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AUTONOMOUS SPACE-BASED IMAGING: REINFORCEMENT
LEARNING SCHEDULING WITH IMAGING–DOWNLINK

TRADEOFFS ACROSS ORBITAL REGIMES

Daniel Huterer Prats* and Hanspeter Schaub†

The rapid growth of resident space objects (RSOs) is increasing demands on space
situational awareness (SSA) and space domain awareness (SDA). Space-based space
surveillance (SBSS) can provide timely, illuminated observations, but scheduling is
challenging due to rapidly changing line-of-sight and illumination, tight pointing
constraints, emergence of short-notice targets, and limited onboard resources such
as energy, momentum, and storage. This paper researches a resource-aware rein-
forcement learning (RL) scheduler for a single low Earth orbit (LEO) platform that
images targets across LEO, medium Earth orbit (MEO), and geosynchronous Earth
orbit (GEO), a “LEO-to-any” setting. The problem is posed as a partially observable
Markov decision process in which the agent selects among target imaging, down-
link, charging, and momentum desaturation actions. A tunable objective combines
imaging reward and downlink reward through a mixing parameter α that controls the
trade between imaging and delivery. Monte Carlo results show that a policy trained
in a LEO-only catalog transfers to a “LEO-to-any” mixed-regime catalog without
retraining, maintaining stable acquisition performance while improving total return
and illuminated-image throughput. Analysis of actions during eclipse periods further
indicates eclipse-effective behavior, with most eclipse-time imaging decisions se-
lecting illuminated targets or substituting higher-altitude targets, and LEO selections
exhibiting a measurable sunward pointing bias in Hill coordinates. These results
support scalable multi-regime autonomous SBSS scheduling that balances collection
against timely ground delivery under realistic resource and geometry constraints.

INTRODUCTION

The rapid growth in resident space objects (RSOs), fueled by the deployment of numerous low
Earth orbit (LEO) constellations and reduced barriers to space access, has led to a surge in cataloged
space assets. Estimates indicate over 9700 active satellites currently orbiting in LEO, with projec-
tions of tens of thousands more in the next decade.1, 2 This proliferation places increasing stress
on space situational awareness (SSA) and space domain awareness (SDA) architectures tasked with
maintaining safe and sustainable operations. For decades, satellite tracking and imaging have been
predominantly conducted from ground-based telescopes and radar networks, which provide mature,
high-quality data but are subject to weather, atmospheric scintillation, seeing, and nighttime-only
optical access. These environmental and geometric constraints can limit optical systems to oper-
ability fractions as low as 25% in some locations.3

Space-based space surveillance (SBSS) has long been recognized as a compelling complement
to ground-based sensing.4, 5 By operating above the atmosphere, space-based optical sensors are
not limited by clouds, can observe closer to bright bodies such as the Sun and Moon, and over the
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Figure 1 Space-based RSO imaging under illumination and spacecraft dynam-
ics/sensor constrains. LEO-platform imaging targets in LEO, MEO and GEO orbit.

course of an orbit can achieve an effective field of regard that covers the entire sky.6 Recent SBSS
architecture studies have examined how single or distributed space-based platforms can detect and
track debris and satellites in GEO, MEO, and LEO, quantifying detection limits, cataloging perfor-
mance, and revisit statistics for different orbital configurations and optical payloads.7, 8 These works
highlight both the geometric advantages of SBSS and the operational challenges that arise once the
sensor itself becomes a rapidly moving observer with its own lighting, pointing, and communication
constraints.

A parallel line of research focuses on orbit determination (OD) from short-arc optical measure-
ments collected by narrow field-of-view (FoV) space-based or ground-based sensors. The short
duration of these passes, combined with high relative angular rates, yields significant initial state
uncertainty.9, 10 To address this, a variety of estimation techniques have been explored, including
admissible-region–based initial orbit determination, batch and sequential estimators, genetic algo-
rithms, and multiple shooting methods.11–14 This paper assumes that target orbits are known with
sufficient fidelity for tasking and focuses instead on the onboard scheduling problem: given a cat-
alog of RSOs with known orbits, how should a space-based inspector allocate limited pointing,
energy, and downlink resources over time to maximize mission value?

Tasking and scheduling of sensors for SSA/SBSS have been shown to be NP-hard, with strong
analogy to the vehicle routing problem with time windows.15 Consequently, exact mixed-integer
formulations and constraint satisfaction approaches16 can only guarantee optimality for small prob-
lem instances within a reasonable timeframe. To improve scalability, numerous heuristic and meta-
heuristic schedulers have been proposed, including greedy policies,17 multi-objective genetic al-
gorithms (e.g., NSGA-II) for multi-sensor, multi-regime scenarios,18 and auction or information-



gain–driven schedulers.19 While these methods can produce high-quality schedules, they typically
must be resolved whenever new targets or updated orbital data become available, limiting their re-
sponsiveness in highly dynamic environments and making it difficult to consistently account for
detailed spacecraft subsystem constraints.

Reinforcement learning (RL) offers an alternative by learning reusable policies that generalize
across scenarios and enable fast, reactive decision-making at run time.20 In the SSA context, RL
has been used to schedule ground-based sensor networks, where agents learn to select which ground
telescopes or radars should track which RSOs over time.21–25 Beyond SSA, RL and deep RL have
shown potential to solve the Earth observation (EO) satellite scheduling problem, where targets are
stationary or slow-moving and the agent manages trade-offs between imaging opportunities, energy,
momentum, and onboard storage.26–33 In these EO settings, the orientation of the imaging satellite
is predominantly one-way (looking down toward Earth and slewing along and across track), which
simplifies access modeling and leads to more predictable imaging windows in terms of illumination
constraints.

In contrast, space-based sensor tasking for space surveillance is inherently more challenging.
Targets span multiple orbital planes and regimes, and their relative motion with respect to a LEO
inspector is rapid and varies substantially across LEO, MEO, and GEO. Consequently, usable imag-
ing windows are brief, highly geometry dependent, and tightly constrained by illumination. Early
RL-based SBSS work used a LEO-based sensor to image GEO targets, optimizing metrics such as
mean trace covariance over the catalog while benefiting from the quasi-stationary nature of GEO or-
bits.34 That formulation focused on target selection and did not model realistic spacecraft subsystem
or safety constraints such as battery or data management, reaction-wheel momentum buildup and
desaturation, or explicit downlink operations. More recently, a LEO-to-LEO baseline was demon-
strated using a high-fidelity simulator with flight-like attitude, power, and communication models
and a shared safety shield.35 That work trained a Proximal Policy Optimization (PPO)36 policy to
schedule imaging and eclipse-time downlink under realistic line-of-sight (LOS) and illumination
constraints, but focused on a single orbital regime and used a single variable objective function.

However, many SSA and EO missions must balance multiple competing objectives, such as max-
imizing image collection, optimizing timely delivery of data to the ground, and preserving energy
and momentum margins for future operations. Multi-objective reinforcement learning (MORL) pro-
vides a formal framework for such problems, using scalarization or Pareto-based methods to trade
different reward components.37, 38 In satellite scheduling, MORL and deep RL have been explored
for agile EO satellites to jointly optimize observation yield and other mission metrics under resource
constraints.39 Yet, to the best of the authors’ knowledge, MORL has not been systematically applied
to space-based SSA in a way that explicitly trades off image acquisition against downlink timeli-
ness, nor has it been combined with a unified, multi-regime (LEO–MEO–GEO) SBSS scheduling
environment with flight-like platform constraints.

The present paper builds on the prior LEO-to-LEO RL baseline35 and advances SBSS autonomy
along two main axes:

1. Multi-regime scheduling (“LEO-to-any”): The environment is extended so that a single
LEO platform can simultaneously schedule imaging of RSOs in LEO, MEO, and GEO, in
addition to isolated LEO-to-MEO and LEO-to-GEO cases. This enables a unified assess-
ment of how orbital regime affects lighting bias, day/night cadence, and attainable autonomy
metrics relative to the LEO-only baseline.



2. Reward-aware imaging vs. delivery: A tunable, multi-objective reward formulation is in-
troduced that explicitly trades illuminated image acquisition against timely downlink to the
ground. A scalarization parameter α balances image and downlink rewards, enabling a reward
trade study that exposes how the learned policy reallocates effort among imaging, down-
link, charging, and desaturation as mission objectives shift from collection-heavy to latency-
sensitive regimes.

All experiments are conducted in a Basilisk * and BSK-RL † simulation environment with cou-
pled orbit, attitude, power, and communication dynamics, using PPO agents shielded by safety
logic that enforces hard limits on battery state-of-charge, data storage usage, and reaction-wheel
momentum.40, 41 The resulting performance shows that a LEO-only trained policy is well capable to
adapting to an environment with RSOs in multiple orbit regimes. Moreover, the α tuning parameter
can be used to significantly impact the delivery time of images from the spacecraft to the ground
and change the behavior of the policy.

SPACE-BASED SPACE SURVEILLANCE ENVIRONMENT

Space-based SSA departs significantly from the well studied agile Earth observation satellite
(AEOS) setting commonly used in RL scheduling studies.32, 33, 42 In AEOS, targets are fixed or
slow-moving ground locations causing visibility windows to be relatively long and predictable. In
contrast, a space-to-space imaging platform must contend with rapidly evolving relative motion
between the imaging spacecraft and the RSOs, including targets in different planes and orbital
regimes (LEO, MEO, GEO). Targets can enter and exit the field of view (FOV) from any direction,
with imaging opportunities varying quickly due to lighting, LOS constraints, and the spacecraft’s
own attitude and resource state.

Compared to the prior work,35 which considered a single LEO inspector imaging LEO RSOs,
this work extends the environment in two key ways:

1. The RSO catalog now spans multiple orbital regimes, enabling a single LEO platform to
schedule imaging of targets in LEO, MEO, and GEO (“LEO-to-any”), as well as LEO-to-
MEO and LEO-to-GEO subsets. Adaptability is demonstrated by training policies in a LEO-
only environment and deploying them, without retraining, in a mixed-regime LEO-to-any
setting for evaluation.

2. The reward function is decomposed into separate terms for illuminated image acquisition
and timely downlink, which are combined via a tunable parameter α to study reward-aware
tradeoffs between collection and delivery. As detailed in section , a range of alpha values is
tested to study policies across the entire spectrum of the tradeoff balance between imaging
and downlinking.

The underlying spacecraft model, controller, and message-passing architecture in Basilisk are kept
consistent with the baseline so that observed changes in behavior can be attributed to multi-regime
geometry and reward balancing rather than to platform modeling differences.

*https://avslab.github.io/basilisk/
†https://avslab.github.io/bsk_rl/
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Simulation Environment Overview

The core environment is implemented in Basilisk which is a fast, physics-based and flight-proven
spacecraft simulation environment. Basilisk uses a modular, message-passing architecture to as-
semble closed-loop simulations of multi-physics spacecraft systems. In this SBSS configuration,
a single LEO imaging spacecraft is simulated together with an RSO catalog and a ground-station
network. Each episode spans several orbits and is discretized into decision steps at which the RL
agent selects a high-level action. Between decisions points, Basilisk propagates the coupled orbit,
attitude, power, and data-handling dynamics.

The LEO imaging spacecraft is placed in a near-circular 500 km orbit, consistent with the earlier
LEO-to-LEO study. The RSO catalog contains multiple shells: a dense LEO shell, a sparser MEO
shell, and GEO ring targets.

Table 1 Mixed-regime RSO catalog distribution and orbital-element sampling bounds.
Regime Mix weight Altitude range h [km] e range i range [deg]

LEO 50% 400–2000 0–0.02 0–180
MEO 30% 2000–35000 0–0.10 0–120
GEO 20% 35486–36086 0 0–15

Notes: h is sampled uniformly above mean Earth radius (RE = 6371 km). LEO/MEO draws reject samples until
a(1− e)−RE ≥ 400 km.

Orbital elements are randomly drawn within regime-specific bounds to create diverse viewing
geometries and lighting cadences. A set of fixed ground stations provides downlink opportunities
and the visibility to these stations is computed using standard slant-range and horizon geometry.
The exact orbital parameters and ground-station locations used in this work are summarized in the
Appendix.

Illumination is not modeled as a simple binary shadow/light flag. Instead, a continuous eclipse
factor allows partially eclipsed geometries to still receive reward. Figure 2 from35 illustrates how
LOS and eclipse geometry combine to determine whether an imaging attempt receives full or zero
reward.

Figure 2 Space-based RSO imaging under eclipse and LOS restrictions. Green: fully
illuminated; shaded: partially illuminated; red: LOS violation.

At each environment step, RSOs whose elevation satisfy visibility criteria are potentially consid-
ered candidates. The environment then constructs an observation vector for the RL agent (described



in Section ) and applies the chosen high-level action (image, downlink, charge, desaturate) to prop-
agate the environment accordingly, until that step is concluded.

Episodes are finite-horizon, typically spanning the equivalent of 150 imaging actions worth of
several orbits of the LEO inspector. The horizon is chosen so that, in the absence of resource
constraints, the spacecraft would have at least one opportunity to view most or all RSOs in the
catalog. For a catalog of T targets the episode duration is set to approximately 150% of the time
needed to image T targets back-to-back, following the design of the prior LEO-only study.35

Spacecraft Dynamics, Power, and Control

The inspector spacecraft configuration follows the AEOS-style platform used in prior Basilisk
and BSK-RL studies.32, 43 The rigid-body dynamics, reaction-wheel assembly, and power system
are modeled explicitly. Key properties include:

• A 330 kg spacecraft with a diagonal inertia matrix representative of a small agile observatory.

• Three orthogonal reaction wheels with realistic torque and speed limits, enforcing actuator
saturation and the need for periodic momentum desaturation.

• A finite-capacity battery and body-fixed solar arrays, with power generation dependent on
attitude and eclipse state and power consumption driven by base loads, imaging payload op-
eration, transmitter use, and desaturation events.

Attitude control is provided by Basilisk’s mrpFeedback controller,‡ an MRP-based feedback law
implemented as in Schaub and Junkins.44 A guidance module computes the desired attitude to track
a selected target or ground station and then the controller drives the body toward this reference
while respecting reaction-wheel limits. The closed-loop architecture mirrors the previous LEO-to-
LEO work and is illustrated in Fig. 8 (Appendix ).

To ensure that the RL agent must actively manage energy and storage, the battery state of charge
is initialized in a mid-range band (25–50% of capacity), and the data buffer is sized to hold only
a fraction of the images that would be required to image the entire catalog. This prevents trivial
solutions (e.g., imaging everything without needing to charge or downlink) and forces the policy
to trade imaging against charge and downlink actions. A detailed list of spacecraft and controller
parameters used is given in.35

Targeting, Imaging, and Downlink Constraints

At each decision point, the environment identifies unimaged (or unsuccessfully imaged) RSOs
within the current field of regard and adds those to the current potential target list. This list is
subsequently organized in increasing order of elevation and then size adjusted for an appropriate
dimension of the observation space described in .

For a successful Image action, additional constraints must hold at the time of capture:

‡https://avslab.github.io/basilisk/Documentation/fswAlgorithms/attControl/
mrpFeedback/mrpFeedback.html
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https://avslab.github.io/basilisk/Documentation/fswAlgorithms/attControl/mrpFeedback/mrpFeedback.html


• Attitude error and rate: the MRP attitude error and attitude rate error must be below a
specified threshold.

• Illumination: the target must be sufficiently illuminated, and quantified using a continuous
eclipse illumination factor si ∈ [0, 1] that also considers penumbra. Only images taken when
si > ethresh are treated as sufficiently illuminated in the reward function.

• Timing: the spacecraft must satisfy the above conditions for at least one full iteration of the
flight software evaluation during the imaging action.

Each successful capture consumes a fixed amount of onboard storage, regardless of illumination
quality, reflecting the assumption that images are not processed or filtered onboard. Downlink
actions point the spacecraft toward a visible ground station and transmit data at a fixed baud rate
subject to access constraints. Storage is freed as data is downlinked, but downlink also consumes
power and occupies attitude and pointing time that could otherwise be used for imaging or charging.
The key targeting, imaging, and downlink parameters are summarized in Table 8.

Problem Objective

From the environment perspective, the high-level objective is to:

• maximize the number of RSOs that are both imaged under valid illumination and successfully
downlinked to the ground, and

• maintain safe operation with respect to battery state-of-charge, reaction-wheel momentum,
and storage capacity.

In the earlier LEO-only work, this objective was expressed as maximizing the fraction of illuminated
targets imaged out of all targets, Iill/T , under hard constraints. That environment-level objective
is retained here but is now coupled to a multi-objective RL reward: separate reward components
Rimage and Rdownlink are combined via the scalarization

J(α,Rimage, Rdownlink) = (1− α)Rimage + αRdownlink, α ∈ [0, 1].

Episodes terminate either when the horizon is reached, all targets are imaged or when critical safety
limits (e.g., depleted battery, unrecoverable wheel saturation) are violated, encouraging policies
that remain resource-aware and operationally safe while exploiting the rich, multi-regime SBSS
geometry.

The key challenges of this SBSS task include:

• adapting to orbital dynamics (including elliptical target orbits) and rapidly changing eclipse
conditions;

• operating under limited energy, momentum, and data storage;

• respecting geometric constraints (LOS, FOV, attitude, and rate limits);

• balancing image collection against timely downlink under a tunable, multi-objective reward.



REINFORCEMENT LEARNING SETUP

Autonomous space-based tasking in a dynamic orbital environment is a natural setting for rein-
forcement learning (RL), where an agent must make sequential decisions to maximize long-term re-
turns under uncertainty.20 In this work, the autonomous imaging and downlink scheduling problem
for SBSS is formulated as a partially observable Markov decision process (POMDP). The POMDP
framework allows the policy to reason over incomplete state information, adapt to changing target
visibility and lighting, and manage limited onboard resources while satisfying operational con-
straints.

A POMDP is defined by a state space S, action space A, transition function T , reward function
R, observation space O, and observation model Z . Because the true simulator state is not directly
observable, the agent receives observations ok ∈ O at discrete decision times tk and selects actions
ak ∈ A to maximize the expected discounted sum of future rewards

E

[
T∑

k=0

γkrk

]
, (1)

where γ ∈ [0, 1) is the discount factor, rk is the scalar reward at decision k, and T is the episode
horizon. Due to the varying step durations across the four different actions the problem is structured
as a semi-POMDP, where the discount factor γ is not a per-step discount factor but rather per-second.
This is done to account for the different time-opportunity cost of each action. The formulation of
the semi-POMDP is done as in equation (5) of Reference 42.

POMDP Formulation

The elements of the POMDP tuple for the SBSS task are:

State space: The underlying simulator state in Basilisk provides the generative model for the
Markov process and includes:

• inspector orbit and attitude states

• RSO orbital states (LEO/MEO/GEO) and priorities

• internal subsystem states (battery state-of-charge, data storage, wheel momentum)

• environmental states (illumination factors, eclipse intervals, ground-station visibility).

This full state is not exposed directly to the agent, but is used to compute observations, rewards, and
transitions.

Observation space: The agent receives a compact, normalized observation vector containing
quantities relevant to scheduling and resource management. The observation design is intentionally
regime-agnostic: the policy is not given explicit labels indicating whether a target is in LEO, MEO,
or GEO. Hence, regime-specific behavior arises solely through geometric and lighting differences.



Table 2 Observation space elements provided to the agent at each decision step.
Category Element Description Dim.

Spacecraft
sdata Fraction of onboard data storage used 1
sbatt Normalized battery state-of-charge 1
smom Normalized wheel momentum magnitude 1

Targets

ϵi Elevation angles of candidate targets i N
rHBR,i Relative position to target i in Hill frame 3N

ϕi Boresight–target angles for target i N
di Distance to target i N
si Illumination factors for target i N

Environment
estart, eend Normalized eclipse start/end times 2
gopen, gclose Normalized GS window open/close times 2×NGS

At each decision step, the environment constructs the observation from global spacecraft features
and a subset of candidate targets. Table 2 summarizes the observation elements.

A key design choice is that only the top N = 10 candidate RSOs are provided at each step.
These are selected from all LOS-valid targets and sorted by ascending local elevation angle. Thus,
when more than 10 RSOs are visible, the observation favors targets closer to the horizon. In multi-
regime catalogs, this mechanism tends to expose more LEO targets in the earlier episode phase
(which sweep rapidly through low and mid elevations) and can, in dense scenes, temporarily exclude
some high-elevation MEO/GEO targets from the candidate set. Nonetheless, further-away MEO
and GEO targets would still appear with lower elevation angles and be considered. As a result,
a mild preference for LEO targets observed in the early phase may be interpreted primarily as a
consequence of the candidate-selection heuristic, not as an inherent bias arising from the fact that
the policy was trained in a LEO-only environment. Over the course of the episode, higher elevation
targets have been observed to enter the list of N = 10 candidates.

Action space: At each decision step, the agent chooses one action from a discrete set:

• Image(i): slew and settle to image candidate target i ∈ {1, . . . , N} for a fixed duration
(∆t =300 seconds)

• Charge: orient for solar charging for a fixed interval (∆t =300 seconds)

• Downlink: point toward a visible ground station and transmit stored data (∆t =180 sec-
onds)

• Desat: perform a momentum desaturation maneuver (∆t =150 seconds).

Transition model: The transition model is implemented as a deterministic generative simulator.
Given the current state and chosen action, Basilisk propagates the environment for a period of ∆t =
(based on the chosen action):

• inspector orbit and attitude,

• RSO motion in their respective orbits,



• battery state-of-charge and power flows,

• data storage usage and downlink throughput,

• eclipse status and LOS to RSOs and ground stations.

The next observation and reward are computed from the resulting state.

Reward Decomposition and α Trade Study

To capture the competing operational goals of maximizing illuminated image collection and max-
imizing timely delivery of useful imagery to the ground, a scalarized multi-objective reward of the
form

J(α) = (1− α)Rimage + αRdownlink, α ∈ [0, 1], (2)

is adopted, where Rimage measures illuminated image acquisition and Rdownlink measures delivery
of those images to the ground. This is a standard linear scalarization in multi-objective RL,37, 38

and sweeping α yields a family of policies ranging from imaging-heavy to delivery-heavy mission
preferences.

At each decision step k, the agent selects an action and the environment updates the onboard
image buffer. The episode return is scalarized using (2), where the imaging term rewards the acqui-
sition of an illuminated image and the downlink term rewards the delivery of illuminated images to
the ground. For the purposes of this paper, targets are equally weighted with wi = 1 for all i ∈ T .

Imaging component: Each Image action targets a single candidate RSO, so at most one new
image is generated per decision. Let ik denote the selected target at step k. Executing Image pro-
duces one stored image associated with target ik provided that line-of-sight and pointing constraints
are met. However, only sufficiently illuminated captures contribute to reward. An illuminated-
acquisition reward is defined as

r
image
k =

{
wik , if Cimg(ik) holds,
0, otherwise,

(3)

so that an imaging step yields (1− α) r
image
k in (2).

The Cimg(i) denotes the conjunction of the imaging conditions

Cimg(i) : si > ethresh,

LOSi = 1,∥∥σB/R(i)
∥∥ ≤ σimg,∥∥ωB/R(i)
∥∥ ≤ ωimg, (4)

with σimg = 0.0025 and ωimg = 0.01 rad/s.

Here, wi is the priority weight of target i, si is its illumination factor with threshold ethresh, LOSi

indicates unobstructed line-of-sight, σB/R is the MRP attitude error between the spacecraft body
frame and the target-pointing reference frame, and ωB/R is the corresponding body-rate error. The
attitude-error bound ∥σB/R∥ ≤ 0.0025 corresponds to a principal rotation error ϕ ≤ 0.573◦, and



the rate-error bound is ∥ωB/R∥ ≤ 0.01 rad/s. Compared to,35 these pointing constraints have
been significantly tightened, which is also reflected in longer acquisition times needed during each
imaging action in order to hone in on the target precisely enough.

Importantly, the act of imaging can still generate data even when sik ≤ ethresh, simulating an
image with insufficient target illumination. These special images occupy onboard storage but are
treated as “non-useful” and do not increase r

image
k .

Downlink component: A Downlink action can transmit multiple buffered images within a sin-
gle decision interval, limited by the instantaneous link availability and data rate. Let Bk denote
the set of images in the onboard buffer at the start of step k, and let Dk ⊆ Bk denote those that
are successfully delivered during the action. Because only illuminated images are mission-relevant
for the objective, downlink reward is only given for images that satisfy the illumination criterion at
acquisition. Using D+

k ⊆ Dk to denote the subset of delivered images that are illuminated, then the
downlink reward is formulated as

rdownlink
k =

∑
i∈D+

k

wi. (5)

so that a downlink step yields α rdownlink
k in (2).

Although delivering non-illuminated images yields no direct reward, it can still be operationally
beneficial because it frees storage capacity and prevents the buffer from saturating, thereby pre-
serving the ability to acquire future illuminated images. Thus, the downlink action simultaneously
serves as a reward-bearing delivery mechanism for useful data and as a housekeeping mechanism
for buffer management.

The number of images delivered in Dk depends on the effective contact time within the fixed
action duration (180 s). Transmission occurs only during propagation steps in which the space-
craft satisfies the necessary downlink conditions, including (i) a ground station in view above the
elevation/range constraints and (ii) the required downlink attitude (nadir pointing in this implemen-
tation). As a result, the effective contact time may be substantially shorter than the nominal 180 s
(for example if the access window opens late, closes early, or the spacecraft is still slewing into
nadir), and hence the buffer is often not fully emptied in a single action.

Episodes in which the policy selects consecutive Downlink actions have also been observed.
Because this behavior maintains the downlink attitude between decisions, it can reduce time lost due
to repeated attitude maneuvers and increase the fraction of the action interval spent in a downlink-
enabled state, effectively “pre-positioning” the spacecraft to exploit short or late-opening ground-
station contacts.

Effect of α Parameter: The scalarization parameter α is introduced to modulate the relative
emphasis between illuminated image acquisition and timely downlink within the reward function.
Small values of α bias the reward toward image collection, such that illuminated acquisitions con-
tribute nearly their full weight wi, while downlink provides comparatively little immediate incentive
unless driven by storage or safety constraints. Conversely, large values of α bias the reward toward
delivery, downweighting image acquisition and increasing the incentive to transmit stored imagery
during available ground-station contacts. Intermediate values of α are intended to balance these



competing objectives, allowing the policy to trade image collection against delivery in a manner
consistent with mixed mission priorities.

Training Procedure

Given the high dimensionality of spacecraft dynamics and the complexity of the observation
space, a deep RL using the PPO algorithm is used.36 PPO is an actor–critic method in which the
actor (policy network) maps observations to action distributions, and the critic (value network) es-
timates the expected return to guide policy updates. PPO constrains successive policy updates via
a clipped surrogate objective, which helps maintain training stability by preventing overly large
parameter changes between iterations. In this work, PPO is implemented using Ray RLlib frame-
work, and modified to account for timestep-aware discounting as the problem is posed as a semi-
POMDP.45

In this study, separate PPO policies are trained for each value of α on a LEO-only catalog, and
then evaluated zero-shot on mixed LEO/MEO/GEO catalogs to assess both the imaging–delivery
trade and cross-regime generalization under the candidate-target selection mechanism described in
Section .

Compared to the AMOS study,35 the training setup here is adapted to better support learning of
successful downlinks, proactive charging behavior and to accommodate the multi-objective reward:

• Training horizon and batch size: Training runs are extended to approximately 48 hours
wall-clock time per α value, with larger batch sizes of up to 5000. This increased sample
budget allows the agent to more reliably discover and refine its own downlink and charging
strategy, rather than relying on safety-shield interventions.

• Safety shield usage: The same safety shield logic is retained (e.g., forced Charge when
battery falls below a critical threshold, forced Downlink when storage is nearly full), but
the larger training batches and multi-objective reward lead to policies that invoke the shield
less frequently than both heuristic schedulers and the earlier AMOS policies. Most charge
and downlink actions become proactive decisions by the RL policy rather than emergency
overrides.

• Hyperparameter search: A hyperparameter sweep is conducted over learning rate, discount
factor, batch size, PPO clipping parameter, and network size. Unless otherwise noted, RLlib
defaults are used outside this sweep. A time-discounted generalized advantage estimator is
used, with the discount applied per second rather than per decision step to ensure fair credit
assignment across actions with different durations.

Representative training hyperparameters are summarized in Table 9 in the Appendix. Training
remains challenging due to the long horizons, multi-regime geometry, and multi-objective reward,
however, the resulting policies demonstrate stable behavior across values of α and generalize well
from LEO-only training to mixed LEO/MEO/GEO evaluation, with regime-dependent preferences
shaped predominantly by geometry and the candidate-target selection mechanism rather than by
explicit regime labels.



RESULTS

A reward trade study is conducted by sweeping the mixing parameter α from image-focused
(α = 0) to downlink-focused (α = 1). The Monte Carlo statistics report the mean ± standard
deviation across random seeds.

Robustness of a LEO-trained policy in mixed-regime deployment

To test whether a policy trained in a LEO-only catalog remains effective when deployed in a
multi-regime setting, the same α = 0.5 policy is used to evaluate on (i) a LEO-only environment
and (ii) a mixed-regime environment. The mixed catalog is generated with regime sampling weights
(0.5, 0.3, 0.2) for LEO/MEO/GEO (Section ).

Table 3 Policy robustness: the same 50d/50i policy (α = 0.5) trained in LEO and evaluated
in LEO vs. mixed catalogs. Values are mean ± std over N = 100 Monte Carlo seeds.

Env Total reward Illum. images Illum. images downlinked Downlink actions Imaging actions

LEO 87.11± 3.08 87.52± 3.21 86.69± 3.11 28.94± 4.13 131.50± 2.90
MIXED 93.18± 2.56 93.41± 2.59 92.95± 2.61 35.26± 6.30 128.00± 3.99

Env Frac. imaged LEO/MEO/GEO Mean dtacq [s] Acq. success

LEO 1.0/0.00/0.00 148.88± 19.51 0.645± 0.038
MIXED 0.59/0.22/0.19 145.36± 24.58 0.666± 0.039

Table 3 shows that the policy remains stable under the distribution shift: the acquisition success
rate and mean inter-acquisition time are similar across environments, and performance remains
comparable when the policy is exposed to higher-altitude targets. In the mixed catalog the policy
selects more downlink actions and achieves an increase in total return and delivered illuminated
images over the fixed-horizon episodes.

Importantly, in the mixed setting the policy allocates imaging across regimes in roughly the same
proportions as the catalog composition, indicating that the LEO-trained policy does not stick to
exclusively imaging LEO targets once higher-altitude targets are present. That said, the policy
under-selects MEO targets relative to their 30% presence in the scenario (Table 3: 0.22 imaged
fraction versus 0.30 in the catalog). A plausible explanation is that the MEO subset in this study
contains the most eccentric orbits, which can induce larger variability in range and apparent motion
over short windows.

Overall, the RL-policy trained in a pure LEO environment is performing well in scenarios with
significantly different RSO catalogs. Moreover, the performance of total illuminated images taken
actually increases when some LEO targets are replaced with MEO and GEO RSOs. This is likely
due to multiple factors including: (i) the much larger difference in semi-major axis ensures that over
a given timespan the imaging spacecraft will be in view of the target even if starting on opposite
sites of the planet (ii) secondly, the much larger altitude of those newly introduced targets ensure
that their eclipse period when their illumination factor is below the ethresh is much shorter, allowing
for more opportunities to image them successfully (iii) the slower relative velocity compared to the
LEO-LEO environment also tends to prolong visibility windows, facilitating a successful image
capture before LOS is lost.



α sweep: how the policy reallocates actions

Across α ∈ [0, 1], the total episode reward remains nearly flat with slight downward trend to-
wards the α = 1.0 policy. Notably, the policy shifts how it spends decisions: increasing α induces
more frequent downlink actions and fewer imaging actions, as expected. Figure 3 visualizes this
trade in terms of total reward, illuminated images, and delivered (downlinked) illuminated images.
Throughout this section, colors correspond to the downlink reward weight α using the same map-
ping shown by the colorbar in Fig. 3.

Figure 3 Mixed-regime α sweep summary using a consistent color encoding for α
(colorbar at right). Each marker shows the mean count (with error bars) across
Monte Carlo seeds for total reward, illuminated images, and delivered (downlinked)
illuminated images. Colors in subsequent α-sweep plots follow this same α mapping.

A key qualitative change occurs between α = 0 and α > 0: when downlink is not rewarded
(α = 0) at all, the policy tends to postpone communications and instead relies on infrequent, large
transfers (effectively waiting until the buffer is nearly full before downlinking).

Once α > 0, delivered illuminated images increase rapidly and then plateaus below the number
of illuminated images acquired (Fig. 4). Given the number of ground stations used in this sce-
nario, it suggests that using less would cause this gap to increase due to the more limited downlink
opportunities.

Table 4 summarizes the mixed-regime evaluation and includes the mean downlink fraction: the
fraction of the onboard image buffer delivered per successful downlink event (mean ± std). This
metric is useful because policies with similar end-of-episode delivered-image totals can differ sub-
stantially in delivery latency. At α = 0, the mean downlink fraction is high (0.85±0.13), consistent
with bulk transfers that clear most of the buffer when a downlink opportunity is taken. As α in-
creases, the mean downlink fraction drops sharply (e.g., 0.32 ± 0.07 at α = 0.1 and ≈ 0.15–0.20
for α ≥ 0.3), indicating more frequent, smaller sized downlinks that reduce time-to-ground for



Table 4 Mixed-regime α sweep summary (mean ± std). “Useful downlinks” counts only
illuminated images delivered. Mean downlink fraction is the fraction of onboard image stor-
age delivered per successful downlink event (mean ± std). N = 50 for α = 0.6, otherwise
N = 100.

α Total reward Illum. images Good images downlinked Acq. success

0.0 93.64± 2.62 93.64± 2.62 79.82± 11.22 0.656± 0.039
0.1 93.79± 2.44 93.87± 2.42 93.03± 2.90 0.672± 0.034
0.2 93.75± 2.45 93.89± 2.45 93.21± 2.63 0.674± 0.034
0.3 93.74± 2.51 93.88± 2.48 93.42± 2.71 0.676± 0.037
0.4 93.68± 2.47 93.89± 2.43 93.36± 2.65 0.681± 0.038
0.5 93.18± 2.56 93.41± 2.59 92.95± 2.61 0.666± 0.039
0.6 93.63± 2.30 93.82± 2.30 93.50± 2.32 0.674± 0.037
0.7 93.05± 2.57 93.38± 2.48 92.91± 2.66 0.662± 0.031
1.0 92.84± 2.57 93.25± 2.43 92.84± 2.57 0.671± 0.033

α Downlink actions Imaging actions Mean downlink frac.

0.0 3.27± 2.23 151.73± 3.85 0.85± 0.13
0.1 16.09± 4.93 136.74± 4.37 0.32± 0.07
0.2 20.73± 5.45 137.48± 3.64 0.24± 0.05
0.3 24.43± 5.52 133.65± 3.85 0.20± 0.04
0.4 23.69± 5.63 130.99± 4.51 0.19± 0.03
0.5 35.26± 6.30 128.00± 3.99 0.15± 0.03
0.6 29.58± 5.56 131.92± 3.58 0.17± 0.03
0.7 32.01± 5.19 131.00± 3.10 0.16± 0.03
1.0 29.13± 4.91 132.80± 3.01 0.16± 0.02

newly acquired imagery.

Notably, the best-performing policies in this study occur in the intermediate range α ≈ 0.1–
0.4, which achieves the highest total reward while also maintaining near-saturated delivered-image
counts. Combining these trends with the action-frequency summary (Fig. 5), it can be seen that
intermediate α values can achieve comparable (or better) delivered-image performance without re-
quiring the largest number of downlink actions, whereas very large α induces more frequent down-
linking with smaller transfers per event or often times unsuccessful downlink actions due to an
already empty storage buffer. From an operator perspective, α tunes a bulk-versus-latency prefer-
ence where a low α prioritizes accumulating data and unloading it in larger bursts, whereas high α
favors frequent partial transfers that reduce time-to-ground, improving delivery latency at the cost
of more downlink actions and little additional total delivered imagery.

Single-scenario case study: how α changes behavior

To complement the Monte Carlo statistics, a representative single rollout in the mixed-regime en-
vironment is examined across several values of α. Table 5 summarizes the key outcomes, note here
that the total reward uses the same α from training in the evaluation. Although the scalarized objec-
tive changes with α, the rollout exhibits the same qualitative pattern seen in the Monte Carlo sweep:
larger α shifts decision allocation from imaging toward downlink, while maintaining comparable
illuminated-image throughput.

Action reallocation with α: Comparing the extremes illustrates the behavioral shift. For α = 0
(image-heavy), the agent spends the episode almost entirely imaging (149 imaging actions) and
rarely downlinks (2 downlink actions), resulting in a large number of illuminated images onboard
but fewer of them delivered (82 useful downlinks). For α = 1 (downlink-heavy), the agent increases



Figure 4 Delivered illuminated images versus α (left axis) and mean downlink frac-
tion (right axis). The sharp drop in mean downlink fraction from α = 0 to α > 0 indi-
cates a transition from infrequent bulk transfers to more frequent, smaller “mainte-
nance” downlinks, which can reduce delivery latency even when final delivered-image
totals are similar.

Table 5 Mixed-regime rollouts across α for a representative scenario. “Useful downlinks”
counts only illuminated images delivered.

α Total reward Illum. images Useful downlinks Imaging acts Downlink acts Acq. success Mean dtacq [s]

0.0 92.0 92 82 149 2 0.678 154.4
0.1 94.7 95 92 142 9 0.676 138.2
0.2 93.8 94 93 143 13 0.692 125.3
0.3 93.7 94 93 138 16 0.650 158.7
0.4 93.0 93 93 140 18 0.657 147.8
0.5 94.0 94 94 134 25 0.694 162.6
0.7 92.3 93 92 140 18 0.621 114.1
1.0 92.0 93 92 134 27 0.697 123.5

downlink actions substantially (27) while reducing imaging actions (134), yielding nearly the same
number of illuminated images (93) but a much higher delivered fraction (92 useful downlinks). This
is consistent with downlink actions serving both as a delivery mechanism for useful imagery and a
buffer-management mechanism when non-illuminated images occupy storage.

Intermediate values show that only a modest increase in downlink weighting is needed to achieve
near-saturation in useful delivery: for α ∈ [0.2, 0.5], essentially all illuminated images are delivered
(93–94 useful downlinks) while maintaining 134–143 imaging actions. The highest total reward in
this rollout occurs at α = 0.1, suggesting that a lightly downlink-aware policy can capture most of
the delivery benefit without substantially reducing imaging opportunity.

Time-series interpretation (battery/storage, contacts, and cumulative counts): Figure 6 over-
lays battery and storage fraction, eclipse intervals, ground-station access windows, and cumulative
illuminated images and downlinked targets. In image-heavy settings, storage tends to build be-
tween contacts, whereas in downlink-heavy settings, contacts are exploited more frequently and the
downlinked-target count tracks the illuminated-image count more closely. The same plots also show
how downlink actions align with station windows and eclipse segments.
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Figure 5 Imaging and downlink action counts versus α (mean ± std). Downlink
actions increase with α while imaging actions decrease from the α = 0 baseline and
then stabilize, consistent with the intended reward trade.

Eclipse-phase pointing and target selection

Eclipse behavior is evaluated by conditioning on decision steps where the imaging spacecraft
itself is in eclipse. In the representative mixed-regime rollout of the α = 0.1 based RL-policy, there
are 41 imaging decisions that occur during eclipse which are analyzed in more detail, since these
steps are non-trivial and many nearby LEO objects are likely also eclipsed.

To quantify whether the policy behaves in an eclipse-aware manner, the following criteria are
used to classify an eclipse-time imaging decision as ”eclipse-effective”. A decision is considered
eclipse-effective if at least one of the following holds:

1. The selected target is illuminated at the time of selection, meaning its eclipse factor is above
the illumination threshold.

2. The selected target is in a higher-altitude regime (MEO or GEO), which increases the likeli-
hood of remaining illuminated during eclipse and often yields longer usable viewing intervals.

3. The selected target is in LEO and the pointing direction is biased toward the sunward side
of the eclipse, computed from Hill-frame alignment between the target line-of-sight direction
and the sun direction.

Under these rules, the RL-policy makes 37 eclipse-effective selections out of 41 eclipse-time
imaging decisions. This indicates that the policy consistently exploits the limited opportunities
available during eclipse. Among the four remaining cases that do not satisfy the eclipse-effective
criteria, three coincide with situations where the candidate set is effectively exhausted, meaning
no alternative unimaged target is available within the line-of-sight constraint. These events occur
when the chosen target has low elevation beyond the approximate visibility bound near −21◦, which
strongly limits feasible imaging regardless of target illumination.

The eclipse-time event logs clarify how this consistency is achieved. Out of 41 eclipse-time
imaging decisions, 36 select a target that is illuminated at decision time. In 18 cases the selected
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Figure 6 Mixed-regime time series for α = 0.0 (top), α = 0.1 (middle), and α = 1.0
(bottom). Plots show battery and storage fractions, eclipse intervals, ground-station
windows, and cumulative illuminated images/downlinked targets.



target is in a higher-altitude regime (MEO or GEO). In addition, 17 eclipse-time LEO selections
satisfy the sunward-pointing test. Sunward pointing is measured by the Hill-frame alignment score

a ≜ ℓ̂
H · ŝH ,

where ℓ̂
H

is the unit line-of-sight vector to the selected target and ŝH is the unit sun-direction vector,
both expressed in the Hill frame. A LEO selection is classified as sunward if a ≥ 0. Averaged
over all eclipse-time imaging decisions, the mean alignment is ā ≈ 0.15, noting that this value
includes both LEO and higher-altitude targets and would likely be higher when restricted to LEO-
only eclipse selections. These counts are not mutually exclusive, since a single selection can satisfy
multiple criteria.

Compared to the rest of the episode, eclipse-time targeting also exhibits a relative shift away from
LEO. This is consistent with the expected geometry, since a large fraction of nearby LEO objects
enter eclipse concurrently with the imaging spacecraft. When LEO targets are selected during
eclipse, the pointing direction frequently favors the sunward side of the eclipse, which is physically
meaningful in scenarios where the imaging orbit intersects the shadow boundary at an angle rather
than passing straight through the center of the Earth shadow. In such cases, one side of the local
sky lies closer to the illuminated boundary, and targets in that direction are more likely to remain
illuminated or to exit eclipse sooner. When this sunward-side preference cannot be satisfied because
the remaining LEO targets are dark or geometrically infeasible, the policy more often selects higher-
altitude targets whose illumination persistence improves eclipse-time acquisition probability.

Table 6 Episode segmentation statistics for target illumination and pointing elevation (Hill
frame). The horizon is approximated by an elevation threshold near −21◦.

Segment Illuminated target fraction Mean elevation ± std [◦]

Segment 1/3 0.958 −13.59± 7.03
Segment 2/3 1.000 −6.58± 13.50
Segment 3/3 0.766 −28.73± 9.15

Table 6 further supports the interpretation that late-episode geometry, rather than policy prefer-
ence, drives the few eclipse-inconsistent selections. The first two thirds of the episode maintain
near-saturated illuminated targeting, while the final third shows both a lower illuminated fraction
and a mean elevation below the line-of-sight threshold. This shift matches a regime where the re-
maining unimaged opportunities are increasingly low elevation, forcing occasional riskier selections
that are constrained by visibility rather than by eclipse-aware strategy.

CONCLUSIONS

This work extends high-fidelity RL-based SBSS scheduling from a LEO-to-LEO setting to a
multi-regime “LEO-to-any” environment with LEO, MEO, and GEO targets, while explicitly trad-
ing off image acquisition and downlink delivery using a scalar mixing parameter α. Monte Carlo
results show that a policy trained in a LEO-only catalog transfers to a mixed-regime catalog with-
out retraining, maintaining stable acquisition performance and achieving higher total return and
illuminated-image throughput.

Sweeping α yields an operator-interpretable shift in behavior. As α increases, downlink actions
become more frequent and imaging actions decrease modestly, while total reward remains nearly



flat. Delivered illuminated imagery rises sharply once α > 0 and then saturates near the num-
ber of illuminated images acquired, indicating that delivery is limited mainly by access geometry
and pointing constraints. Eclipse-conditioned analysis further shows eclipse-effective target selec-
tion, with 37 of 41 eclipse-time imaging decisions satisfying criteria based on selecting illuminated
targets, substituting higher-altitude targets, or choosing sunward-biased LEO pointings in Hill coor-
dinates. The few exceptions occur primarily when remaining unimaged opportunities fall below the
line-of-sight elevation bound and no better imaging option is available. This is particularly relevant
as it can potentially improve onboard decision-making in particularly challenging situations, which
a human operator may have a hard time analyzing.
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[12] S. M. Lenz, H. G. Bock, J. P. Schlöder, E. A. Kostina, G. Gienger, and G. Ziegler, “Multiple shooting method for
initial satellite orbit determination,” Journal of Guidance, Control, and Dynamics, 2012.
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[46] S. Cakaj, B. Kamo, V. Koliçi, and O. Shurdi, “The Range and Horizon Plane Simulation for Ground Stations of
Low Earth Orbiting (LEO) Satellites,” Vol. 04, No. 09, 2011, pp. 585–589.

APPENDIX: ENVIRONMENT AND SIMULATION DETAILS

This appendix collects the detailed environment parameters and figures referenced in Section .
Unless otherwise noted, values follow the BSK-RL defaults and the configuration used in the prior
LEO-to-LEO study.35 The LEO-only setup is recovered by restricting the catalog to the LEO col-
umn in Table 7.

Orbital and Ground-Station Parameters

Table 7 summarizes representative orbital element ranges for the inspector and RSOs across
regimes. These distributions are sampled independently for Monte Carlo experiments.

Table 7 Representative orbital parameters for scanning satellite and passive RSOs

Element Inspector LEO RSOs MEO RSOs GEO RSOs

Semi-major axis a (km) 6871a 6871–8371b ∼16371–31371 ∼42164
Eccentricity e 0 (circular) [0.0, 0.02] [0.0, 0.05] [0.0, 0.02]
Inclination i (deg) 0–180 0–180 0–180 0–20
Right Ascension Ω (deg) 0–360 0–360 0–360 0–360
Argument of Periapsis ω (deg) 0–360 0–360 0–360 0–360
True Anomaly f (deg) 0–360 0–360 0–360 0–360
a Fixed at 500 km altitude above Earth’s mean radius (6371 km).

b LEO shell used in the original LEO-to-LEO baseline35 .

Figure 7 illustrates the ground-station visibility footprint for the 500 km LEO inspector, with
slant ranges computed as in Ref.46

Spacecraft and Control Parameters

The Basilisk module interconnections are shown in Fig. 8. The guidance module (LocPointTask)
uses the selected target’s navigation message to compute a desired attitude; mrpFeedback gener-
ates wheel torques, which are applied by the reaction-wheel assembly and returned as bus torques to
the rigid-body dynamics. Power and data-handling modules monitor energy and storage, providing
the state variables used in the RL observation.



Figure 7 Ground-station visibility for LEO imaging satellite at 500 km altitude

Targeting, Imaging, and Downlink Constraints

Table 8 lists the main targeting, imaging, and downlink constraints used in the environment.
These are consistent with the prior LEO-only study35 and are applied identically across regimes.

Table 8 Targeting, imaging, and downlink constraints

Constraint Value Unit / Description

Attitude error requirement ≤ 0.0025 MRP norm
Attitude rate requirement ≤ 0.01 rad/s
Eclipse threshold ethresh 0.5 illumination factor
Single-image data size 0.5 Mb
Storage capacity 25 Mb (50 images)
Initial storage fill level 0 Mb
FSW evaluation interval 0.5 s
Transmitter baud rate 1 Mbps (above elevation mask)

Training
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Figure 8 Basilisk simulation architecture used for SBSS scheduling

Table 9 RL Training Parameters
Name Value
Learning rate 1× 10−6

Discount factor (γ) 0.9997
Gradient clip 1.0
PPO clip parameter (ϵ) 0.15
Training batch size 5000
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