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Attitude Parameter Inspired Descriptions of Relative Orbital
Motion

Erik A. Hogan∗ and Hanspeter Schaub†

University of Colorado at Boulder, Boulder, CO, 80309, USA

This paper describes the development of novel relative orbital motion descriptions for a two craft
formation, defined by a separation distance and relative orientation parameter set. These descriptions
allow for the use of separation distance as a state parameter for the relative motion, while avoiding
singularity issues that plague spherical coordinate descriptions. Instead, Euler parameter- or modified
Rodrigues parameter-like coordinates are employed to describe the relative orientation. Equations of
motion are developed that allow propagation of these new descriptions for the case of a circular reference
orbit and small separation distances between the craft. Feedback control laws are developed to stabilize
the relative motion between the craft. Numerical simulation is used to compare the newly developed
relative motion descriptions with inertial equations of motion. The results validate these new descriptions
as a practical method for describing relative motion.

I Introduction

IN relative motion studies of spacecraft formations, the Hill frame coordinates are a commonly used relative position
and velocity description between a chief and a deputy craft. These coordinates are a cartesian description, and

applying them to the special case of a circular chief orbit with small separation distances results in the Clohessy-
Wiltshire (CW) equations.1 For some applications, a curvilinear coordinate frame is preferred and used to describe
the relative motion; this curvilinear coordinate frame is typically a spherical frame, defined by the separation distance
between the craft and two angles which provide information about the orientation of the line of sight vector from
the chief to deputy.2 Another relative motion description uses differential orbital elements.3, 4 Here, one craft in the
formation is specified as the reference craft, and all other craft in the formation are defined by differencing their orbital
elements with those of the reference.

In the current study, motion with respect to a circular chief orbit will be investigated using an alternative relative
position description. In some cases, relative motion descriptions are sought which use the separation distance between
chief and deputy as a coordinate. This can be important for certain applications where the separation distance has
a direct impact on the dynamics and control of the formation, or where collision is a real possibility. One such
application where these concerns are applicable is found in References 5. Here, electrostatic forces are used to generate
a contactless tugging force between chief and deputy, allowing the chief to thrust and tow the deputy into a new
orbit.6, 7 Further, the ion-sheppard method of large debris removal method also requires close proximity flying on the
order of dozens of meter where the separation distance errors should be controlled more strongly than the relative
heading errors.8–10 To develop the relative motion control law, spherical coordinates are chosen because the separation
distance appears directly in the electrostatic force expression. Thus, it is advantageous for the distance between deputy
and chief to appear as a state in the relative equations of motion. Furthermore, spherical coordinates provide a simple
way to prescribe relative trajectories in which the chief maneuvers around the deputy while maintaing a safe separation
distance, as only the angles need modification during the maneuver. Using a spherical coordinate system to describe
the relative motion results in kinematic singularities, however; it is of interest to study other potential relative position
descriptions which may avoid these issues. By deriving the relative motion using alternate descriptions, new dynamical
equations are obtained which have potentially advantageous properties.
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Figure 1: Relative motion of deputy and chief, illustrated using rotating Hill frame

When using spherical coordinates, kinematic singularities may appear depending on how the angles are defined.
For example, in Reference 2 no singularities are encountered because the spherical frame is defined relative to an
inertial frame, and the equations are linearized. In Reference 5, however, the spherical frame is defined relative to the
rotating Hill frame and kinematic singularities result because arbitrary relative motion is considered. In spite of these
singularities, the spherical frame is used because it contains the separation distance as a state. In the current study,
alternate relative motion descriptions are sought which use separation distance as state but avoid the singularities asso-
ciated with using spherical coordinates. To that end, one relative position description, inspired by the Euler parameter
attitude set, is proposed which uses a once-redundant set of parameters to describe the relative orientation of the craft
in the formation. The relative orientation is parameterized using the components of the unit-vector which points from
chief to deputy. Beyond this unit-vector description, a relative motion description is constructed which contains two
possible sets of parameters for describing the relative orientation in conjunction with the separation distance. While
these two possible sets contain singularities, these singularities do not occur at the same relative orientation, very sim-
ilar to the behavior of the modified Rodrigues parameter attitude description.11–14 Thus, a switching condition may be
employed to avoid these singularities all together. Beyond developing and analyzing the corresponding equations of
motion for these new relative motion descriptions, control laws employing continuous feedback are derived to stabilize
the relative motion.

The paper is structured as follows. First, background information regarding relative orbital motion is provided,
including the Clohessy-Wiltshire equations. Then, the unit-vector description is introduced and its equations of motion
are derived. Next, the σ set is defined and its corresponding dynamical equations are obtained. Control laws for
reference trajectory tracking are developed, and numerical simulation is used to illustrate their performance.

II Background
In this paper, the relative motion of a deputy satellite with respect to a chief is studied. This scenario is depicted in

Figure 1. Here, rc describes the inertial position of the chief and rd describes the position of the deputy. The relative
position, ρ, is defined as

ρ = rd − rc. (1)

Of interest is how this relative position evolves under the influence of natural orbital motion and a deputy control input.
One relative motion description frequently used is the cartesian Hill-frame coordinate system, illustrated in Figure 1.
The axes of the Hill frame, denoted asH, are computed using

ôr =
r

r
, ôθ = ôh × ôr, ôh =

r × ṙ
|r × ṙ| . (2)

The Hill frame is convenient for describing relative motion because the inertial position of the chief object is described
completely by

rc = rcôr. (3)

Furthermore, the angular velocity of the Hill frame with respect to an inertial frame is given by

ωH/N = ḟ ôh, (4)

2 OF 15
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS



ôr
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Figure 2: Unit-vector description of relative motion

where the script N refers to an inertial frame, and ḟ is the instantaneous true anomaly rate. Using the Hill frame, the
position of the deputy craft may be expressed as

rd = rc + ρ = (rc + x)ôr + yôθ + zôh, (5)

where x,y, and z are Hill frame components of the relative position vector ρ. Using this Hill-frame description, the
relative equations of motion are found to be15

ẍ− 2ḟ

(
ẏ − y ṙc

rc

)
− xḟ2 − µ

r2c
= − µ

r3d
(rc + x) (6a)

ÿ + 2ḟ

(
ẋ− x ṙc

rc

)
− yḟ2 = − µ

r3d
y (6b)

z̈ = − µ
r3d
z (6c)

In Eq. (6) no assumptions have been made about the distance between deputy and chief, and no restrictions have
been placed on the chief orbit. Thus, these equations are valid for arbitrary relative motion. In many formation flying
applications, it is of interest to consider flying the deputy and chief at separation distances much smaller than their
inertial orbit radii. This allows for a linearization of Eq. 6 about the chief motion. If only the case of circular chief
motion is considered, the true anomaly rate is constant and determined by

ḟ = constant =

√
µ

r3c
= n. (7)

Under these assumptions, the relative equations of motion may be simplified to the well-known Clohessy-Wiltshire
(CW) equations1

ẍ− 2nẏ − 3n2x = 0 (8a)
ÿ + 2nẋ = 0 (8b)

z̈ + n2z = 0. (8c)

The CW equations are useful because they have an analytic solution as a function of initial conditions. There are
drawbacks, however, that one may encounter when working with these equations. Because the Hill-frame description
is cartesian in nature, and orbits form a curvilinear space, the CW equations will not accurately capture the rela-
tive motion for moderately large separation distances. This is due to the fact that the local curvature of the orbit is
approximated as linear.

III Relative Orbit Descriptions using Heading and Separation Measures
III.A The Unit-vector Description

Depending on the particular application, alternate relative motion descriptions may be desired. It is sometimes of
interest to use the separation distance between the craft directly as a coordinate, breaking up the description of relative
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Figure 3: The unit-vector components are equivalent to the cosines of the angles between ê and the Hill frame
axes

motion into a distance and relative orientation measure. To avoid the singularity issues associated with a spherical
coordinate description, an alternate method is proposed which uses the separation distance, L = ρ, and the unit-vector
pointing from chief to deputy, as illustrated in Figure 2. This unit-vector is defined as

ê =
ρ

ρ
. (9)

Using this description, the position of the deputy with respect to the chief in Hill frame components is given by

ρ = Le1ôr + Le2ôθ + Le3ôh, (10)

where ei are the Hill frame components of ê. The forward and inverse mapping between the cartesian Hill frame
components and the unit-vector description is given byxy

z

 =

Le1Le2
Le3

 ,
e1e2
e3

 =

x/Ly/L
z/L

 (11)

with
L2 = x2 + y2 + z2. (12)

The conversion between the rates is given byẋẏ
ż

 =

L̇e1 + Lė1
L̇e2 + Lė2
L̇e3 + Lė3

 ,
ė1ė2
ė3

 =

(ẋ− L̇e1)/L

(ẏ − L̇e2)/L

(ż − L̇e3)/L

 (13)

with the separation-distance rate determined as

L̇ =
xẋ+ yẏ + zż

L
. (14)

Geometrically, the components ei may be interpreted as angle measures between the unit-vector ê and the Hill-
frame axes ôr, ôθ, and ôh. More specifically, they represent the direction cosines of êwith respect to the Hill frame. If
the angle between ê and the ôi axis is denoted as αi, as illustrated in Figure 3, then the components of ê are equivalent
to e1e2

e3

 =

cosαr
cosαθ
cosαh

 . (15)

Considering the relationship between the cartesian Hill frame coordinates and the unit-vector description, an apparent
singularity occurs at L = 0. This singularity is a result of the non-uniqueness of the unit-vector at this separation
distance. In fact, when the separation distance is zero, any arbitrary unit-vector will appropriately convert the unit-
vector description into the cartesian coordinates. While this presents an issue mathematically, it is of little practical
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concern because a separation distance of zero is impossible with actual craft. The unit-vector description is well
defined everywhere else, and is thus a good candidate for describing arbitrary relative motion.

With the unit-vector description, four parameters are used to describe a three-dimensional location. Similar to the
use of the 4-dimensional Euler parameter (EP) set to describe a three dimensional attitude, there must be a constraint
on the parameters. In this case, the unity constraint

e21 + e22 + e23 = 1 (16)

must be satisfied at all times. Differentiating this constraint twice with respect to time yields

e1ë1 + e2ë2 + e3ë3 + ė21 + ė22 + ė23 = 0. (17)

Considering Eq. (17), it appears that singularities may present a problem when one of the vector components is zero.
However, when combined with the relative motion differential equations, this singularity will vanish.

Another parallel with the Euler parameter attitude description is the issue of uniqueness. When the four dimen-
sional Euler parameters are used to describe attitude, there are two sets that describe the same orientation. With the
unit-vector relative motion description, there are two sets of parameters that describe the exact same relative position.
In addition to the ρ = Lê description detailed above, the same location may be obtained using ρ = −L(−ê). This
non-uniqueness has an important implication for the σ set introduced later in the paper.

To determine the relative equations of motion, Eqs. (11) and (13) are substituted into Eq. (8) and the constraint in
Eq (17) is used to yield 

L̈
ë1
ë2
ë3

 = [f(L, L̇, ê, ˙̂e)] + [Ge]u (18)

where

[f(L, L̇, ê, ˙̂e)] =


L
(
2n(e1ė2 − e2ė1) + n2(3e1

2 − e32) + ė21 + ė22 + ė23
)

e1
(
2ne2ė1 + n2

(
3e2

2 + 4e3
2
)
− ė21 − ė22 − ė23

)
− 2ne1

2ė2 + 2nė2 + 2 L̇L (ne2 − ė1)

e2
(
2n(e2ė1 − e1ė2) + n2(e3

2 − 3e1
2)− ė21 − ė22 − ė23

)
− 2nė1 − 2 L̇L (ne1 + ė2)

−e3
(

(ė1 − ne2)
2

+ 2ne1ė2 + 4n2e1
2 + ė22 + ė23

)
− 2ė3

L̇
L

 (19a)

[Ge] =
1

L


Le1 Le2 Le3

1− e21 −e1e2 −e1e3
−e1e2 1− e22 −e2e3
−e1e3 −e2e3 1− e23

 =

[
êT

1
L

(
[I]− êêT

)] (19b)

u =

uxuy
uz

 (19c)

Note that the only singularity in Eq. (18) occurs when L = 0. For reasons discussed above, this is of little concern
for the scope of this study. The unit-vector description provides practically non-singular equations of motion that use
the separation distance and a redundant set of orientation parameters to describe relative motion. In this manner, the
singular issues that plague the spherical frame description are avoided while still maintaining a direct measure of the
distance between the deputy and chief.

III.B The σ-Set Relative Motion Description
The unit-vector description detailed previously is inspired by the Euler parameter attitude description. Now, an

additional relative motion description is considered which is inspired by modified Rodrigues parameters (MRPs).15

The unit-vector description is used to define new orientation parameters that reduce the relative motion description
from 4 parameters (L, ê) to three. Similar to the manner in which MRPs are defined using the Euler parameter set,
a new relative motion orientation description is defined using the unit-vector components. The σ set contains L, the
separation distance, and two orientation parameters defined as[

σ1
σ2

]
=

1

1 + e1

[
e2
e3

]
(20)

5 OF 15
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS



The once-redundant unit-vector description is used to define a new, minimal-set description of relative motion. The
inverse mapping from the σ-set to unit-vector components ise1e2

e3

 =
1

1 + σ2

1− σ2

2σ1
2σ2

 , (21)

where σ2 = σ2
1 + σ2

2 . Using Eq. (11), the mapping between σ-set and Hill frame coordinates is determined to bexy
z

 =
L

1 + σ2

1− σ2

2σ1
2σ2

 . (22)

Taking the derivative with respect to time yields the velocity mappingẋẏ
ż

 =
L̇

1 + σ2

1− σ2

2σ1
2σ2

+
2L

(1 + σ2)2

 −2σ̇Tσ
(1− σ2

1 + σ2
2)σ̇1 − 2σ1σ2σ̇2

(1 + σ2
1 − σ2

2)σ̇2 − 2σ1σ2σ̇1

 . (23)

Inverting the above relationships, the mapping from Hill-frame coordinates to σ-set is found to be[
σ1
σ2

]
=

1

x+ L

[
y
z

]
, (24)

with the corresponding velocity mapping[
σ̇1
σ̇2

]
=

1

x+ L

[
ẏ
ż

]
− ẋ+ L̇

(x+ L)2

[
y
z

]
. (25)

To obtain the equations of motion for the σ set, the above relationships are inserted into the CW equations. The result
is expressed in the form [

L̈
σ̈

]
= [h(L, L̇,σ, σ̇)] + [Gσ]u. (26)

The three components of the [h] matrix are

hL =
L

(1 + σ2)
2

[
3n2(σ4

1 + σ4
2 + 1) + 4σ̇1n− 2nσ2

2(5n+ 2σ̇1) + 2nσ2
1(3n(−1 + σ2

2) + 2σ̇1)

+ 8nσ1σ2σ̇2 + 4σ̇T σ̇
] (27a)

hσ1
= − 1

2L (1 + σ2)

[
− 6n2Lσ3

1 + 2nσ4
1L̇+ 4σ2

1L̇ (n+ σ̇1)−
(
1 + σ2

2

)
L̇
(
2nσ2

2 − 2 (n+ 2σ̇1)
)

− 8Lσ2 (n+ σ̇1) σ̇2 + 2Lσ1
(
3n2 − 5n2σ2

2 − 2σ̇2
1 + 2σ̇2

2

) ] (27b)

hσ2
=

1

2L (1 + σ2)

[
− 4nσ3

1σ2L̇−4nσ1
(
σ2 + σ3

2

)
L̇− 4L̇σ̇2 + 8Lσ1σ̇1σ̇2 + 2σ2

1

(
2n2Lσ2 − 2L̇σ̇2

)
− σ2

(
4σ2L̇σ̇2 + 4L

(
2n2

(
1− σ2

2

)
+ 2nσ̇1 + σ̇2

1 − σ̇2
2

)) ]
,

(27c)

and the control sensitivity matrix is

[Gσ] =


1−σ2

1+σ2
2σ1

1+σ2
2σ2

1+σ2

−σ1

L
1−σ2

1+σ
2
2

2L −σ1σ2

L

−σ2

L −σ1σ2

L
1+σ2

1−σ
2
2

2L

 . (28)

The control vector u is defined the same as before, with components in the Hill frame. An examination of the σ set
equations reveals singularities in two different positions. One occurs when L = 0, which corresponds to a collision
between chief and deputy. As discussed previously, this is of little practical importance. The second singularity occurs
when x = −L (or e1 = −1). This singularity must be given attention, as there are many possible trajectories which
may encounter this configuration.
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Figure 4: The tracking error measure δR is the vector from the reference location to the current deputy position

III.C The σ Shadow Set
As with the unit-vector description, there are two sets of L and σ values that describe the same relative position.

This phenomenon is similar to the existence of a shadow set in the Modified Rodrigues parameter attitude description.15

Using the alternate unit-vector description (−L,-ê), the alternate σ set may be found. This shadow set, denoted as σs,
is defined as

σs = − σ
σ2
. (29)

Differentiating yields the shadow set velocity

σ̇s = − σ̇
σ2

+ 2
σT σ̇

σ4
σ, (30)

where σ4 = (σ2
1 + σ2

2)2. For any relative motion, a set of −L, −L̇, σs, and σ̇s describes the exact same relative
position and velocity as L, L̇, σ and σ̇. In fact, one may switch between the original and shadow set arbitrarily. Each
set evolves according to the same differential equations.

This has important implications regarding the singularity at x = −L. If this singularity is approaching, a switch
to the shadow set may be used to avoid it. When the original set is at the singularity, the shadow set is well defined
at σ = 0. By choosing an appropriate switching location, arbitrary relative motion may be described using the σ set
without encountering any singularities. Here, a switching condition of σ2 = 1 is used. That is, when the magnitude of
σ becomes larger than 1 a switch to the shadow set is employed. Considering the relationship between the unit-vector
description and σ set, it can be shown that switching at this location restricts e1 to only positive values, i.e. e1 > 0.
Changing back and forth between original and shadow set is equivalent to switching between L, ê and −L, −ê.

IV Relative Motion Control
In this section relative motion control is considered, using both the unit-vector description and σ set. The goal is

tracking an arbitrary deputy trajectory. Because the CW equations are used to derive the equations of motion for these
descriptions, only trajectories with a chief-deputy separation distance of less than 1 km are considered. It is assumed
that the necessary control acceleration, u, is achievable by inertial thrusters.

IV.A Unit-vector Control
The most apparent obstacle present when using the unit-vector description for control is the fact that there are only

three control inputs for a four dimensional system. However, the unit-vector components are not independent. Thus,
it is possible to formulate the control problem in such a way as to obtain desired tracking behavior using the three
control inputs.

IV.A.1 Hill-Frame Like Control
For the first control law approach, consider the vectorR defined as

R = Lê, (31)

with the associated derivatives

Ṙ = L̇ê (32a)

R̈ = L̈ê+ 2L̇ ˙̂e+ L¨̂e (32b)
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Note that the components ofR are equivalent to the Cartesian Hill-frame components x, y, and z. Any set of L and ê
will describe exactly one R vector. Thus, if the system tracks a desired L and ê, then it will also track the equivalent
R. We may enforce tracking of L and ê, then, by tracking theRr vector, defined as

Rr = Lrêr, (33)

where Lr and êr describe a desired reference trajectory. For the control law development, consider the candidate
Lyapunov function16

V1(δR, δṘ) =
1

2
δRT [K]δR+

1

2
δṘT δṘ, (34)

where δR = R −Rr and [K] is a positive definite gain matrix. Geometrically, the tracking error δR is the vector
from the reference position to the actual position of the deputy, as illustrated in Figure 4. It makes sense, then, that
driving this vector to 0 would lead to tracking of the reference trajectory. The derivative of the candidate Lyapunov
function with respect to time is

V̇1(δR, δṘ) = δṘT
(

[K]δR+ R̈− R̈r

)
. (35)

For the deputy motion, the acceleration ofR is

R̈ = [fR] + u =

2n(L̇e2 + Lė2) + 3n2Le1
−2n(L̇e1 + Lė1)
−n2Le3

+

uxuy
uz

 . (36)

Substituting this back into the Lyapunov rate function yields

V̇1(δR, δṘ) = δṘT
(

[K]δR+ [fR] + u− R̈r

)
. (37)

To ensure Lyapunov stability, the control law is chosen as

u = −[K]δR− [P ]δṘ+ R̈r − [fR], (38)

where [P] is a positive definite gain matrix. This control law results in the negative semi-definite Lyapunov rate

V̇1(δR, δṘ) = −δṘT [P ]δṘ (39)

and closed loop tracking dynamics
δR̈+ [P ]δṘ+ [K]δR = 0. (40)

To examine asymptotic stability, higher-order derivatives are taken and evaluated on the set δṘ = 0.17 The first
non-zero derivative is found to be

...
V 1(δR, δṘ = 0) = −2δRT [K]T [P ][K]δR (41)

which is negative definite in terms of δR. Thus, the control law tracks the reference trajectory asymptotically. Fur-
thermore, the asymptotic stability is global, due to the radially unbounded nature of the candidate Lyapunov function
in Eq. (34).

The control law in Eq. (38) does not linearize the dynamics of L and ê. Rather, it provides linear closed-loop
tracking error dynamics. Using the unit-vector description, the preceding control law development provides a means
to track an arbitrary, potentially time-varying reference trajectory. Its major drawback, however, is that it does not
isolate the actuation of the separation distance from the relative orientation. For collision avoidance applications, it
would be useful to be able to stabilize the relative separation distance more rapidly than relative orientation. This would
allow for reorientation maneuvers which occur at a safely maintained separation distance. Indeed, one may argue that
little is gained using this control law versus a similar development using Cartesian Hill frame coordinates. After all,
this control law is essentially actuating on these Hill-frame coordinates directly, albeit with a different description.
While perhaps not ideal, these developments illustrate that it is possible to track an arbitrary reference trajectory using
the unit-vector description.
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IV.A.2 Isolating L and ê: γ Control Law
For the next control development, the problem of isolating the separation distance actuation capabilities from the

relative orientation is considered. That is, a control law is sought which would allow for tracking of some reference
Lr more quickly than a reference orientation êr. Such a control would stabilize the relative separation distance early
on in the maneuver before a large reorientation has occurred, thus minimizing the chance of collision. Rather than
attempting to control all states of the system, only the separation distance and two elements of the unit-vector are
considered. As an example, consider an orientation error measure defined by e1 and e2. If the control is tracking a
reference e1r and e2r, then

e21 + e22 + e23 = 1 = e21r + e22r + e23r. (42)

Because e1 = e1r and e2 = e2r once the system has converged to the reference, it is guaranteed that

e3 → ±e3r. (43)

Thus, the system may converge to a state that is at the proper separation distance, but not at the proper orientation. A
similar argument may be repeated for any of the other pairs of unit-vector components. Determination of the conditions
required for convergence to the proper value is left for future work.

To arrive at a control law which isolates the separation distance from the relative orientation, consider the error
measure δγ, defined as

δγ = γ − γr =

Lei
ej

−
Lreir
ejr

 , (44)

where ei and ej denote any two components of ê. This error measure is used to define the candidate Lyapunov function

V2(δγ, δγ̇) =
1

2
δγT [K]γ +

1

2
δγ̇T δγ̇, (45)

where [K] is a positive definite gain matrix. The derivative of this Lyapunov function is

V̇2(δγ, δγ̇) = δγ̇T ([K]δγ + γ̈ − γ̈r) . (46)

The differential equation for γ is
γ̈ = [fγ ] + [Gγ ]u, (47)

where the elements of [fγ ] and [Gγ ] are populated from Eq. 18 depending on which components of ê are used.
Substituting these dynamics back into the Lyapunov rate expression yields

V̇2(δγ, δγ̇) = δγ̇T ([K]δγ + [fγ ] + [Gγ ]u− γ̈) . (48)

To ensure stability, the control requirement used for the system is

[Gγ ]u = −[fγ ]− [K]δγ − [P ]δγ̇ + γ̈r, (49)

where [P ] is a positive definite gain matrix. This results in the negative semidefinite Lyapunov rate

V̇2(δγ, δγ̇) = −δγ̇T [P ]δγ̇. (50)

As before, asymptotic stability is determined through consideration of higher order derivatives of V2.17 Evaluated on
the set δγ̇ = 0, the first non-zero derivative is

...
V 2(δγ, δ ˙γ = 0) = −2δγT [K]T [P ][K]δγ, (51)

which is negative definite in terms of δγ. Thus, if Eq. (49) is satisfied the system is asymptotically stable. The region
of stability is global, due to the radially unbounded nature of V2.

In order to find the control acceleration, [Gγ ] must be inverted and multiplied by the right hand side of Eq. (49).
This presents a problem, however, as [Gγ ] is not always invertible. The nature of this singularity becomes evident
when considering the determinant of [Gγ ]. It is solely a function of L and ek,

|[Gγ ]| = ek
L2
, (52)
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where ek is the component of ê not used in γ. If relative motion is desired in the chief orbit plane, for example, e1
and e2 cannot be used in γ or [Gγ ] will be singular all along the reference trajectory, where e3 = 0.

The singularity issue is a very significant drawback to using this second control law to track a reference trajectory.
If e1 and e2 are used in γ, any trajectory that crosses from one side of the chief orbital plane to the other will encounter
a singularity at the moment of crossing. If e2 and e3 are used in γ, a trajectory that moves from above to below the chief
(or vice-versa) will pass through the singularity. Lastly, if e1 and e3 are used in γ, any trajectory that passes from in
front to behind the chief (or vice-versa) will encounter the singularity issues. These conditions are extremely limiting
on the number of reference trajectories that may be followed, and the performance of the system is very dependent
on the starting location of the deputy. If the deputy is able to reach and converge onto the reference trajectory before
a singularity is encountered then no problems will occur. However, for arbitrary reference motion and initial deputy
conditions this is unlikely to be the case.

Let us turn our attention to a specific example of converging onto a naturally occurring relative motion. It is well
known that for close separation distances, a naturally occurring relative motion is a 2x1 ellipse in the chief orbit plane.
We will assume, at least for this example, that the ellipse is centered on the chief. It would not be possible to use e1 and
e2 in γ for this case due to the fact that e3 = 0 all along the reference trajectory. Thus, it would be required to use e3
and either e1 or e2 in γ. However, both e1 and e2 will pass through 0 twice during each revolution of the ellipse. This
example illustrates how significant the singularity issues are, even in enforcing simple, naturally occurring motion.

The second major issue is the indeterminacy of ek. There is no guarantee that the relative orientation will converge
to the reference. It is likely that if the deputy starts closer to ekr than−ekr that it will converge to the proper orientation,
but there is no guarantee. Furthermore, note that to converge from a position near ekr onto −ekr, the system would
have to pass through the singularity. For example, assume that e3 is not used in γ. If e3r is a positive value, and e3(t0)
is also positive, the only way the system could converge to −e3r is if e3 passed through the singularity at 0.

IV.B σ Set Control
The σ set is a minimal description. That is, three parameters are used to describe motion in a three-dimensional

system. The problem of overdetermination that affected the unit-vector control law development is not an issue here.
To develop a σ-based control law the error parameter δζ is used, where

δζ = ζ − ζr =

[
L
σ

]
−
[
Lr
σr

]
. (53)

Consider the candidate Lyapunov function

V3(δζ, δζ̇) =
1

2
δζT [K]δζ +

1

2
δζ̇T δζ̇ (54)

where [K] is a positive definite gain matrix. The derivative of this Lyapunov function is

V̇3(δζ, δζ̇) = δζ̇T
(

[K]δζ + ζ̈ − ζ̈r
)
.

Substituting in Eq. (26) yields

V̇3(δζ, δζ̇) = δζ̇T
(

[K]δζ + [h] + [Gσ]u− ζ̈r
)
.

To ensure Lyapunov stability, the control law

u = [Gσ]−1
(
−[K]δζ − [P ]δζ̇ − [h] + ζ̈r

)
is chosen, where [P ] is a positive definite gain matrix. This reduces the Lyapunov rate to

V̇3(δζ, δζ̇) = −δζ̇T [P ]δζ̇,

which is negative semi-definite. To determine asymptotic stability, higher order derivatives of the Lyapunov function
are taken and evaluated on the set δζ̇ = 0.17 The first non-zero derivative is

...
V 3(δζ, δζ̇) = −2δζT [K]T [P ][K]δζ,
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Table 1: Orbit elements for chief and deputy craft

a (km) e i (◦) Ω (◦) ω (◦) M0 (◦)

Chief 7500 0 20 10 250 0
Deputy ac+0.05 ec + 0.00001 ic − 0.001 Ωc ωc + 0.0001 M0,c

which is negative definite in terms of δζ. Thus, the control law tracks the reference trajectory asymptotically.
The act of switching between original and shadow set has important implications for the control response. The

preceding Lyapunov stability analysis assumes that V3 and its derivatives are continuous. Switching to the shadow set
violates this continuity assumption. Furthermore, the signs of L and Lr may present problems. If L < 0 and Lr > 0,
for instance, the control law will strive to move the deputy through L = 0 to positive values where it will track Lr.
Not only is this a collisional hazard, but passing through L = 0 is a singularity for the σ set.

Each of these issues may be addressed by switching the reference trajectory to its shadow set, so that the signs of
L and Lr are always the same. If the deputy position description is switched from original to shadow set, then the
reference trajectory must be switched as well. While the Lyapunov function is not continuous under this switching, it
may be considered as a series of ever-decreasing functions. At each switching time, there is effectively a new function
which will decrease with time until another switching occurs. As the original σ set moves closer to the reference, the
shadow sets will also converge until tracking is achieved.

There is a potential issue with switching the reference trajectory to its shadow set. It is possible that the reference
trajectory may be switched onto a singularity. Consider the following example. If the reference location is at x = −50
m in the Hill frame, the only defined σ set description for this position is L = −50 m, σ = 0. If the deputy motion
calls for the reference trajectory to switch to its shadow set, it will shift onto the singularity.

V Numerical Simulation
To validate and illustrate the performance of the unit-vector and σ set control laws, numerical simulation is used.

Each of the control laws are implemented into an inertial simulation. For the inertial simulation, the trajectory of each
craft is determined from integration of

r̈i = − µ
r3
ri + u, (55)

where u is determined from the control laws developed above. The relative motion is then computed using the inertial
trajectories of each craft. The initial conditions for each simulation are determined by defining a set of orbital elements
for the chief, and orbit element differences for the deputy. Because the unit-vector and σ set equations of motion are
obtained from the linearized CW equations, the orbital element differences will be kept at small levels such that the
linear approximation is valid.

V.A Unit-vector γ Control Law
To demonstrate the performance of the unit-vector γ control law, a time-varying reference trajectory is prescribed

in the Hill frame and the control law is applied to track the reference. The target reference motion, which is not a
naturally occurring motion, is

xr(t) = 0.05 cos(nt) (km) (56a)
yr(t) = 0.05 sin(nt) (km) (56b)
zr(t) = 0.02 sin(2nt+ π/2) + 0.03 (km). (56c)

The z coordinate is maintained positive to avoid singularity issues that would occur for the case when e3 would
pass from negative (-z) to positive (+z). The reference trajectory is transformed into unit-vector components for
implementation into the control law, with gains of [K] = n2diag([10; 1; 1]) and [P ] = n ∗ diag([10; 1; 1]). Gain
selection is important for this scenario. Improper gain selection will cause the system to encounter the singular
transition from +z to −z. Here, appropriate gains are chosen to avoid encountering the singularity and illustrate
proper functionality of the control law.

The γ control law is applied using L, e1, and e2 for the error measure. By weighting the separation distance error
10 times higher than the relative orientation error, the singularity is avoided. The time histories of L and ê during
the maneuver are shown in Figure 5, and the state errors are presented in Figure 6. Due to the higher gains on the L
error, the rate of converge to the reference separation distance is faster than the rate of convergence to the reference
orientation.
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Figure 5: Time histories of L and ê during tracking maneuver. The reference trajectory is shown as a dashed
line.

The control inputs generated by the γ control law are shown in Figure 7. The transient response necessary for
the deputy to reach the reference trajectory is evident, followed by the non-zero control required to maintain the
non-naturally occurring reference motion. The magnitude of control acceleration needed is on the order of mm/s2.

V.B σ Set Control Law

A major advantage of the σ set description is that it isolates the separation distance from the relative orientation.
Using proper gain selection, a desired separation distance may be achieved quickly and maintained during reorienta-
tion. For example, if the deputy is to be repositioned from ahead to behind the chief, a safe separation distance may
be maintained while the deputy moves around the chief. To illustrate this point, gains are chosen that cause the deputy
to track the reference separation distance (Lr) more quickly than the relative orientation ( σ). The σ set control law
developed above effectively linearizes the closed-loop dynamics into the form

δζ̈ + [P ]δζ̇ + [K]ζ = 0.

By choosing diagonal [K] and [P ] gain matrices, the response of the system for L-tracking is independent of σ-
tracking. Here, a slightly underdamped response is desired with a damping ratio of ζ = 0.925. For this system the
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Figure 6: State errors for unit-vector and σ set control laws throughout tracking maneuvers.
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Figure 7: Control inputs for unit-vector γ control law and σ set control law.

desired gains for a given settling time, Ts, are computed as5, 18

Ki =
27.829

T 2
s

Pi = 1.85
√
Ki.

The settling time for L is chosen as 30 minutes, while the settling times for ê and σ are chosen as 1 hour.
To illustrate tracking performance, once again a time varying trajectory is specified in Hill-frame coordinates. The

trajectory used is

xr(t) = 0.05 cos(nt) (km) (57a)
yr(t) = 0.05 sin(nt) (km) (57b)
zr(t) = 0.02 sin(2nt+ π/2)(km). (57c)

During the simulation the switching conditions of |σ| = 1 is employed, and the reference trajectory is switched to its
shadow set during every deputy switch so that sign(L) = sign(Lr). The time histories of L and σ during the maneuver
are shown in Figure 8. The state errors over the same time period are shown in Figure 6. The switching times are
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Figure 8: Time histories of L and σ during tracking maneuver. The reference trajectory is shown as a dashed
line.

evident, both for the actual and reference trajectories. While the magnitude of σ is constrained to be less than 1, the
magnitude of σr is not. The reason is due to the fact that σr is automatically switched to its shadow set when |σ| calls
for it, regardless of whether or not |σr| ≤ 1.

The effects of gain selection on the system response are clear in Figure 6. The separation distance has a rate of
convergence to the reference that is twice as fast as the rate of convergence for σ. The practical application for such a
response is maintaining a safe separation distance during a reorientation maneuver. The control history for the σ set
control law is shown in Fig 7. Again, mm/s2 level control inputs are needed and a non-zero control is required to track
the reference trajectory.

VI Conclusion
Two new relative motion descriptions are developed that are inspired by attitude parameter sets. The unit-vector

description and σ set both isolate the separation distance from relative orientation. Equations of motion using these
new descriptions are derived from the well-known Clohessy-Wiltshire equations. Reference trajectory tracking control
laws are developed and implemented in numeric simulation. The unit-vector description is non-singular, and the σ
set can avoid singularities by switching to its shadow set. However, the control laws developed for these descriptions
may encounter unavoidable singularities. The issues present in the unit-vector γ control law are due to the fact that
the description is overdetermined. That is, a four dimensional system is actuated upon by a three dimensional control
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vector. WIth the σ set, the control singularities are due to the fact that when a switch to the shadow set is called for,
the reference trajectory must be switched as well. While the σ set is switched in such a way as to avoid singularities,
the same cannot be said about the reference trajectory. Because the reference switching is dependent on the actual
deputy trajectory, a switch may be called for that places the reference trajectory right on a singular orientation. Careful
planning may be required to prevent issues from affecting control system performance.
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Symposium on Space Flight Dynamics, São José dos Campos, Brazil, February 28-March 04 2011.
3Breger, L. and How, J., “GVE-Based Dynamics and Control for Formation Flying Spacecraft,” 2nd International Symposium on Formation

Flying Missions and Technologies, Washington, DC, September 14-16 2004.
4Jiang, F., Li, J., and Baoyin, H., “Approximate analysis for relative motion of satellite formation flying in elliptical orbits,” Celestial

Mechanics and Dynamical Astronomy, Vol. 98, 2007, pp. 31–66.
5Hogan, E. and Schaub, H., “Relative Motion Control for Two-Spacecraft Electrostatic Orbit Corrections,” AAS/AIAA Spaceflight Mechanics

Meeting, Girdwood, Alaska, July 31 – August 4 2011, Paper AAS 11–466.
6Schaub, H. and Moorer, D. F., “Geosynchronous Large Debris Reorbiter: Challengs and Prospects,” AAS Kyle T. Alfriend Astrodynamics

Symposium, Monterey, CA, May 17–19 2010.
7Schaub, H. and Jasper, L. E. Z., “Circular Orbit Radius Control Using Electrostatic Actuation for 2-Craft Configurations,” AAS/AIAA

Astrodynamics Specialist Conference, Girdwood, Alaska, July 31 – August 4 2011, Paper AAS 11–498.
8Bombardelli, C. and Pelaez, J., “Ion Beam Shepherd for Contactless Space Debris Removal,” AIAA Journal of Guidance, Control, and

Dynamics, Vol. 34, No. 3, May–June 2011, pp. 916–920, doi:10.2514/1.51832.
9Kitamura, S., “Large Space Debris Reorbiter using Ion Beam Irradiation,” 61st International Astronautical Congress, Prague, Czech Repub-

lic, Sept. 27 – Oct. 1 2010.
10Bombardelli, C., Urrutxua, H., Merino, M., Ahedo, E., Pelaez, J., and Olympio, J., “Dynamics of Ion-Beam Propelled Space Debris,”

International Symposium on Space Flight Dynamics, Sao Jose dos Campos, Brasil, Feb. 28 – March 4, 2011 2011.
11Wiener, T. F., Theoretical Analysis of Gimballess Inertial Reference Equipment Using Delta-Modulated Instruments, Ph.D. dissertation,

Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, March 1962.
12Marandi, S. R. and Modi, V. J., “A Preferred Coordinate System and the Associated Orientation Representation in Attitude Dynamics,” Acta

Astronautica, Vol. 15, No. 11, 1987, pp. 833–843.
13Tsiotras, P., “On the Choice of Coordinates for Control Problems on SO(3),” 30th Annual Conference on Information Sciences and Systems,

Princeton University, March 20–22 1996, pp. 1238–1243.
14Schaub, H. and Junkins, J. L., “Stereographic Orientation Parameters for Attitude Dynamics: A Generalization of the Rodrigues Parameters,”

Journal of the Astronautical Sciences, Vol. 44, No. 1, 1996, pp. 1–19.
15Schaub, H. and Junkins, J. L., Analytical Mechanics of Space Systems, AIAA Education Series, Reston, VA, 2nd ed., October 2009.
16Schaub, H., Vadali, S. R., and Alfriend, K. T., “Spacecraft Formation Flying Control Using Mean Orbit Elements,” Journal of the Astronau-

tical Sciences, Vol. 48, No. 1, 2000, pp. 69–87.
17Mukherjee, R. and Chen, D., “Asymptotic Stability Theorem for Autonomous Systems,” Journal of Guidance, Control, and Dynamics,

Vol. 16, 1993, pp. 961–963.
18Nise, N. S., Control Systems Engineering, Wiley, 5th ed., 2008.

15 OF 15
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS


	Introduction
	Background
	Relative Orbit Descriptions using Heading and Separation Measures
	The Unit-vector Description
	The -Set Relative Motion Description
	The  Shadow Set

	Relative Motion Control
	Unit-vector Control
	Hill-Frame Like Control
	Isolating L and :  Control Law

	 Set Control

	Numerical Simulation
	Unit-vector  Control Law
	 Set Control Law

	Conclusion

