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TWO-CRAFT COULOMB FORMATION RELATIVE EQUILIBRIA
ABOUT CIRCULAR ORBITS AND LIBRATION POINTS

Ravi Inampudi∗ and Hanspeter Schaub†

The charged relative equilibria of a two spacecraft Coulomb formation moving in
the context of a restricted two-body system and a circularly restricted three-body
system are investigated. For a two-spacecraft formation moving in a central gravi-
tational field it is often assumed that the center of the circular orbit is located at the
primary mass, and the center of mass of the formation orbits around the primary
in a great circle orbit. The relative equilibrium is called great circle if the center of
mass of the formation moves on the plane with the center of the gravitational field
residing on it; otherwise, it is called a non-great-circle orbit. Previous research
shows that non-great-circle equilibria in low Earth orbits, have a deflection from
the great circle equilibria of about a degree when spacecraft with unequal masses
are separated by 350 km. This paper investigates these equilibria (radial, tangen-
tial and orbit normal in circular Earth orbit and Earth-Moon Libration points) in
the context of two spacecraft Coulomb formation, and shows that the equilibria
deflections are negligible (on the order of 10−6 degrees) even for very heteroge-
neous mass distributions. Further, the non-great-circle equilibria conditions for a
two-spacecraft virtual Coulomb structure at the Lagrangian Libration points are
developed. The development is based on exact gravitational and Coulomb poten-
tials and considers the effect of mass asymmetry of the formation in the problem
formulation.

INTRODUCTION

This paper discusses the relative equilibria of two masses virtually connected by an electrostatic
(Coulomb) force moving in the presence of a central gravitational force field as well as the relative
equilibria of the Coulomb formation at the libration points moving around the barycenter. This
novel method of exploiting Coulomb forces for formation flying control with separation distance
on the order of dozens of meters was introduced in References.1, 2 Since then, there has been many
interesting investigations on dynamics and control problems of Coulomb formation.3, 4, 10, 11, 12, 13

In particular, References 6, 7, 8 and 9 study static Coulomb structures where the differential grav-
itational forces between spacecraft are canceled through constant electrostatic forces. Thus, the
open-loop equilibrium charges cause the virtual structure to assume a constant shape as seen by
the rotating orbit frame. The Coulomb tether formation has several potential applications in space
technologies, for example, high accuracy wide-field-of-view optical interferometry missions with
geostationary orbits (GEO), spacecraft cluster control, as well as deployment or retrieval of dedi-
cated sensors using Coulomb forces.

In the context of a restricted two-body problem existence of great circle relative equilibria for a
satellite system implies that the center of the circular orbit coincides with the center of the gravi-
tational field. If the satellite is assumed to be a rigid body, and making a first order approximation
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of the gravitational force acting on the rigid body as well as assuming that the orbital motion is de-
coupled from the attitude motion, the classical rigid-body attitude equilibrium study yields that all
three rigid body principal axes must line up with the LVLH (Local vertical/local horizontal) frame
axes. However, References 14 and 15 prove the existence of non-great-circle relative equilibria of
rigid bodies where the center of mass of the circular orbit traces a cone rather than a disk around
the center of the gravitational field. Here the exact potential function expression is used in their
analysis, and large variations in orientation from the classic regular motions are verified analyti-
cally and numerically. The orientation change between great-circle and non-great-circles solutions
is particularly noticeable if the mass distribution of the rigid body is as asymmetric as possible.

In a three-body system we consider a spacecraft formation near two large celestial objects who
are rotating around their common center of mass. Due to the rotation of the system, there are five
equilibrium points; these equilibrium points are the libration points (L1-L5) of the three-body sys-
tem. Virtual Coulomb structures at the libration points are useful for remote-sensing missions to
establish a long baseline imaging capability, or to ensure better stationkeeping configurations. Ref-
erence 17 considers the equilibrium configurations of a rigid tethered system near all five libration
points and carries out the stability analysis when it is near the translunar libration point.

Reference 15 discusses the relative equilibria and relative stability of a system of two spring-
connected point masses moving in a central gravitational field. The paper shows that non-great-
circle equilibria exist for this simple spring system, and, for long tethers of approximately 3500
km at LEO the attitude deflection from the vertical can reach tens of degrees. Also, the effect of
mass asymmetry of the formation on the non-great-circle relative equilibria is studied. In order to
gain further insights on the effects of non-great-circle relative equilibria and mass asymmetry on
a two spacecraft formation the tether is modeled using a Coulomb force in this paper. The goal
is to analytically derive the great circle relative equilibria of a two spacecraft Coulomb formation
in a restricted two body system, and use this methodology to derive new 2-craft virtual Coulomb
structure condition for a restricted three body system. Therefore, an exact model for the gravita-
tional and Coulomb potential is used to compute the relative equilibria. Just as the spring system
possesses SO(3) symmetry, the Coulomb formation has SO(3) symmetry. Such symmetry in
geometric mechanics induces certain reduced dynamics which facilitates to get the conditions of
relative equilibria. To obtain the conditions for relative equilibria, the principle of symmetric criti-
cality is applied.15 Moreover, the effects of non-great-circle relative equilibria and mass asymmetry
on a two spacecraft formation as a function of spacecraft separation distances (short to long tethers)
and formation center of mass distances from LEO to GEO, as well as in the context of a three body
system are studied.

In this paper, the following assumptions are made

1. The Coulomb tether undergoes both tensile and compressive forces along the line-of-sight direc-
tion between the two spacecraft.

2. The gravitational attraction between the two spacecraft masses is neglected.
3. For the three-body system the spacecraft formation motion is in the plane of the motion of the

primary bodies.

The objective of this paper is to study the relative equilibria of a two spacecraft static Coulomb
structure using the exact gravitational and Coulomb potentials. The necessary conditions for a vir-
tual Coulomb structure where the orbital motion is decoupled from the attitude motion are discussed
in Reference 6. References 9, 11, 12 search for static Coulomb structure solutions using genetic al-
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gorithms. Here the simple principle axes condition of rigid body equilibria are used to speed up
the genetic search algorithms. In this paper we are investigating the validity of this assumption for
Coulomb tether applications taking non-great-circle equilibria conditions into account. The goal is
to identify for what formation dimension and altitudes these non-great circle effects become signif-
icant. Further, for a two spacecraft Coulomb formation, this paper presents the relative equilibria
for a three-body system at all five libration points.

The paper is organized as follows. The system dynamics and the notion of SO(3) symmetry
applied to Coulomb formation moving in a central gravitational field as well as for a restricted
three-body system are discussed. Then the principle of symmetric criticality is applied to determine
the conditions of relative equilibria of charged static structures. For the restricted two-body system,
the reduced dynamics identifies the classical great circle equilibria for the Coulomb formation;
tangential, orbit normal and radial equilibria. Similar relative equilibria solutions are derived at
for the libration points. Also, the non-great circle effects in circular orbits on any two spacecraft
formation existing from low Earth orbits (LEO) to geostationary orbits (GEO) are investigated.

SYSTEM DESCRIPTION AND SO(3) SYMMETRY

In the following sections, we introduce the fundamental concepts related to the dynamics of a
system of N spacecrafts moving in a central gravitational field (restricted two-body system) and
moving under the mutual gravitation of two bodies (restricted three-body system).

Restricted Two-body System

The spacecrafts shown in the Figure 1 can be considered to be point masses moving in a central
gravitational field. With the static virtual Coulomb structure the system of spacecrafts behaves
equivalently to a rigid body in orbit because the constant electrostatic inter-spacecraft forces cancel
perfectly the differential gravitational forces acting across the cluster. Let Fc be the Coulomb force
acting between the two masses, and ri be the inertial position vector of a single craft of mass mi.
Then the center of mass position vector rc of this formation is defined as

rc =
1
M

N∑
i=1

miri (1)

with M =
∑N

i=1mi being the total formation mass. Let O be the center of the inverse square field
and the origin of the inertial frame, while the formation’s center of mass and center of gravity are
denoted by C and G, respectively. The inertial position vectors of C and G are rc and rg and are
related by

rg − rc = r (2)

where r is the constant vector between C and G.

From Newton’s laws of gravitation the following relation relating the formation center of gravity
and the individual inertial vectors is obtained as

rg

‖rg‖3
=

1
M

N∑
i=1

ri

‖ri‖3
mi (3)
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Figure 1. Two-Craft Coulomb Spacecraft Formation (Restricted Two-body System)

Using the two-body relative equations of motion with respect to G, the inertial second derivative of
the vector rg is

d2rg (t)
dt2

+
µrg (t)
‖rg (t)‖3

= 0 (4)

Therefore, from Eqs. (2) and (4), the inertial second derivatives of the vectors rc and rg are related
by

d2rc (t)
dt2

+
µrg (t)
‖rg (t)‖3

= 0 (5)

Let m1 and m2 denote the mass of each craft with inertial position vectors r1 and r2, while each
craft is assumed to have electrostatic (Coulomb) charges q1 and q2. The kinetic energy of the system
is then given by

T (ṙ1, ṙ2) =
m1

2
‖ṙ1‖2 +

m2

2
‖ṙ2‖2 (6)

The potential energy of the system is

V (r1, r2) = −µm1

‖r1‖
− µm2

‖r2‖
+ kc

q1q2
‖r1 − r2‖

e
− ‖r1−r2‖

λd (7)

The first two terms of the potential energy are the gravitational potential of each point mass in orbit
about a planet with mass m and gravitational constant µ. The third term denotes the Coulomb
potential energy generated by the two spacecrafts in a plasma environment where kc = 8.99× 109

Nm2/C2 is the Coulomb’s constant and ‖r1 − r2‖ is the separation distance between the two
spacecrafts. The exponential term depends on the Debye length parameter λd which controls the
electrostatic field strength of plasma shielding between the craft. At Geostationary Orbits (GEO)
the Debye length vary between 80-1400 m, with a mean of about 180 m. The Coulomb spacecraft
formation studied in this paper is assumed to be orbiting on high Earth orbits.

In this paper the relative equilibria of a formation with two spacecraft subjected to Coulomb
forces is considered where there are no external forces acting on the system. The relative equilibrium
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of the spacecraft formation can be introduced by defining a uniformly rotating frame located at the
origin O which has a constant orbital angular velocity of ξ. A formation moving in a circular orbit
that is stationary relative to this uniformly rotating frame exhibits symmetry with respect to the
special orthogonal rotation group SO(3). SO(3) rotation group and other group theoretic concepts
used in this paper are explained in are briefly explained in Appendix A.

For instance, the Coulomb formation has the SO(3) symmetry because the kinetic and potential
energy are invariant under the SO(3) actions. This symmetry helps to reduce the dynamics by the
SO(3) group action, and the equilibrium of the reduced dynamics is the relative equilibrium of the
spacecraft formation. If the center of mass of the formation moves on a great-circle orbit, then the
relative equilibrium is called the great-circle relative equilibrium. This implies that rc · ξ = 0; if
rc · ξ 6= 0 it is called the nongreat-circle relative equilibrium14 as shown in the Figure 2.

î î

Great-circle Equilibrium Non-great-circle Equilibrium

Figure 2. Two-Craft Coulomb Spacecraft Formation (Restricted Two-body System)

Using the properties of Lie algebra g∗ of SO(3), at relative equilibria there exists two constant
inertial vectors rco and rgo with respect to O such that rc (t) = eξ̂trco and rg (t) = eξ̂trgo. There-
fore at relative equilibrium Eq.(5) can be reduced to

ξ̂ξ̂rco +
µrgo

‖rgo‖3
= 0 (8)

Taking an inner product of Eq. (8) with ξ gives rgo · ξ = 0. Consequently, at relative equilibria
the center of gravity of a spacecraft formation moving in a central gravitational field traces a great
circle.

Restricted Three-body System

In a three-body system, as shown in Figure 3, the spacecrafts are considered to be point masses
moving around the barycenter O under the mutual gravitation of two bodies M1 and M2. The rel-
ative equilibrium of the spacecraft formation can be introduced by defining a uniformly rotating
frame located at the barycenter O which has a constant orbital angular velocity of ξ. A formation
moving in a circular orbit that is stationary relative to this uniformly rotating frame exhibits sym-
metry with respect to SO(3). If m1 and m2 denote the mass of each craft with inertial position
vectors R11, R12, R21 and R22 then using the three-body relative equations of motion, the inertial
second derivative of the vector rg is

M r̈g = −µ1

(
m1

R3
11

R11 +
m2

R3
21

R21

)
− µ2

(
m1

R3
12

R12 +
m2

R3
22

R22

)
(9)
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where M is the total formation mass, and µ1 and µ2 are the gravitational parameters of the two
planets. The inertial position vectors R11, R12, R21 and R22 can be expressed in rotating coordi-
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Figure 3. Two-Craft Coulomb Spacecraft Formation (Restricted Three-body System)

nates (synodic frame at the barycenter O) such that the distances are invariant under rotation. The
synodic frame S : {êr, êθ, êh} is rotating around the axis Oz with the constant angular velocity Ω
defined as

Ω =

√
G (M1 +M2)

d3
(10)

where G is the gravity constant and d is the distance between the two planets. The primaries are
at rest in the synodic frame at positions M1(−d1, 0, 0) and M2(d2, 0, 0). Also, if each craft with
rotating position vectors r1 and r2 is assumed to have electrostatic (Coulomb) charges q1 and q2
then the kinetic energy of the system is still given by Eq. 6. However, the potential energy of the
system becomes

V (r1, r2) = −µ1

(
m1

‖r1 − d1‖
+

m2

‖r2 − d1‖

)
− µ2

(
m1

‖r1 − d2‖
+

m2

‖r2 − d2‖

)
+ kc

q1q2
‖r1 − r2‖

e
− ‖r1−r2‖

λd

(11)

Since the kinetic and potential energy are invariant under theSO(3) actions, the Coulomb formation
thus moving around the barycenter has the SO(3) symmetry. This symmetry helps in the reduced
dynamics by the SO(3) group action and the equilibrium of the reduced dynamics is the relative
equilibrium of the spacecraft formation in the three-body system. Therefore, similar to the defini-
tions for a two-body system, in a three-body system rc · ξ = 0 implies that the center of mass of the
formation moves on a great-circle orbit and hence the relative equilibrium is called the great-circle
relative equilibrium. And, if rc · ξ 6= 0 it is called the nongreat-circle relative equilibrium.

RELATIVE EQUILIBRIA OF THE STATIC TWO-CRAFT COULOMB FORMATION

Since the static two-craft Coulomb formation has the SO(3) symmetry, the dynamics in the
original phase space of the system can be reduced yielding the reduced dynamics. The relative
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equilibria of the reduced dynamics facilitates in finding the equilibrium configurations. Given a
simple mechanical system with symmetry (Q,T, V,G), where Q is the configuration space with G-
invariant Riemannian metric K on Q, T is the G-invariant kinetic energy and V is the G-invariant
potential function, and G is the symmetry (Lie) group, then we have the following useful theorem
based on the principle of symmetric criticality.15

Theorem : For a simple dynamical system with symmetry (Q,T, V,G) and the metric

K (q) (vq,vq) = 2T (vq) with vq ∈ TQ (12)

define the augmented potential Vξ : Q→ R,

Vξ (q) = V (q)− 1
2
K (q) (ξQ (q) , ξQ (q)) (13)

where ξQ is the infinitesimal generator associated with ξ. Then at relative equilibrium qe is a critical
point of Vξ for some ξ ∈ g∗.

Therefore, for the two-craft Coulomb formation the augmented potential function Vξ is

Vξ (r1, r2) = V (r1, r2)− m1

2
〈ξ× r1, ξ× r1〉 −

m2

2
〈ξ× r2, ξ× r2〉 (14)

where ξ ∈ R3 is an arbitrary constant vector. According to the principle of symmetric criticality,
the relative equilibria corresponding to some ξ can be characterized by the critical points of the
augmented potential Vξ.

RELATIVE EQUILIBRIA IN THE RESTRICTED TWO-BODY SYSTEM

For the Coulomb spacecraft formation with SO(3) symmetry, the relative equilibrium is an equi-
librium in a uniformly rotating frame. If the vector ξ denotes the angular velocity of the uniformly
rotating frame, the augmented potential for the two spacecraft formation is,

Vξ (r1, r2) = −µm1

‖r1‖
− µm2

‖r2‖
+ kc

q1q2
‖r1 − r2‖

e
− ‖r1−r2‖

λd

− m1

2
〈ξ× r1, ξ× r1〉 −

m2

2
〈ξ× r2, ξ× r2〉

(15)

Then the relative equilibria of the system can be characterized by the critical points of the aug-
mented potential Vξ. The first variation of Vξ taken component wise with respect to q = (r1, r2) is
computed as

DVξ (r1, r2) · (δr1, δr2) = µm1
r1

‖r1‖3
· δr1 + µm2

r2

‖r2‖3
· δr2

− kc
q1q2

‖r1 − r2‖2
e
− ‖r1−r2‖

λd

[
1 +
‖r1 − r2‖

λd

]
r1 − r2
‖r1 − r2‖

· (δr1 − δr2)

+m1

(
ξ̂ξ̂r1

)
· δr1 +m2

(
ξ̂ξ̂r2

)
· δr2

(16)

Let V
′
c denote the derivative of Coulomb potential with respect to ‖r1 − r2‖ which represents the

Coulomb forces acting between the two crafts. Then V
′
c is

V
′
c (‖r1 − r2‖) = −kc

q1q2

‖r1 − r2‖2
e
− ‖r1−r2‖

λd

[
1 +
‖r1 − r2‖

λd

]
(17)
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Then Eq. (16) is expressed as

DVξ (r1, r2) · (δr1, δr2) = µm1
r1

‖r1‖3
· δr1 + µm2

r2

‖r2‖3
· δr2

+ V
′
c (‖r1 − r2‖)

r1 − r2
‖r1 − r2‖

· (δr1 − δr2)

+m1

(
ξ̂ξ̂r1

)
· δr1 +m2

(
ξ̂ξ̂r2

)
· δr2

(18)

By setting DVξ (r1e, r2e) = 0 we arrive at the following conditions of relative equilibria:

µm1r1e
r31e

+m1ξ̂ξ̂r1e + V
′
c

r1e − r2e
‖r1e − r2e‖

= 0 (19a)

µm2r2e
r32e

+m2ξ̂ξ̂r2e − V
′
c

r1e − r2e
‖r1e − r2e‖

= 0 (19b)

where r1e = ‖r1e‖ and r2e = ‖r2e‖.

Now consider a rotation matrix [RN ] ∈ SO(3) that maps vectors from an inertial frame N into
a new reference frame R. If we denote the vectors R1, R2, ω in the reference frame R then the
conditions of relative equilibria given in Eqs. 19a and 19b are invariant under the transformation
R1 = [RN ] r1e, R2 = [RN ] r2e and ω = [RN ] ξ. In order to solve for relative equilibria,
the new reference frame should be chosen such that the number of unknowns are at minimum in
the equilibrium conditions. As illustrated in Figure 6(d), a reference frame is chosen such that the
x-axis is parallel to the line connecting the two crafts, the z-axis being perpendicular to both the
vectors r1e and r2e, and the y-axis completing the triad.

In the context of the new frame R, the vectors can be expressed as R1 = (x1, yc, 0)T , R2 =
(x2, yc, 0)T , and ω = (ω1, ω2, ω3)T . Now the equilibrium conditions (19a) and (19b) expressed in
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scalar form are,

−
(
ω2

2 + ω2
3

)
x1 + ω1ω2yc + µ

x1

R3
1

= − V
′
c

m1
(20)

ω1ω2x1 −
(
ω2

1 + ω2
3

)
yc + µ

yc
R3

1

= 0 (21)

(ω1x1 + ω2yc)ω3 = 0 (22)

−
(
ω2

2 + ω2
3

)
x2 + ω1ω2yc + µ

x2

R3
2

=
V
′
c

m2
(23)

ω1ω2x2 −
(
ω2

1 + ω2
3

)
yc + µ

yc
R3

2

= 0 (24)

(ω1x2 + ω2yc)ω3 = 0 (25)

where R1 = ‖R1‖ and R2 = ‖R2‖. It is also assumed that x1 > x2 and let L = x1 − x2 > 0.
Further, defineRc = (xc, yc, 0)T where xc = (m1x1 +m2x2) / (m1 +m2). Then the expressions
for x1, x2 and yc are x1 = xc + m2L/ (m1 +m2), x2 = xc − m1L/ (m1 +m2) and yc =[
R2
c − L2

4

(
m1−m2
m1+m2

)2
]1/2

.

The relative equilibria of the two craft formation corresponds to solving the equations (20-25) for
a given set of values for µ, m1, m2, L and Rc = ‖Rc‖. Reference 15 presents three great circle
equilibrium solutions in the context of a spring force acting between two point masses. Since the
mathematical development for the restricted two-body system with Coulomb force acting between
the two spacecraft point masses is similar to that given in Reference 15 the great circle equilibria
results obtained are summarized below (Case 1a-1c). But, for completeness, the non-great-circle
equilibria methodology is presented (Case 2).

Setting ω3 6= 0 in the equilibrium conditions and using yc 6= 0 yield tangential equilibrium
solution (Case 1a) and with ω3 6= 0, yc = 0 gives radial equilibrium solution (Case 1b). Similarly,
ω3 = 0, yc 6= 0, andR1 = R2 yields orbit normal equilibrium. And ω3 = 0, yc 6= 0, R1 6= R2 gives
non-great-circle equilibria (Case 2).

Case 1a. Tangential Equilibrium (Figure 5(a))

R1 =
(

1
2L, yc, 0

)T ,R2 =
(
−1

2L, yc, 0
)T , ω = (0, 0, ω3)T

yc = Rc, ω2
3 = µ

R3 and V
′
c = 0.

Case 1b. Radial equilibrium (Figure 5(b))

R1 = (x1, 0, 0)T ,R2 = (x2, 0, 0)T , ω = (0, 0, ω3)T

ω2
3 = µ

(m1+m2)Rc

(
m1

x2
1

+ m2

x2
2

)
and V

′
c =

µm1m2(x3
1−x3

2)
(m1+m2)x2

1x
2
2Rc

> 0.

Case 1c. Orbit normal equilibrium (Figure 5(c))

R1 =
(

1
2L, yc, 0

)T ,R2 =
(
−1

2L, yc, 0
)T , ω = (ω1, 0, 0)T

m1 = m2, yc = Rc, ω2
1 = µ

R3 , V
′
c = −µm1L

2R3 < 0
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Figure 5. Relative Equilibrium Solutions

Case 2. Non-great-circle equilibrium conditions ω3 = 0, yc 6= 0 and R1 6= R2.

With ω3 = 0, the relative equilibrium equations reduce to

−ω2
2x1 + ω1ω2yc + µ

x1

R3
1

= − V
′
c

m1
(26a)

ω1ω2x1 − ω2
1yc + µ

yc
R3

1

= 0 (26b)

−ω2
2x2 + ω1ω2yc + µ

x2

R3
2

=
V
′
c

m2
(26c)

ω1ω2x2 − ω2
1yc + µ

yc
R3

2

= 0 (26d)

Solving Eqs. (26b) and (26d), we have

(x1 − x2)ω1ω2 = −µyc
(

1
R3

1

− 1
R3

2

)
6= 0 (27)

which implies that ω1 6= 0 and ω2 6= 0. Multiplying Eq. (26b) by m1 and (26d) by m2 and then
adding the resulting equations gives

− (m1 +m2) (ω2xc − ω1yc)ω1 = µ

(
m1

R3
1

+
m2

R3
2

)
yc 6= 0 (28)

Eq. (28) implies that (ω2xc − ω1yc) 6= 0. Now, combining Eqs. (26a) and (26c), we obtain

(m1 +m2) (ω2xc − ω1yc)ω2 = µ

(
m1x1

R3
1

+
m2x2

R3
2

)
6= 0 (29)
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If we define fx and fy to be

fx =
m1x1

R3
1

+
m2x2

R3
2

6= 0 (30)

fy =
(
m1

R3
1

+
m2

R3
2

)
yc 6= 0 (31)

The ratio of Eqs. (28) and (29) is

ω2

ω1
= −fx

fy
(32)

Also, it can be shown that

fxyc − fyxc =
m1m2

m1 +m2

(
1
R3

1

− 1
R3

2

)
(xa − xb) yc 6= 0 (33)

Substituting Eq. (32) into Eq. (33) gives the condition

xcω1 + ycω2 6= 0 (34)

which is equivalent toRc ·ω 6= 0. This analytically proves that for the given conditions in Case 2b
there is no great circle equilibria. Also, in Reference 15, it is shown that non-great-circle equilibria
exist only ifm1 6= m2. Furthermore, with Coulomb formations we can have very lumpy distribution
of masses (consider a small camera flying in a fixed location relative to a large mother spacecraft),
and thus these non-great-circle equilibria conditions are of interest. Therefore, the non-great-circle
equilibrium conditions are

R1 = (x1, yc, 0)T ,R2 = (x2, yc, 0)T , ω = (ω1, ω2, 0)T

Eliminating ω1 and ω2 from Eqs. (27), (28) and (29) one obtains

f = fxf1 + fyf2 = 0 (35)

where f1 = x2

R3
1
− x1

R3
2

and f2 =
(

1
R3

1
− 1

R3
2

)
yc. The solutions of Eq. (35) provide the non-great-

circle equilibria. In order to simplify the solution methodology, Eq. (35) can be expressed in terms
of one variable θ, the angle between Rc and x-axis of the rotating frame as shown in Figure 5(d).
Therefore let xc = Rc cos(θ) and yc = Rc sin(θ). Plugging in xc and yc values into Eq. (35)
yields a function of θ. Since f(θ) is a continuous function for a Coulomb formation (Rc >> L)
and f(0) < 0, f(π) > 0, there exists a solution for f(θ) = 0. Also as df(θ)

dθ > 0 it proves that the
solution to the equation f(θ) = 0 is unique in the domain [0, π]. The actual deflection angle, ϕ,
from the vertical can be computed from the angle between x-axis and ω, while θ − ϕ is the angle
between ω andRc.

Reference 15 discusses the existence of non-great-circle equilibria for long tethers. For spacecraft
that are separated by 350 km at LEO a deflection of about 1 degree from the vertical to the orbital
plane is observed. For comparison, Table 1 shows the results of f(θ) = 0 for LEO where Rc =
7000 km and L = 350 km. The deflection angle ϕ and error δ are shown in Figure 5(d) where
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Table 1. Nongreat-circle relative equilibria at LEO

m1 (kg) m2 (kg) θ (deg) ϕ (deg) δ (deg)

100 9900 91.052659 1.052684 −0.000026048

the error δ is defined to be θ − ϕ − 90◦. The error δ 6= 0 numerically proves the existence of
non-great-circle equilibrium for long tethers.

Coulomb formations at GEO are being considered where Rc = 42, 000 km and the spacecraft’s
separation distances range from 10 m to 100 m. The current formulation to compute the non-great-
circle equilibria is independent of Coulomb formation spacecraft separation distances and can be
used to further analyze any separation distance between two spacecraft in formation. The effect of
non-great-circle equilibria on two-craft formation formation is studied as a function of spacecraft
separation distance L and mass distribution ratio

Mass Ratio:
m1

m1 +m2

The spacecraft separation distances range from 10 m to 1000 km and formation center of mass
distances from LEO to GEO heights. From the contour plots shown in Figure 6, separation distances
and mass asymmetry has an effect at LEO heights; however, for Coulomb formation distances at
GEO the deflection from normal is less than 10−6 degrees and is virtually zero for smaller separation
distances, and mass asymmetry also showed negligible effect on the attitude deflection. Even for a
case where there is a 10,000:1 mass ratio, the non-great-circle equilibria deflection for geostationary
orbits are on the order of 10−5 to 10−6 degrees. Therefore, the effect of orbit-attitude coupling
can be ignored for Coulomb formation separation distances at GEO to search for static Coulomb
structure using approximate numerical search algorithms such as evolutionary search strategies.

RELATIVE EQUILIBRIA IN THE RESTRICTED THREE-BODY SYSTEM

In a restricted three-body system, for the Coulomb spacecraft formation with SO(3) symmetry
the relative equilibrium is an equilibrium in a uniformly rotating frame. If the vector ξ denotes the
angular velocity of the uniformly rotating frame located at barycenter O, the augmented potential
for the two spacecraft formation is,

Vξ (r1, r2) = −µ1

(
m1

‖r1 − d1‖
+

m2

‖r2 − d1‖

)
− µ2

(
m1

‖r1 − d2‖
+

m2

‖r2 − d2‖

)
+ kc

q1q2
‖r1 − r2‖

e
− ‖r1−r2‖

λd − m1

2
〈ξ× r1, ξ× r1〉 −

m2

2
〈ξ× r2, ξ× r2〉

(36)

Then the relative equilibria of the system can be characterized by the critical points of the aug-
mented potential Vξ. The first variation of Vξ taken component wise with respect to q = (r1, r2) is
computed as

12
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Figure 6. Deflection for an Asymmetric Mass Distribution.

DVξ (r1, r2) · (δr1, δr2) = µ1m1
r1 − d1

‖r1 − d1‖3
· δr1 + µ1m2

r2 − d1

‖r2 − d1‖3
· δr2

+ µ2m1
r1 − d2

‖r1 − d2‖3
· δr1 + µ2m2

r2 − d2

‖r2 − d2‖3
· δr2

− kc
q1q2

‖r1 − r2‖2
e
− ‖r1−r2‖

λd

[
1 +
‖r1 − r2‖

λd

]
r1 − r2
‖r1 − r2‖

· (δr1 − δr2)

+m1

(
ξ̂ξ̂r1

)
· δr1 +m2

(
ξ̂ξ̂r2

)
· δr2

(37)

Using the expression for V
′
c from Eq. (17), Eq. (37) can be expressed as

DVξ (r1, r2) · (δr1, δr2) = µ1m1
r1 − d1

‖r1 − d1‖3
· δr1 + µ1m2

r2 − d1

‖r2 − d1‖3
· δr2

+ µ2m1
r1 − d2

‖r1 − d2‖3
· δr1 + µ2m2

r2 − d2

‖r2 − d2‖3
· δr2

+ V
′
c (‖r1 − r2‖)

r1 − r2
‖r1 − r2‖

· (δr1 − δr2)

+m1

(
ξ̂ξ̂r1

)
· δr1 +m2

(
ξ̂ξ̂r2

)
· δr2

(38)
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Then setting DVξ (r1e, r2e) = 0 leads to the following relative equilibria conditions:

µ1m1
r1e − d1

‖r1e − d1‖3
+ µ2m1

r1e − d2

‖r1e − d2‖3
+m1ξ̂ξ̂r1e + V

′
c

r1e − r2e
‖r1e − r2e‖

= 0 (39a)

µ1m2
r2e − d1

‖r2e − d1‖3
+ µ2m2

r2e − d2

‖r2e − d2‖3
+m2ξ̂ξ̂r2e − V

′
c

r1e − r2e
‖r1e − r2e‖

= 0 (39b)

The vectors R11, R12, R21 and R22 shown in Figure 3 are represented in terms of r1e, r2e, d1,
and d2 as follows

R11 = r1e − d1, R12 = r1e − d2

R21 = r2e − d1, R22 = r2e − d2
(40)

Therefore, Eqs. (39a) and (39b) become

µ1m1
r1e − d1

R3
11

+ µ2m1
r1e − d2

R3
12

r1e +m1ξ̂ξ̂r1e + V
′
c

r1e − r2e
‖r1e − r2e‖

= 0 (41a)

µ1m2
r2e − d1

R3
21

+ µ2m2
r2e − d2

R3
22

+m2ξ̂ξ̂r2e − V
′
c

r1e − r2e
‖r1e − r2e‖

= 0 (41b)

where R11 = ‖R11‖, R12 = ‖R12‖, R21 = ‖R21‖ and R22 = ‖R22‖.

Now consider a rotation matrix [FS] ∈ SO(3) that maps vectors from synodic frame S into
a new reference frame F . If we denote the vectors R1, R2, ω in the reference frame S then the
conditions of relative equilibria given in Eqs. 41a and 41b are invariant under the transformation
R1 = [FS] r1e, R2 = [FS] r2e and ω = [FS] ξ. As illustrated in Figure 7, a reference frame
is chosen such that the x-axis is parallel to the line connecting the two crafts, the z-axis being
perpendicular to both the vectors r1e and r2e, and the y-axis completing the triad. Also, let γ be
the angle in the orbit plane between the two frames S and F .

Z

Y

O

r1

r2

m2

m1

X

Figure 7. The Rotating Reference Frame (Restricted Three-body System)

In the context of the new frame F , the vectors can be expressed as R1 = (x1, yc, 0)T , R2 =
(x2, yc, 0)T , andω = (ω1, ω2, ω3)T . The vectors d1 and d2 in theF frame become (−d1 cos γ,−d1 sin γ, 0)

14



and (d2 cos γ, d2 sin γ, 0). Now the equilibrium conditions (41a) and (41b) expressed in scalar form
are,

−
(
ω2

2 + ω2
3

)
x1 + ω1ω2yc + µ1

(
x1 + d1 cos γ

R3
11

)
+ µ2

(
x1 − d2 cos γ

R3
12

)
= − V

′
c

m1
(42)

ω1ω2x1 −
(
ω2

1 + ω2
3

)
yc + µ1

(
yc + d1 sin γ

R3
11

)
+ µ2

(
yc − d2 sin γ

R3
12

)
= 0 (43)

(ω1x1 + ω2yc)ω3 = 0 (44)

−
(
ω2

2 + ω2
3

)
x2 + ω1ω2yc + µ1

(
x2 + d1 cos γ

R3
21

)
+ µ2

(
x2 − d2 cos γ

R3
22

)
=
V
′
c

m2
(45)

ω1ω2x2 −
(
ω2

1 + ω2
3

)
yc + µ1

(
yc + d1 sin γ

R3
21

)
+ µ2

(
yc − d2 sin γ

R3
22

)
= 0 (46)

(ω1x2 + ω2yc)ω3 = 0 (47)

It is also assumed that x1 > x2 and let L = x1 − x2 > 0. Further, define Rc = (xc, yc, 0)T

where xc = (m1x1 +m2x2) / (m1 +m2). Then the expressions for x1, x2 and yc are x1 =

xc +m2L/ (m1 +m2), x2 = xc −m1L/ (m1 +m2) and yc =
[
R2
c − L2

4

(
m1−m2
m1+m2

)2
]1/2

.

The relative equilibria of the two craft formation corresponds to solving the equations (42-47)
for a given set of values for µ1, µ2, m1, m2, L and Rc = ‖Rc‖. Since there are more number
of unknowns to the number of these equations certain constraints are needed in order to find the
relative equilibria. For libration point missions, the frame rotates at a constant angular velocity Ω
given in Eq. 10. Let us consider angular velocity constraints ω3 = Ω 6= 0 (Case 1) and ω3 = 0
(Case 2).

Case 1. As ω3 6= 0 Eq. (44) implies (ω1x1 + ω2yc) = 0 and x1 6= 0 due to the adopted frame
which indicates that ω1 = 0 and ω2yc = 0. Using the conditions ω3 6= 0 and ω1 = 0 in equations
(43) and (46) and subtracting one from the other gives rise to[

µ1

(
1
R3

11

− 1
R3

21

)
(yc + d1 sin γ) + µ2

(
1
R3

12

− 1
R3

22

)
(yc − d2 sin γ)

]
= 0 (48)

From Eq. (48), two more conditions arise, yc + d1 sin γ 6= 0, yc − d2 sin γ 6= 0 or yc + d1 sin γ =
0, yc − d2 sin γ = 0. Therefore, the conditions of relative equilibria are further expressed as Case
1a and Case 1b.

Case 1a. ω1 = 0, ω3 6= 0, ω2yc = 0, yc + d1 sin γ 6= 0 and yc − d2 sin γ 6= 0.

Here yc + d1 sin γ 6= 0 implies that yc 6= 0, γ 6= 0 and forces ω2 = 0 and Eq. (48) yields
R11 = R21 and R12 = R22. Applying these conditions to Eqs. (42) and (45) and dividing one over
the other results in the conditions

(m1x1 +m2x2) = 0 and γ = 90 degrees (49)

Therefore the equilibrium solutions in the context of a restricted three-body system (circular orbits)
are

R1 =
(

1
2L, yc, 0

)T ,R2 =
(
−1

2L, yc, 0
)T , ω = (0, 0,Ω)T

yc = Rc, and V
′
c = − m1m2L

(m1+m2)

((
µ1

R3
11

+ µ2

R3
12

)
− Ω2

)
15



Since Rc · ω = 0, this is a great circle relative equilibrium. However, in the context of restricted
three-body system, for any of the collinear libration point it can be shown that Ω2 < µ1

R3
11

+ µ2

R3
12

which

implies that V
′
c < 0 and from Eq. (17) it indicates that the two spacecraft masses must be charged

with same polarity. For any of the triangular libration point it can be shown that Ω2 > µ1

R3
11

+ µ2

R3
12

which implies that V
′
c > 0 and it indicates that the two spacecraft masses must be charged with

opposite polarity. For example, Figure 8 shows the tangential equilibrium solutions at a collinear
(L2) and a triangular (L4) libration points.

L1

L4

L3
L2

L5

m1

m2

m1

m2

?

Figure 8. Tangential Relative Equilibrium

Case 1b. ω1 = 0, ω3 = Ω 6= 0, ω2yc = 0, yc + d1 sin γ = 0 and yc − d2 sin γ = 0.

It is assumed that x1 > x2 > 0 for Coulomb formation and as ω3 6= 0 and yc + d1 sin γ =
0, yc − d2 sin γ = 0 implies that yc = 0, γ = 0 for collinear libration points. However, for Earth-
moon triangular libration points yc = 0, γ = 60.31 degrees and appropriate values ofR11, R12, R21

andR22 should satisfy Eq. (48). Therefore, for any libration point, from Eq. (44) we can set ω1 = 0
and ω2 = 0. With these conditions, Eqs. (42) to (47) reduce to(

−Ω2 +
µ1

R3
11

+
µ2

R3
12

)
x1 +

µ1d1

R3
11

− µ2d2

R3
12

= − V
′
c

m1
(50a)(

−Ω2 +
µ1

R3
21

+
µ2

R3
22

)
x2 +

µ1d1

R3
21

− µ2d2

R3
22

=
V
′
c

m2
(50b)

and solving these equations yields radial relative equilibrium with the Coulomb forces directed
along the radial axis. The equilibrium solution configuration is

R1 = (x1, 0, 0)T ,R2 = (x2, 0, 0)T

And the expression for V
′
c is

V
′
c =

m1m2

m1 +m2

(
Ω2L− µ1

(
1
R3

11

− 1
R3

21

)
− µ2

(
1
R3

12

− 1
R3

22

))
(51)
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Since x1 > x2, from Eq. (40) it can be shown for radial equilibrium thatR11 > R21 andR12 > R22

for both the collinear and triangular libration points which indicate that V
′
c > 0. AgainRc ·ω = 0,

and this is a great circle relative equilibrium as shown in Figure 9. And as V
′
c > 0 and from Eq.

(17) it indicates that the two spacecraft masses must be charged with opposite polarity. This implies
that there is a Coulomb force acting between the two masses along the radial direction when the
formation is at any of the libration points.

L1

L4

L3 L2

L5

m1m2

m1

m2

?

Figure 9. Radial Relative Equilibrium

Case 2. ω3 = 0. With ω3 = 0, the relative equilibrium equations reduce to

−ω2
2x1 + ω1ω2yc + µ1

(
x1 + d1 cos γ

R3
11

)
+ µ2

(
x1 − d2 cos γ

R3
12

)
= − V

′
c

m1
(52a)

ω1ω2x1 − ω2
1yc + µ1

(
yc + d1 sin γ

R3
11

)
+ µ2

(
yc − d2 sin γ

R3
12

)
= 0 (52b)

−ω2
2x2 + ω1ω2yc + µ1

(
x2 + d1 cos γ

R3
21

)
+ µ2

(
x2 − d2 cos γ

R3
22

)
=
V
′
c

m2
(52c)

ω1ω2x2 − ω2
1yc + µ1

(
yc + d1 sin γ

R3
21

)
+ µ2

(
yc − d2 sin γ

R3
22

)
= 0 (52d)

Setting yc + d1 sin γ = 0 and yc − d2 sin γ = 0, the equilibrium conditions yield radial equilibrium
solutions as seen in Case 1b, but with ω3 replaced by ω2. Therefore, we consider only the case
where yc + d1 sin γ 6= 0 and yc − d2 sin γ 6= 0. To further study the conditions, we assume that
R11 = R21 and R12 = R22 (Case 2a) as well as R11 6= R21 and R12 6= R22 (Case 2b).

Case 2a. ω3 = 0, R11 = R21, R12 = R22, yc + d1 sin γ 6= 0 and yc − d2 sin γ 6= 0.

Using yc + d1 sin γ 6= 0 and yc− d2 sin γ 6= 0 yields R11 = R21 and R12 = R22 which gives the
condition x1 = −x2. From Eqs. (52b) and (52d) it implies that ω1 6= 0 and we can set ω1 = Ω and
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ω2 = 0. Then, using x1 = −x2 and ω2 = 0 in Eqs. (52a) and (52c) yields m1 = m2 as the only
possible condition. As a result the equilibrium solutions obtained are

R1 =
(

1
2L, yc, 0

)T ,R2 =
(
−1

2L, yc, 0
)T , m1 = m2,

yc = Rc, V
′
c = − m1m2L

(m1+m2)

(
µ1

R3
11

+ µ2

R3
12

)
< 0

These orbit normal equilibrium solutions are applicable for both triangular and collinear libration
points with V

′
c < 0. Specifically, for triangular libration points R11 = R21 = R12 = R22 condition

holds true. Once again this is a great circle relative equilibrium since Rc · ω = 0. As V
′
c < 0 and

from Eq. (17) it indicates that the two spacecraft masses must be charged with the same polarity.
Therefore, there is a Coulomb force acting between the two masses perpendicular to the orbital
plane and the two masses are equal and equidistant to the barycenter as shown in Figure 10 at a
collinear (L2) and a triangular (L4) libration points.

L1

L4

L3
L2

m1

m2

m1

m2

?

O

eè

er

eh

Figure 10. Orbit Normal Relative Equilibrium

Case 2b. ω3 = 0, R11 6= R21, R12 6= R22, yc + d1 sin γ 6= 0 and yc − d2 sin γ 6= 0.

If we assume that the F frame is aligned with the orbit normal configuration, then γ = 90 degrees.
And, solving Eqs. (52b) and (52d), we have

− (x1 − x2)ω1ω2 = yc

((
µ1

R3
11

+
µ2

R3
12

)
−
(
µ1

R3
21

+
µ2

R3
22

))
+ µ1d1

(
1
R3

11

− 1
R3

21

)
+ µ2d2

(
1
R3

22

− 1
R3

12

)
6= 0

(53)

which implies that ω1 6= 0 and ω2 6= 0. Now, combining Eqs. (52a) and (52c), we obtain

(m1 +m2) (ω2xc − ω1yc)ω2 = m1x1

(
µ1

R3
11

+
µ2

R3
12

)
+m2x2

(
µ1

R3
21

+
µ2

R3
22

)
6= 0 (54)

Eq. (54) implies that (ω2xc − ω1yc) 6= 0. Multiplying Eq. (52b) by m1 and (52d) by m2 and then
adding the resulting equations gives

− (m1 +m2) (ω2xc − ω1yc)ω1 =
(
m1

(
µ1

R3
11

+
µ2

R3
12

)
+m2

(
µ1

R3
21

+
µ2

R3
22

))
yc

+m1

(
µ1d1

R3
11

− µ2d2

R3
12

)
+m2

(
µ1d1

R3
21

− µ2d2

R3
22

)
6= 0

(55)
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If we define fx and fy to be

fx = µ1

(
m1x1

R3
11

+
m2x2

R3
21

)
+ µ2

(
m1x1

R3
12

+
m2x2

R3
22

)
6= 0 (56)

fy =
(
µ1

(
m1

R3
11

+
m2

R3
21

)
+ µ2

(
m1

R3
12

+
m2

R3
22

))
yc

+m1

(
µ1d1

R3
11

− µ2d2

R3
12

)
+m2

(
µ1d1

R3
21

− µ2d2

R3
22

)
6= 0

(57)

The ratio of Eqs. (54) and (55) is

ω2

ω1
= −fx

fy
(58)

Eliminating ω1 and ω2 from Eqs. (53), (54) and (55) one obtains

f = fxf1 + fyf2 = 0 (59)

where

f1 = x2

(
µ1

R3
11

+
µ2

R3
12

)
−x1

(
µ1

R3
21

+
µ2

R3
22

)
+
(
x2

(
µ1d1

R3
11

− µ2d2

R3
12

)
+ x1

(
µ2d2

R3
22

− µ1d1

R3
21

))
1
yc

and

f2 =
((

µ1

R3
11

+
µ2

R3
12

)
−
(
µ1

R3
21

+
µ2

R3
22

))
yc +

(
µ1d1

R3
11

− µ2d2

R3
12

)
+
(
µ2d2

R3
22

− µ1d1

R3
21

)
.

The solutions of Eq. (59) gives the nongreat-circle equilibria and it can be shown that such
nongreat-circle equilibria exist only if m1 6= m2. Similar to the solution procedure followed for
two-body system, Eq. (59) can be expressed in terms of one variable θ, the angle between Rc and
x-axis of the rotating frame. Coulomb formation is feasible at the libration points but the spacecraft
separation distances range from 10 m to 30 m due to the reduced range of Debye length. The current
formulation to compute the nongreat-circle equilibria is independent of Coulomb formation space-
craft’s separation distances and can be used to further analyze any separation distance between two
spacecraft in formation. The effect of nongreat-circle equilibria on two-craft formation is studied as
a function of spacecraft separation distance L and mass distribution ratio

Mass Ratio:
m1

m1 +m2

The spacecraft separation distances range from 10 m to 10000 km and formation center of mass
distances fixed at L1 and L2. Figure 11 show the numerical solutions for a range of spacecraft
separation distances. For spacecraft separated by more than 9000 km at L1 and L2 a deflection
of about 1 degree from the vertical to the orbital plane is observed. And, for Coulomb formation
distances at L1 and L2 the deflection from normal is less than 10−6 degrees and is virtually zero
for smaller separation distances, and mass asymmetry also showed negligible effect on the attitude
deflection. Therefore, the effect of orbit-attitude coupling can be ignored for Coulomb formation
separation distances at libration points.
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Figure 11. Deflection for an Asymmetric Mass Distribution.

CONCLUSION

In this paper, the relative equilibria of a two-craft formation moving in a two-body system and
a three-body system are discussed. Previous work has used the simple principle axes condition.
The negligible non-great circle effects shown in this paper validates this assumption for Coulomb
tether applications. Consequently, for a charged two-craft formation, we conclude that the principal
axis condition is very good for genetic algorithms which seek approximate equilibrium answers.
However, if one wants to do the full non-linear solutions, these effects can be taken into consider-
ation. Further, for a two spacecraft Coulomb formation moving in a restricted three-body system,
this paper presents the relative equilibria at all five libration points. We also numerically show that
the non-great circle effects exist for a restricted three-body system and illustrated the results at the
L1 and L2 collinear libration points. Further, the results obtained in this paper could be used to
investigate the linearized dynamics and stability of a 2-craft Coulomb tether formation at libration
points.

APPENDIX A. LIE GROUPS

To explain the terminology used in this paper, basic properties and definitions of Lie Groups are
introduced here. For a thorough presentation of these concepts refer.18

Definition 1 [Group of transformations]. A group of transformations G is an aggregate set of
transformations gi such that the following properties are satisfied:

i) It contains the identity transformation.
ii) Corresponding to each transformation gl there is an inverse transformation g−1

l .
iii) The composition of transformations holds glgk ∈ G and the associativity rule (gigj) gk =

gi (gjgk) is satisfied.

For instance, the set of nonsingular linear transformation matrices forms a group as all the above
three properties are satisfied. Another important example is the symmetry group of a rigid body. To
maintain the symmetry of a rigid body, symmetry groups or symmetry transformations gives rise
to the set of all distance preserving transformations which transforms the position of the body but
preserves the distance between all pairs of points of the rigid body.

Definition 2 [Lie group]. A Lie group is a smooth manifoldG that has a group structure consistent
with its manifold structure such that the group operation and its inversion are smooth maps between
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manifolds. A matrix representing a rotation about an axis through an angle is an example of a Lie
group. The three-dimensional rotation group SO(3) is defined as

SO(3) =
{
C : R3 → R3 linear, CTC = E and detC = 1

}
Lie groups describe continuous symmetries in physical systems using its Lie algebra g∗ for its
calculations. Lie algebra is a vector space and uses linear algebra to study Lie groups. For example,
SO(3) is a Lie group and can be characterized by its Lie algebra. A Lie group G and its Lie
algebra g∗ are related similar to the way a flow and the associated vector field are related. The
corresponding vector field v on a flow Φ (x, t) given by

v (x) =
d

dt
|t=0Φ (x, t) ,

is called the infinitesimal generator of the flow.

Let so(3) be the set of skew-symmetric matrices defined by

so(3) =
{
ξ̂ : R3 → R3, linear

∣∣∣ξ̂ + ξ̂T
∣∣∣ = 0

}
where ξ = (ξ1, ξ2, ξ3) is a vector and ξ̂ is

[
ξ̂
]

=

 0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0


This set so(3) forms the Lie algebra of SO(3) given as ξ̂r = ξ × r for any r ∈ R3. If we
define the Lie algebra isomorphism between the space R3 and so(3) by ξ 7→ so(3) then the matrix
exponential eξ̂t is a rotation about ξ by the angle ‖ξ‖ t in the form

C (t) = eξ̂t.
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