represented in the following state space form

ẋ = Ax+Bu (34)

y = Cx (35)
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Figure 3: Root-Locus Plot of the Linearized Differential Equations at L2 for gain β = 2.22

where the state x is

x =
[
θ, θ̇, ψ, ψ̇, δL, ˙δL

]T
(36)

Using the Coulomb control as an actuator mechanism, the A and B matrices can be represented from Eqs.
(23a) - (23c). As previously seen, the out-of-plane θ(t) motion is decoupled from the in-plane motion (ψ(t)
and δL(t)), which can be formally examined by checking the controllability of the system.23 Since the rank
of the controllability matrix is 4 and the number of state variables is 6, the tether formation is not completely
controllable with charge only. When the out-of-plane θ(t) motion is not considered, then, with the reduced

state space of four state variables x =
[
ψ, ψ̇, δL, ˙δL

]T
, the rank of the controllability matrix is 4. Therefore,

subsequent analysis uses the following reducedA andB matrices

A =


0 1 0 0
−3σ 0 0 − 2

Lref

0 0 0 1
0 2Lref 3(2σ + 1) 0

 (37)

B =
[
0 0 0 kc

m1

1
L2

ref

m1+m2
m2

]T
(38)

If only the length and length rate state variables are available from the measurements of an optical
sensor, then the remaining two state variables (pitch and pitch rate) must be estimated from the output
measurements. Therefore, the C matrix in the output equation becomes

C =
[
0 0 1 0
0 0 0 1

]
(39)

However, the C matrix should satisfy the observability condition.23 Because the rank of the observability
matrix is 4, the values of the ψ and ψ̇ states can be estimated from the measured outputs δL and ˙δL. Hence,
the in-plane linear model of a two-craft Coulomb tether formation at a collinear libration point is both
controllable and observable.

Assuming that the information about all four state variables is available either through direct measure-
ment or by estimation, the following feedback control is used to control the system with the feedback
gain matrix, K, computed using either the pole placement method or the linear quadratic regulator (LQR)
method.

u = −Kx (40)
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Here the LQR methodology is applied to determine the optimal control, u, such that the gain vector K
minimizes the performance index

J =
∫ ∞

0
(xTWQx+ uTWRu)dT (41)

where WQ and WR are the weighting matrices that are used as design parameters. One can establish a
faster response for in-plane control by selecting appropriate weighting matrices for which the settling time
is less than one orbit.

II.C Numerical Simulation
The performance and stability of a 25m Coulomb virtual tether formation is illustrated in the following

numerical simulation. Table 1 lists the simulation parameters and the values used. The parameters n and β
are selected based on root locus plot analysis where the gains C̃1 and C̃2 computed from Eq. (33) satisfy
the stability critera in Eq. (32) and also lead to effective damping. The two-craft Coulomb tether perfor-
mance at the collinear libration point L2 is simulated by integrating the linearized equations of motion in
Eq. (30) and then compared with the results obtained from integrating the non-linear equations of motion in
Eq. (18). During this simulation, the Debye length is assumed to be zero in order to investigate the effects
of linearization on the relative motion.

Table 1: Input Parameters Used in the Simulation for L2

Parameter Value Units

m1 150 kg
m2 150 kg
Lref 25 m
kc 8.99× 109 Nm2

C2

Qref −0.006816 µC2

Ω 2.661699× 10−6 rad/sec
δL(0) 0.5 m
ϕ(0) 0.1 rad
θ(0) 0.1 rad
n 26
β 2.22
σ 3.190432478

Figure 4(a) shows the Coulomb tether motion with the proportional-derivative charge feedback law in
Eq. (24). Both the yaw motion ψ and the separation distance deviation δL converged to zero. Therefore,
stabilizing the separation distance to zero also stabilized the in-plane rotation angle after about 1.3 orbits;
and the uncoupled roll motion θ is a stable sinusoidal motion as expected. Furthermore, Figure 4(a) shows
that the non-linear simulation shown as dashed lines closely follows the linearized simulation. Whereas, the
δL states asymptotically converge to zero in the linearized simulation, they reach steady state oscillations
in the non-linear simulation. This notable difference is observed in the two-body system as well.17 Using
the same reference charge product Qref computated from Eq. (24) for both simulations resulted in this
inconsistent behaviour. This charge yields a static formation in the linearized formulation; however, in the
non-linear formulation, this charge will not yield a static formation. This is due to the charge feedback
control not operating about a steady state charge in the non-linear problem. Although the δL and ψ errors
converge to zero in the non-linear simulation, the discrepancies in charge computation between the linear
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Figure 4: Simulation Results from Integrating the Linearized and Nonlinear Equations of Motion at
L2

and non-linear simulations cause the orbital dynamics to perturb the system.17 This makes the states grow
again, resulting in these steady state oscillations. Therefore, for the non-linear problem, a control strategy
could be implemented wherein the Qref value could be numerically recomputed. Despite this deviation, the
non-linear and linear simulation results compare very well, thus validating the performance prediction of
the linearized analysis.

Figure 4(b) shows the spacecraft control charge q1 usage for both the linear and non-linear simulation
formulations. The charge results for both converge to the static equilibrium reference value q1r. For orbit-
radial equilibrium, the control charge q1 is the negative of q2. Since the control charges are on the order of
micro-Coulombs, they can easily be implemented in practice using charge emission devices.

A numerical simulation using an optimal regulator results in a settling time of less than one orbit, a
maximum overshoot of less than ±2.5 m in separation distance and ±.1 rad in pitch angle variation. A
faster response for in-plane control than that of a charge feedback control law can be obtained by selecting
appropriateWQ andWR weighting matrices. The followingWQ andWR matrices allow the settling time
to be less than one orbit

WQ =


75 0 0 0
0 0.0001 0 0
0 0 0.1 0
0 0 0 0.000001

 and WR = 10000 (42)

Figure 5 shows the state response of the system for the LQR method. The results indicate that with the ac-
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ceptable limits for separation distance and attitude variations, the settling time is around one orbit. However,
the maximum overshoot increases the charge requirements as compared to using the charge feedback law in
Eq.(24). For subsequent analysis, we use the charge control law because of the minimal number of control
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Figure 5: LQR Time Histories of Length Variations δL, pitch angle ψ and roll angle θ

variables used in it.

III Linear Dynamics and Stability Analysis - Trianglular Libration Points
III.A Charged Relative Equations of Motion

This section derives the equations of motion of a two-craft Coulomb tether whose center of mass is at
the triangular equilibrium point L4 as shown in Figure 6 and nominally aligned in the orbit-radial direction
of the orbit frame. This derivation closely resembles the derivation of the equations of motion for a two-craft
Coulomb tether at any collinear libration point given in section II. The two distance vectors R1 and R2 of
L4 in the synodic frame from the two primaries in the plane are given by

SR1 =

rx0 + d1

ry0
0

 and SR2 =

rx0 − d2

ry0
0

 (43)

The expressions for the kinetic energy in Eq. (10) and Coulomb potential in Eq. (16) remain the same.
However, the gravitational potential in Eq. (15) involves adding the two position vectorsRi+ρi , whereRi

is in the synodic frame S and ρi is in the orbiting frame O. Therefore, the vectors Ri are expressed in its
orbiting frame components using the transformation ORi = [OS]SRi with the transformation matrix [OS]
given by

[OS] =

 cosα sinα 0
− sinα cosα 0

0 0 1

 (44)

where α is the angle between the synodic frame at the barycenter O and the orbiting frame at L4 as shown
in Figure 6. For Earth-moon system, the value of α is 60.31 degrees.19

Using the Lagrangian formulation in Eq. (17), the nonlinear equations governing the roll angle θ out of
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the orbital plane, the pitch angle ψ in the orbital plane, and the separation distance L thus obtained are

θ̈ +
2L̇
L
θ̇ + cos θ sin θ((ψ̇ + Ω)2

+
3Ω2

4
((1− ν)(Aα cosψ +Bα sinψ)2 + ν(Cα cosψ +Dα sinψ)2)) = 0 (45a)

ψ̈ − 2θ̇ tan θ(ψ̇ + Ω) +
2L̇
L

(ψ̇ + Ω)− 3
4

Ω2((1− ν)(AαBα cos 2ψ +
B2
α −A2

α

2
sin 2ψ)

+ ν(CαDα cos 2ψ +
D2
α − C2

α

2
sin 2ψ)) = 0 (45b)

L̈− L(θ̇2 + (ψ̇ + Ω)2 cos2 θ − Ω2)

+
3
4
LΩ2 cos2 θ((1− ν)(Aα cosψ +Bα sinψ)2 + ν(Cα cosψ +Dα sinψ)2)

− kc
m1 +m2

m1m2
q1q2e

−L/λd
(
L+ λd
L2λd

)
= 0 (45c)

where

Aα = cosα+
√

3 sinα (46a)

Bα = − sinα+
√

3 cosα (46b)

Cα = − cosα+
√

3 sinα (46c)

Dα = sinα+
√

3 cosα (46d)

The linearized version of the nonlinear equations in Eq. (45) comes from expanding in a Taylor series about
the equilibrium states given in Eq. (20). Both the roll and pitch equations of motion are linearized about
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small roll and pitch angles respectively. The separation distance equations of motion are linearized about
small variations in δL as well as small variations in the product charge term δQ defined as in Eq. (22). Mis-
sion requirements determine the reference separation length Lref, and, Qref is determined from the following
constraint on a particular choice of Lref

Qref = −3
4
σEQRE1Ω2L

3
ref
kc

m1m2

m1 +m2
(47)

where

σEQRE1 = 1 + 2 sin2 α+
√

3 sin 2α (1− 2ν) (48)

Performing the necessary linearizations yields

θ̈ + (1 +
3
4
σEQRE1)Ω2θ = 0 (49a)

ψ̈ +
2Ω
Lref

δL̇− 3
2
σEQRE3Ω2 ψ = 0 (49b)

δL̈− 2ΩLrefψ̇ −
9
4
σEQRE1Ω2δL− 3

2
Lref σEQRE2Ω2 ψ − (

kc
m1

1
L2

ref

m1 +m2

m2
)δQ = 0 (49c)

with

σEQRE2 =
√

3 cos 2α (1− 2ν) + sin 2α (50)

σEQRE3 =
√

3 sin 2α (2ν − 1) + cos 2α (51)

Thus, Eqs. (49a) and (49b) represent the linearized attitude dynamics of the Coulomb tether body frame
B and Eq. (49c) represents the linearized separation distance differential equation about the static nadir
reference configuration at a triangular libration point. As opposed to the collinear solution, the ψ term here
is a new component; however, due to the quite small value of σEQRE2 = −2.0405 × 10−4 at L4, its effect
is negligible on the separation distance differential equation. Furthermore, since σEQRE1 = 3.963662 and
σEQRE3 = −1.963662 , the dynamics at L4 become very similar to those found in Reference 17 for an
orbit radial 2-craft formation at GEO. Hence, the stability behaviour should be approximately the same as
that observed in Reference 17.

III.B Charge Feedback Control
Using the proportional-derivative feedback control of δL from Eq.(24), the orbit rate Ω independent

linearized equations of motion for a two-craft Coulomb tether formation at the triangular libration point L4

are given by

θ
′′

+ (1 +
3
4
σEQRE1)θ = 0 (52a)

ψ
′′

+
2
Lref

δL
′ − 3

2
σEQRE3 ψ = 0 (52b)

δL
′′

+ C̃2 δL
′ − (2Lref)ψ

′ − (
3
2
Lref σEQRE2 )ψ − (

9
4
σEQRE1 − C̃1)δL = 0 (52c)

where C̃2 = C2
Ω and C̃1 = C1

Ω2 are non-dimensionalized feedback gains. Routh-Hurwitz stability critera can
be used to fine tune these gain values that satisfy the stability requirements. The characteristic equation for
the coupled δL and ψ equation is

λ4 + C̃2λ
3 + (C̃1 + 4− 3

2
σEQRE3 −

9
4
σEQRE1)λ2 + (3σEQRE2 −

3
2
σEQRE3C̃2)λ

+
3
2
σEQRE3(

9
4
σEQRE1 − C̃1) = 0

(53)
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Roots of this equation should have negative real parts for asymptotic stability. A Routh table allows one to
determine the following necessary constraints on the gains C̃1 and C̃2 that ensures all roots have negative
real parts

C̃1 >
9
4
σEQRE1 (54a)

C̃2 > 0 (54b)

To fix the gain values that satisfy the stability critera in Eq. (54), near ideal damping conditions are assumed.
Let the scaling factors n and β be positive and real, allowing the gains to be rewritten as

C̃1 = n >
9
4
σEQRE1 (55a)

C̃2 = β

√
n− 9

4
σEQRE1 (55b)

Following the same line of reasoning discussed for collinear libration points earlier and studying the root
locus plots for the coupled equations where the n and β parameters are varied, n = 11.71 ensures good
rates of convergence for all the modes and β = 2.22 provides effective damping for the modes. The optimal
root locus plot is shown in Figure 7.
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−3

−2

−1
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Figure 7: Root-Locus Plot of the Linearized Differential Equations at L4 for gain β = 2.22

III.C Numerical Simulation
Except for the parameters listed in Table 2, the remaining simulation parameter values used are shown

in Table 1. The parameter n = 11.71 for L4 is obtained from the root locus plot analysis. The gains C̃1

and C̃2 computed from Eq. (55) satisfy the stability critera in Eq. (54) and also yield effective damping.
Integrating the linearized equations of motion in Eq. (52) simulates the two-craft Coulomb tether perfor-
mance at L4. This is then compared with the results obtained from integrating the non-linear equations
of motion in Eq. (45). Figure 8(a) illustrates the Coulomb tether motion with the proportional-derivative
charge feedback law. Both the yaw motion ψ and the separation distance deviation δL converge to zero.
Therefore, stabilizing the separation distance to zero also stabilized the in-plane rotation angle after about 1
orbit; and the uncoupled roll motion θ is a stable sinusoid as expected. Furthermore, Figure 8(a) shows that
the non-linear simulation plotted as dashed lines closely follows the linearized simulation; whereas the δL
states asymptotically converge to zero in the linearized simulation, they reach steady state oscillations in the
non-linear simulation. The reasons for this notable difference are already explained in numerical simulation
part of section II. Despite this difference, the non-linear and linear simulation results compare very well,
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Table 2: Input Parameters Used in the Simulation for L4

Parameter Value Units

Qref −0.002745 µC2

n 11.71
β 2.22

σEQRE1 3.963662
σEQRE2 −2.0405× 10−4

σEQRE3 −1.963662
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Figure 8: Simulation Results from Integrating the Linearized and Nonlinear Equations of Motion at
L4

thus justifying the linearization assumptions used. Figure 8(b) shows the spacecraft control charge q1 usage
for both linear and non-linear simulation formulations. The charge results for both converge to the static
equilibrium reference value q1r. The control charges required for L4 are less than those of L2, which are on
the order of micro-Coulombs and can easily be implemented in practice using charge emission devices.

IV Conclusion
The feasibility of a two-craft Coulomb tether concept is studied at libration points for orbit-radial equi-

librium. Although the orbit-radial dynamics at libration points are slightly different than those of found in
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Reference 17 for an orbit radial 2-craft formation at GEO, the stability conditions are similar. At libration
points, the out-of-plane motion is marginally stable and decoupled from the in-plane motion. The in-plane
motion is stabilized using only separation distance measurements (computing rates). A linearized charge
feedback law stabilizes the separation distance using Coulomb force and exploits the gravity gradient torque
due to the two primaries to stabilize the in-plane attitude motion. Also, a full-state feedback linear quadratic
regulator meets variable mission requirements (i.e stabilizing the formation within a given time). Numeri-
cal simulations at L2 and L4 with the charge feedback law show that the formation stabilized faster at L4

(within 1 orbit) than at L2 (1.3 orbits). This is perhaps due to the unstable nature of the collinear libration
point causing a slow stabilization of the formation. Also, due to the smaller rotation rate of the Earth-moon
barycenter, the micro-Coulomb charge requirements at the libration points is at least an order of magni-
tude smaller compared to that of a two-body system in Reference 17. Future work includes studying the
Coulomb tether concept at the libration points for the other two equilibrium configurations (along-track and
orbit normal).
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