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AAS 13-292

THREE-AXIS ATTITUDE CONTROL USING REDUNDANT
REACTION WHEELS WITH CONTINUOUS MOMENTUM DUMPING

Erik A. Hogan∗, and Hanspeter Schaub†

A description of an attitude control system for a 3-axis stabilized spacecraft is
presented. Using modified Rodrigues parameters, a globally stabilizing nonlinear
feedback control law is derived that enables tracking of an arbitrary, time-varying
reference attitude. This new control incorporates integral feedback while avoid-
ing any quadratic rate feedback components. A redundant cluster of four reac-
tion wheels is used to control the spacecraft attitude, and three magnetic torque
rods are used for purposes of continuous autonomous momentum dumping. The
momentum dumping strategy can employ general torque rod orientations, and is
developed to take advantage of a redundant set of reaction wheels.

INTRODUCTION

The use of momentum exchange devices, such as reaction wheels, is a common method of space-
craft attitude control. Such devices work through momentum transfer between the spacecraft body
and one or more spinning wheels. To detumble a spacecraft, wheel speeds are modified in such
a way as to effectively absorb the spacecraft momentum. The same principle may be used by a
cluster of reaction wheels for arbitrary three-axis spacecraft pointing. Here, motor torques drive
wheel accelerations; these motor torques, in turn, act equally and opposite on the spacecraft frame.
By carefully controlling the wheel accelerations, torque is created which allows for general attitude
corrections.1, 2, 3, 4 Due to the interface between the reaction wheel assemblies and the spacecraft, the
total momentum of the system is constant. The limitation of reaction wheels actuation is the speed
to which a fly-wheel can be accelerated before. This saturation can lead to stability or performance
concerns. Thus, it is desirable for a reaction wheel control law to avoid saturation if feasible.

A practical consideration with the use of reaction wheels is the need for momentum dumping.5, 6

Because the system of spacecraft and reaction wheels conserves momentum, as the spacecraft loses
momentum the wheel speeds must increase. Additionally, any perturbing torques acting on the
spacecraft must be absorbed by the wheels if precise pointing is to be maintained. Due to the
inherent size and speed limitations of physical systems, wheel speeds may become saturated after
a period of time, preventing further attitude control of the spacecraft. If the momentum storage
capacity of the reaction wheel cluster is not large enough to absorb all of the spacecraft momentum
the wheel speeds reach their maximum values and further wheel acceleration is not possible. A
method of torquing the spacecraft besides the reaction wheels is needed in order to despin the
wheels while still meeting the attitude control requirements. One method for accomplishing this
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task is the use of thrusters.7 By angling the thrusters off-center from the spacecraft center-of-mass,
torques are created that can be used to lower wheel speeds.

Another option for momentum dumping is the use of magnetic torque rods.5, 8, 9 Here, coils of
wire are wrapped around a ferrous core, such as iron. Applying a current to the wire produces
a magnetic dipole that, in turn, interacts with the earth’s magnetic field to produce a torque on
the spacecraft. This torque is then used to despin the wheels. A challenge with using magnetic
torque rods lies in their inability to produce an arbitrary three-dimensional torque. In fact, a torque
can only be produced perpendicular to the earth’s magnetic field, providing only two degrees of
freedom available for dumping wheel momentum.10, 11

In this paper, an autonomous control is presented for a three-axis stabilized spacecraft . This
pointing control is achieved using a redundant combination of four reaction wheels for attitude con-
trol and three magnetic torque rods for momentum dumping. However, the methodology developed
is general enough to be applicable for an arbitrary number of redundant reaction wheels and mag-
netic torque bars. The control algorithm is parameterized using modified Rodrigues parameters
(MRPs) as the attitude description,12, 13, 14, 15 and a nonlinear feedback control law capable of track-
ing a time-varying arbitrary attitude is developed. A new MRP-based feedback control is developed
for a spacecraft with a redundant set of reaction wheels that still guarantees global asymptotic sta-
bility, but includes an integral error measure while avoiding quadratic rate feedback terms. The
integral feedback provides robustness to unmodeled disturbance torques. This combination of inte-
gral feedback while avoiding quadratic angular velocity feedback components is a new development
that helps avoid control saturation issues when handling initial detumbling after being released from
the launch vehicle.

The redundancy of having four reaction wheels presents a challenge for momentum dumping. For
any desired torque, there are an infinite number of wheel accelerations that may be used to achieve
it. If a magnetic torque is created for momentum dumping purposes, a solution for the motor torques
must be chosen to offset it such that the wheels actually spin down. There is no guarantee that any
arbitrary solution will not further increase wheels speeds, leading to wheel saturation. To that end, a
momentum dumping strategy is investigated for the case of a redundant reaction wheel cluster. The
solution should be very general in that the reaction wheels and torque rod actuation axes can have
general body-fixed orientations. This more general solution should provide effective autonomous
momentum dumping, and integrate well with the attitude control law. If the reaction wheel cluster
is redundant, the momentum dumping strategy is desired to exploit the reaction wheel nullspace.
The end-result should be a single strategy for general configurations.

The paper is structured as follows. First, background information is provided regarding the dy-
namics of a spacecraft equipped with reaction wheels and magnetic torque bars. Next, Lyapunov
stability theory is used to derive a globally stabilizing attitude control law. A novel momentum
dumping strategy is developed, following a discussion on the limitations of current methods for
redundant systems. Lastly, a numerical simulation is used to demonstrate both the attitude control
law and momentum dumping strategy.

BACKGROUND

Rotational Equations of Motion

In this paper, a rigid body spacecraft outfitted with a redundant set of reaction wheels (n > 3)
and a set of magnetic torque bars is considered, as depicted in Figure 1. While four reaction wheels
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Figure 1. Illustration of spacecraft with redundant reaction wheels and magnetic torque bars.

and three torque bars are shown, the developments in this paper are formulated in a general way that
can account for different numbers of these actuation devices. The primary function of the reaction
wheels is to provide three-axis pointing. Due to the process of momentum exchange between the
wheels and spacecraft, a method for dumping momentum is needed. As momentum accrues in the
reaction wheel cluster, the wheel speeds will increase to a point where further actuation is severely
hindered.5 To that end, a set of magnetic torque bars is used for the purpose of momentum dumping.
The magnetic torque bars work by creating a torque on the spacecraft due to their interaction with
the earth’s magnetic field. For a single torque bar, the resulting torque is16

τTBi = µiĝti ×B,

where µi is the strength of the magnetic dipole of the torque bar, ĝti is the alignment axis of the
torque bar, and B is the earth’s magnetic field. It is important to note that a magnetic torque bar is
only capable of producing torque in the plane perpendicular to the magnetic field. For the full set of
N torque bars, the resulting torque on the spacecraft is expressed as

τTB = −[B̃][Gt]µ, (1)

where [B̃] denotes the skew-symmetric matrix, [Gt] = [ĝt1 ĝt2 ... ĝtN ], and µ = [µ1 µ2 ... µN ]T .

As depicted in Figure 1, the spin-axis of each reaction wheel is denoted as ĝsi. The momen-
tum exchange between spacecraft and wheels is accomplished through careful application of motor
torques usi. These torques, in turn, act to change the wheel speeds, which are defined relative to the
spacecraft and referred to as Ωi. Thus, the momentum of a single wheel about its spin axis is

hi = Jsi(Ωi + ĝTsiω), (2)
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where Jsi is the inertia of the wheel about its spin axis and ω is the spacecraft angular velocity.
In accordance with Euler’s equation, the wheel speeds evolve as a result of applied motor torques
according to

usi = Jsi(Ω̇ + ĝTsiω̇). (3)

The rotational motion of a spacecraft equipped with n reaction wheels and N magnetic torque bars
is described by3

[I]ω̇ = −ω × ([I]ω + [Gs]hs)− [Gs]us − [B̃][Gt]µ+L, (4)

where [I] is the inertia tensor of the spacecraft, and

[Gs] = [ĝs1 ĝs2 ... ĝsn] (5a)

hs = [h1 h2 ... hn]T (5b)

us = [u1 u2 ... un]T (5c)

while L is the external torque acting on the spacecraft.

Modified Rodrigues Parameters

In order to perform attitude control maneuvers, some measure of attitude is required. In the cur-
rent study, the modified Rodrigues parameter (MRP) set is used.17, 18, 19 The MRP set is constructed
from the principle rotation vector attitude description as3

σ = tan

(
Φ

4

)
ê, (6)

where Φ is the principle rotation angle and ê is the principle rotation vector. The MRP set is a
minimal attitude description. That is, three coordinates are used to describe a three-dimensional
rotation. As such, singularities are present in the description. Examination of Eq. (6) reveals that
the description is singular when Φ = ±360◦.

Fortunately, this singularity may be avoided by switching to the shadow MRP set. Indeed, for any
given attitude there are two different sets of modified Rodrigues parameters that describe it. The
mapping between original and shadow set is3

σSi = − σi
σ2
, (7)

where the superscript S is used to denote the shadow set and σ2 = σTσ. It is clear that as the
original MRP set approaches the singularity, its corresponding shadow set approaches 0. Thus, the
inherit singularities present with modified Rodrigues parameters can be avoided by switching to the
shadow set. The location of this switching is arbitrary, and switching is typically performed when
the norm of the MRP set exceeds a value of 1. Switching in this manner guarantees the attitude
description will be well defined for all orientations.

The kinematic differential equation for the MRP set is13

σ̇ =
1

4

[
(1− σ2)I + 2[σ̃] + 2σσT

]
ω, (8)

where I is the 3 × 3 identity matrix. Note that this differential equation holds for both the original
and shadow set of the modified Rodrigues parameters. Combined with Eqs. (3) and (4), Eq. (8)
describes the full attitude motion of the spacecraft.
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ATTITUDE CONTROL

Nonlinear Attitude Control Law

The tracking problem of an arbitrary, possibly time-varying reference attitude is considered. Let
the reference frame be denoted asR. The goal of the attitude tracking control law is to reorient the
spacecraft body frame, B, such that it matches R. The attitude error between B and R is described
using the MRP description σ. It follows, then, that by driving σ → 0, attitude tracking is achieved.
Furthermore, if the reference attitude is time-varying then the spacecraft angular velocity, ω, must
track that of the reference frame, ωr.

Consider the candidate Lyapunov function

V (σ, δω, z) =
1

2
δωT [I]δω + 2K ln(1 + σTσ) +

1

2
zT [KI ]z, (9)

where δω = ω − ωr, K is a scalar gain, [KI ] is a gain matrix, and z is the integral term3, 20

z =

∫ t

0
(Kσ + [I]δω̇) dt. (10)

This integral term is added to provide robustness in the presence of unmodeled external torques. The
Lyapunov function is positive definite about σ = 0, ω = ωr, z = 0. Computing the derivative of
the Lyapunov function yields

V̇ (σ, δω, z) = (δω + [KI ]z)T ([I]ω̇ − [I] (ω̇r − ω × ωr) +Kσ) . (11)

Plugging in Eq. (4), the Lyapunov rate becomes

V̇ (σ, δω, z) =
(
δω + [KI ]z

)T(
− ω × ([I]ω + [Gs]hs)− [Gs]us

+L− [I] (ω̇r − ω × ωr) +Kσ
)
. (12)

Note that the magnetic torque has been omitted in this development. It is considered in the following
section regarding momentum dumping. Its omission does not impact the stability guarantees derived
here.

To ensure Lyapunov stability, the motor torques us are employed to cause the Lyapunov rate to
take the negative semi-definite form

V̇ (σ, δω, z) = −(δω + [KI ]z)T [P ](δω + [KI ]z), (13)

where [P ] is a positive definite gain matrix. In prior work,3 this is accomplished by directly com-
pensating the natural dynamics present in Eq. (12). Such an approach yields a control law of

[Gs]us = −[I] (ω̇r − ω × ωr) +Kσ + [P ]δω + [P ][KI ]z − ω × ([I]ω + [Gs]hs) +L. (14)

While this solution achieves the desired negative semi-definite form and can be shown to be asymp-
totically stabilizing, it suffers from the presence of the quadratic angular velocity term −ω × [I]ω.
If the angular velocity is high, this quadratic term can become large enough to lead to control satu-
ration, invalidating the analytic stability guarantees.
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In the current paper, we present a novel control formulation that eliminates the need for this
quadratic term while still providing asymptotic stability. Consider the control law

[Gs]us = −[I](ω̇r − ω × ωr) +Kσ + [P ]δω + [P ][KI ]z − ([ω̃r]− [̃KI ]z)([I]ω + [Gs]hs) +L,
(15)

where the over tilde is used to denote the skew-symmetric matrix. Substituting this into Eq. (12)
yields

V̇ (σ, δω, z) = (δω + [KI ]z)T
[
(−[δ̃ω]− [̃KI ]z)([I]ω + [Gs]hs)− [P ]δω − [P ][KI ]z

]
. (16)

Noting the identity

(δω + [KI ]z)T
(
− [δ̃ω]− [̃KI ]z

)(
[I]ω + [Gs]hs

)
= 0,

the Lyapunov rate reduces to the negative semi-definite form in Eq. (13). Thus, the system will
converge to the set δω + [KI ]z = 0.

To determine asymptotic stability, higher order derivatives of the Lyapunov function are evaluated
on the set δω + [KI ]z = 0.21 The second derivative is identically zero (V̈ = 0) and the third
derivative reduces to

...
V (σ, δω, z) = −2K2σT [I]−1[P ][I]−1σ, (17)

which is negative definite. Thus, the control law is asymptotically stabilizing, i.e. σ → 0. Further-
more, the kinematic coupling between the MRP set and the angular velocity guarantees that if σ
converges to 0, then δω must also converge to zero. Lastly, the integral term z must converge to 0
to satisfy δω + [KI ]z = 0.

The new control law in Eq. (15) does not contain a quadratic function of ω. It does however,
contain a term proportional to ω × ωr. In general, ωr will not be large enough to be problematic.
In order to compute the necessary motor torques, the [Gs] matrix must be inverted. In a redundant
system, this matrix will be of dimension 3× n and a minimum norm inverse may be used.

The integral term z is included to provide robustness in the presence of unmodeled torques. A
torque that is not accounted for will cause the Lyapunov rate to lose its negative semi-definiteness.
Instead, the Lyapunov rate will be

V̇ (σ, δω, z) = −(δω + [KI ]z)T ([P ](δω + [KI ]z)−∆L), (18)

where ∆L is the unmodeled torque. Though the stability guarantees no longer hold, δω and z
cannot grow unbounded because the quadratic (δω+[KI ]z)T [P ](δω+[KI ]z) term will eventually
dominate, making V̇ negative. If σ did not converge to 0, then the integral term z would grow
unbounded. Therefore, σ must converge to 0, along with δω. So, asymptotic stability still holds for
the attitude, but the integral term will no longer converge to 0. For further discussion on this matter,
the reader is referred to Reference 3.

Momentum Dumping Strategy

As the wheels are spun up to provide attitude control they will eventually reach their saturation
limit with regards to wheel speeds if left unchecked. To eliminate momentum from the space-
craft/reaction wheel system, an external means of torquing is required. The magnetic torque bars
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are used for this purpose. By creating a magnetic torque on the spacecraft in a controlled manner
and compensating for it with the reaction wheels, the wheels can be despun while simultaneously
achieving attitude control.

In prior work,5, 8, 9 a cross product desaturation control law is used. The magnetic dipole produced
by the torque bars is proportional to

µ ∼ ∆h×B, (19)

where ∆h = hW − hB . At any given time, the angular momentum vector of the reaction wheels,
hW , is given by

hW = [Gs]hs.

In practice, reaction wheels are often biased towards non-zero wheel speeds. These non-zero wheels
speeds result in a desired bias angular momentum, hB . In the case of three reaction wheels, this
strategy is sufficient, as a non-zero ∆h vector implies the wheel speeds are not biased properly.

In a redundant system, however, such a formulation can be problematic. This is due to the fact
that the set of four or more reaction wheels span a three-dimensional space in a manner that allows
for non-unique control solutions. For example, for a necessary torque there are an infinite number of
motor torques that may be used to achieve it. Similarly, there are an infinite number of wheel speeds
that may result in a given hW . Thus ∆h may be 0, or very small, even for large wheel speeds. In
such a scenario, the resulting desaturation magnetic torque would be virtually nonexistent in spite
of the fact that the wheels are nowhere near the desired bias.

To prevent these issues, a method for handling desaturation in a redundant system is developed.
First, note that the motor torque equation may be approximated by

us = [Js]Ω̇, (20)

where [Js] = diag([Js1 Js2 ... Jsn]) and Ω̇ = [Ω̇1 Ω̇2 ... Ω̇n]T . In general, ω̇ will be small and not
significantly impact the evolution of the wheel speeds. To impose a despin torque on each wheel, a
feedback on wheel speeds is used

u∗s = −c[Js](Ω−Ωr), (21)

where c is a gain and Ωr are the wheel speed biases. Superimposing these desaturation torques on
top of the control solution in Eq. (15) results in a net torque on the spacecraft of

τRW = −[Gs]u
∗
s. (22)

To counteract this, the magnetic torque bars are used. An attempt is made to perfectly offset the
despin torque by controlling the dipoles of the individual magnetic torque bars using

−[B̃][Gt]µ = [Gs]u
∗
s. (23)

The torque bars are limited, however, due to the fact that they can only generate torque perpendicular
to the magnetic field vector. Generally, the product [B̃][Gt] is not full rank, and a direct inverse is
not possible. Instead, a singular value decomposition (SVD) pseudoinverse is performed.22 The
resulting solution for the dipoles is given by

µ∗ = −
(

[B̃][Gt]
)†

[Gs]u
∗
s, (24)
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where the superscript † is used to represent the pseudoinverse. This least-squares-like inverse yields
dipoles whose total magnetic torque approximates the desired momentum dumping torque u∗s the
closest.

The resulting magnetic dipoles interact with the earths magnetic field to produce a torque on the
spacecraft equivalent to

τMTB = −[B̃][Gt]µ
∗. (25)

Ideally, τRW + τMTB = 0. However, this will rarely, if ever, be the case due to the inability of the
torque bars to generate torque in the direction of the magnetic field. If left unchecked, the resulting
imbalance between the desaturation torque τRW and the torque bar compensation torque τRW will
result in a nonzero perturbation on the spacecraft that will drive it away from the desired attitude. A
final addition is made to the motor torques to account for this difference, and is computed as

∆u = [Gs]
+(τMTB − [Gs]u

∗
s). (26)

The superscript + is used to denote a minimum norm inverse. With this correction, the resulting
torque acting on the spacecraft due to the desaturation process is zero, i.e.

−[Gs](u
∗
s + ∆u)− [B̃][Gt]µ

∗ = 0. (27)

The wheel desaturation algorithm is superimposed upon the attitude control solution and does not
impact the stability guarantees derived in the previous section due to the net-zero torque it produces.
Assuming the control law in Eq. (15) results in a motor torque solution of us = Lr, the commanded
motor torques at any particular time are given by

us = Lr + u∗s + ∆u, (28)

with the necessary dipoles computed in Eq. (24). This desaturation strategy may be applied con-
tinuously. Furthermore, in the case of hW = hB even with large wheel speeds, the desaturation
strategy will act to bring the wheels to the desired biases.

Naturally, it is of interest to investigate the possibility that the despin algorithm will actually
increase wheel speeds. If the magnetic torque bars were capable of exactly compensating for u∗s,
this would not be an issue. Rather, the possibility is due to the fact that a correction motor torque,
∆u, must be added in to compensate for the difference between the despin torques and the realized
τMTB .

Consider the wheel acceleration resulting from the despin torque algorithm

[Js]Ω̇
∗ = u∗s + ∆u. (29)

For the sake of simplicity, an assumption is made that the required attitude pointing motor torque
solution Lr is either zero or very small such that it does not significantly impact the wheel acceler-
ations. This would generally occur once pointing has been achieved. Here, we are interested in the
longer term evolution of the wheel speeds during the momentum dumping process.

It is possible to derive an equation for the evolution of the wheel speeds during the momentum
dumping. Using Eqs. (25) and (26) together with Eq. (29) yields

[Js]Ω̇
∗ = u∗s + [Gs]

+(−[B̃][Gt]µ
∗ − [Gs]u

∗
s). (30)
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Table 1. Orbital parameters used in numerical simulation

a e i Ω ω ν0 (True Anomaly)

6778.14 km 0 45◦ 60◦ 0◦ 0◦

Table 2. Control gains used for numerical simulation

[K] [P ] [KI ] c

0.148[I3×3] Nm 0.9[I3×3] Nms 0.0001[I3×3] N−1s−2 0.005 s−1

Substituting in the definitions of µ∗ and u∗s leads to the non-autonomous linear system

Ω̇∗ = −c
[
I + [Gs]

+

(
[B̃][Gt]

(
[B̃][Gt]

)†
− I
)

[Gs]

]
(Ω−Ωr). (31)

This is equivalent to the system

ζ̇ = [A(t)]ζ, (32)

with

[A(t)] = −c
[
I + [Gs]

+

(
[B̃][Gt]

(
[B̃][Gt]

)†
− I
)

[Gs]

]
(33)

ζ = Ω−Ωr. (34)

The time dependency in the [A(t)] matrix is due solely to the variation of the magnetic field. Due
to this time dependency, the eigenvalues of the [A(t)] matrix do not sufficiently prove convergence
of the wheel speeds to the desired biases. Even if [A(t)] is Hurwitz (all eigenvalues have negative
real parts) for all time, there is no guarantee. Furthermore, the dynamic nature of the problem of
interest makes it impossible to analytically demonstrate certain properties of the [A(t)] matrix. The
magnetic field experienced by the spacecraft is dependent on the spacecraft’s position and orien-
tation relative to the earth, and this determines how [A(t)] varies with time. Currently, numerical
simulations illustrate the efficacy of the proposed momentum dumping algorithm. Further analysis
on the proposed momentum dumping algorithm is left for future work.

NUMERICAL SIMULATION

To demonstrate functionality of the control law and momentum dumping strategy, numerical sim-
ulation is used. A scenario is considered where the spacecraft is to track the rotating Hill frame.3, 23

Let the instantaneous orbital position of the spacecraft be denoted as r, and its velocity by v. The
Hill frame is then defined by the unit vectors

ôr =
r

|r|
, ôθ = ôh × ôr, ôh =

r × v
|r × v|

. (35)

In this scenario, the goal is to reorient the spacecraft such that b̂1 → ôr, b̂2 → ôθ, and b̂3 → ôh.
The orbital elements used to simulate the orbital motion are given in Table 1. Here, a circular orbit
is used, which corresponds to reference angular velocity of

ωr = nôh, (36)
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Figure 2. Relative attitude (left) and angular velocity (right) of body frame relative
to Hill frame during pointing maneuver

where n is the orbital mean motion. The Hill frame rotates about the ôh axis at a rate equal to n. To
propagate the orbit, two-body dynamics are used.

In order to simulate magnetic torque bar behavior, a magnetic field model is needed. For this
study, the tilted-centered dipole magnetic field model is used, with magnetic field components de-
fined by16

BNorthBEast
BDown

 = −6378km
r3

− cosφ sinφ cosλ sinφ sinλ
0 sinλ − cosλ

−2 sinφ −2 cosφ cosλ −2 cosφ sinλ

29900
1900
−5530

nT. (37)

Note that in the earth-centered earth fixed (ECEF) frame, the magnetic field is constant. In the earth-
centered inertial (ECI) frame, the magnetic field rotates along with the earth. The spacecraft orbit
is propagated in the ECI frame, and the rotation of the earth must be modeled. For the simulation,
the ECEF and ECI frames are assumed to be aligned initially, and the earth rotates about the z axis
at a rate of 7.292×10−5 rad/sec.

The spacecraft is assumed to have three magnetic torque bars and four reaction wheels. In the
spacecraft body frame, the alignment axes for these devices are

[Gt] =

1 0 0
0 1 0
0 0 1

 , [Gs] =

 0 0 cos(45◦) − cos(45◦)
cos(45◦) sin(45◦) − sin(45◦) − sin(45◦)
sin(45◦) − cos(45◦) 0 0

 .
Each reaction wheel is assumed to have the same spin-axis inertia value of Jsi = 0.001 kg m2 and
a maximum torque of 30 mNm. The torque bars are limited to a maximum dipole of 20 Am2. A
diagonal inertia tensor is assumed, with the values

[I] =

10.5 0 0
0 8 0
0 0 6.75

 kg m2.

Lastly, the control gains implemented for the numerical simulation are summarized in Table 2.
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Figure 3. Reaction wheel speeds (left) and motor torques (right) during pointing maneuver
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Figure 4. Reaction wheel speeds (left) and torque bar dipoles illustrating continuous
momentum dumping during pointing maneuver

The initial conditions used for the simulation areω0 =
[
2.0 2.0 2.0

]T deg/sec, Ω = 0 rad/sec,

andσ0 =
[
0.5 −0.5 0.7

]T . Here,σ0 represents the initial attitude of the spacecraft relative to the
ECI frame. For the attitude error σBR is used, which represents the rotation between the reference
Hill frame and the spacecraft body frame. To simulate unmodeled torques on the spacecraft, a
residual dipole of 1 Am2 is applied to all three body axes of the spacecraft. The performance of the
attitude control law (Eq. (15)) is shown in Figure 2 for the first five minutes of the simulation. The
control is successful at converging onto the desired reference Hill frame.

The wheel speeds and motor torques during the first five minutes are shown in Figure 3. There
is an increase in wheel speeds of several thousand revolutions per minute (rpm) during the initial
detumbling period of roughly one minute. This is due to the wheels absorbing the initial spacecraft
momentum, reducing the tumble rate in order to converge to the reference Hill frame. In this short
time period, there has not been sufficient time for the magnetic torque bars to remove momentum
from the system in spite of the fact that the momentum dumping algorithm is run continuously.

To illustrate momentum dumping, the wheel speeds and magnetic torque bar dipoles are shown
in Figure 4 for 125 minutes of simulation time. Wheels 1 and 3 are commanded to a desired bias
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of Ωr = 250 rpm, while wheels 2 and 4 are commanded to a desired bias of Ωr = −250 rpm.
Over this longer time period, the success of the momentum dumping strategy is evident. The wheel
speeds are greatly reduced, from a level of several thousand rpm to a few hundred. For the first few
minutes of the pointing maneuver, the torque bar dipoles are saturated due to the high wheel speeds
and aggressive momentum dumping torques called for. As the wheel speeds are reduced, the torque
bar commands fall to levels of a few Am2.

CONCLUSIONS

In this paper, a spacecraft attitude control law is developed for a redundant cluster of reaction
wheels. The control law, which includes integral feedback to account for unmodeled torques, is
an improvement over similar control strategies previously developed in that it does not contain a
term that is quadratic in angular velocity. The issue of momentum dumping is also addressed in the
current study. Prior work implements momentum management strategies for non-redundant reaction
wheel clusters that have limitations in their application to a spacecraft equipped with 4 or more
reaction wheels. A new method of momentum dumping is developed, which does not experience
the shortcomings inherent in prior work. Numerical simulation is used to demonstrate the efficacy
of the new control scheme, illustrating proper tracking behavior and momentum dumping for the
case of a time-varying reference attitude.
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