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This paper describes the discovery of families of multiple invariant shape solu-
tions for collinear three-craft Coulomb formations with set charges, as well as the
results of linear stability analysis on such formations. The charged spacecraft are
assumed to be spinning about each other in deep space without relevant gravita-
tional forces present. Up to three invariant shape solutions are possible for a single
set of craft charges. This behavior, only speculated in previous work, is confirmed
through analysis and numerical simulation examples. In fact, distinct regions are
analytically described where two or three invariant shape solutions exist for a sin-
gle charge set. These regions are analyzed to determine what range of trajectories
are possible. Linear stability analysis yields the first examples of marginally stable
three-craft invariant shape formations. Linearly stable behavior is only observed
when two invariant shape solutions result for one set of charges, where one shape
will be unstable and the other marginally stable. Numerical simulation illustrates
stability for ten orbital periods.

INTRODUCTION

Close formation flying of spacecraft within dozens of meters presents many exciting possibilities,
with applications ranging from advanced weather monitoring to high resolution Earth imaging and
astronomy applications. The ability to concentrate a large number of scientific instruments within a
group of satellites separated by tens of meters would be a major step forward over the limited space
provided by a single satellite. A further advantage of using a satellite formation results from the
fact that not all of the satellites need to be launched simultaneously. This means that an advanced
complex of scientific instrumentation could be pieced together gradually over time. Because the
satellite formation would not need to be connected by a rigid structure, a large savings in mass
can occur over a large single body structure. With the high cost of sending objects into orbit,
any reduction in mass results in a significant reduction in cost. This makes space-based science
missions more economical, allowing for a larger number of studies to be conducted. One potential
application where close formation flights would be particularly useful is the field of interferometry.
In fact, such formations have been proposed for the Terrestrial Planet Finder Interferometer concept
currently under study by NASA.1, 2

Many instruments used to conduct space based research can be very sensitive to interference
caused by free floating particles. When considering close formation flight of a small cluster of
satellites, this can be a very serious problem if traditional propellant-type thrusters are used to
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maintain the formation. In such close proximity, it is feasible that the propellant mass ejected by
a thruster on one satellite will come into contact with other satellites and possibly interfere with
the delicate instrumentation onboard. One way to circumvent this problem is to use electrostatic
forces to control the formation.3, 4 By charging individual spacecraft, attractive and repulsive forces
are created which can be used to control a close formation at distances up to tens of meters.5 This
method of propulsion requires essentially no propellant, meaning there will be neglibible ejected
particles to interfere with other craft in the formation. Furthermore, it is also very energy efficient,
requiring power levels on the order of Watts.6 Such a propulsion method would require active charge
control, which has already been demonstrated on the SCATHA and ATS missions in the 1970s,7–9

as well as in the ongoing European CLUSTERS mission.10

For the current study, we consider three-craft collinear invariant shape Coulomb formations in
deep space, where the craft orbit about their collective center of mass. In the original work with
such formations, Hussein and Schaub lay the theoretical foundation for determining invariant shape
solutions for the three-craft Coulomb formation.11 Numerical simulation is used to illustrate a
few particular invariant shapes, solving for shapes when craft charges are specified. Hogan and
Schaub carry the analysis further, considering the problem from a mission design perspective.12

Here a method is established to solve for craft charges when a particular invariant shape geometry is
desired, and prove that for any desired invariant collinear shape a real charge solution always exists.
In Reference 11 the authors show that multiple invariant shape solutions might be possible for a
single set of craft charges, but no such cases are shown to actually exist. Further, the few collinear
solutions numerically simulated were all determined to be unstable.13 In contrast, the current study
seeks to investigate under what conditions families of multiple invariant shape solutions do exist
for the spinning collinear charged 3-craft problem. Further, their linear stability properties are
of interest to investigate if it is possible to create marginally stable spinning charged spacecraft
clusters. The only passively stable charged cluster has been the two-craft configuration discussed in
Reference 14. For charge spacecraft clusters with more than 2 components determining passively
stable configurations has been elusive.

The charged three-body problem can be considered as an extension of the classical gravitational
three-body problem as discussed in References 15, 16, and 17. In Reference 15, the authors con-
sider the gravitational restricted three-body problem modified to include charges on the bodies. In
this restricted system, the new libration points are analyzed for stability in the presence of the in-
troduced Coulomb forces. In Reference 16, the authors identify central configurations which exist
in the charged three-body problem, where both gravitational and Coulomb forces are present. This
work is extended in Reference 17, where stability of these central configurations is studied. Lin-
early stable and unstable central configurations are found. Each of these works considers not only
the electrostatic forces between charged bodies, but also the gravitational forces. It is the treatment
of this gravitational attraction that distinguishes the previous research from our current study. Con-
sidering both gravitational and Coulomb forces allows more forces to be considered to stabilize the
cluster shape. This is observed in Reference 17, where a non-planar relative equilibrium is made
possible by this fact. Furthermore, the inclusion of gravity allows for mutual attraction between all
three bodies. In our current study, we assume the masses of the bodies are so small (on the order of
100s of kilograms) that the gravitational forces are negligible and only Coulomb forces affect the
evolution of the system. With a cluster of more than two spacecraft this means that we are always
guaranteed to have repulsion between at least two of the bodies, since two of the craft must always
be charged to the same polarity. The current research investigates if linearly stable collinear central
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configurations (invariant shape solutions) are feasible which do not require gravitational attraction
between the bodies. In the classic gravitational three-body problem only one invariant shape solu-
tion results for a given set of body masses.18 The current study investigates if with electrostatically
charged 3-craft clusters it is possible for a set of charges to yield more than one invariant shape
solution.

A few important assumptions are invoked in the analysis of the presented work. First, only the
case where all three craft are of equal mass is considered. This assumption simplifies the analysis
to the point where insightful analytical solutions are feasible. Second, no significant Debye shield-
ing effects are are present. This assumption is justified considering the deep space space weather
environment, and the large kilo-Volt range potentials being considered. Lastly, the linearization
analysis is performed only for the case where the craft are in a circular invariant shape formation.
These assumptions were used in order to provide more analytic insight into the problem, and also
to provide a simplified search space when identifying multiple invariant shape solutions for a given
set of charges.

The paper is structured as follows. First, the mathematics of invariant shape Coulomb formations
are reviewed. Next, the rotating coordinate frame and resulting equations of motion used to analyze
the stability of the invariant shapes are presented. Following this, the procedure used to identify
multiple invariant shape solutions and present the results of the numerical search is outlined. Lastly,
linearization is investigated to analyze a multiple invariant shape solution case, and comment on
numerical search results for the stability of different families of multiple invariant shape solutions.

BACKGROUND

Invariant Shape Formation

Let us consider a formation of three charged craft operating in deep space as shown in Fig. 1.
The position of each craft with respect to the formation center of mass is defined as ri. The relative
position between craft i and j is denoted as rij = rj − ri. Each craft has a mass mi and a charge
qi. The formation is assumed to be in deep space, thus the gravitational interactions with massive
celestial bodies is not considered. Hussein and Schaub11 lay the groundwork for determining in-
variant-shape spinning Coulomb formations, where the necessary conditions for such formations
to exist are derived in the absence of external perturbations. In the current work this assumption
is maintained, as the same conditions are used to formulate the problem under consideration. In
the absence of perturbations, the system evolves solely under the influence of electrostatic forces
between the craft. In an invariant shape solution all craft maintain constant charge values, denoted
as qi, for all time.

It is important to recognize that invariant shape does not imply a fixed shape. That is, the for-
mation geometry at some time ti does not necessarily have to match that at some other time, tj .
To clarify the meaning of invariant shape, consider a collinear configuration of craft, as shown in
Fig. 2. If we define a parameter, χ, as

χ =
r23
r21

, (1)

then an invariant shape formation is one where χ is constant for all time. The individual separation
distances can change with time, so long as the ratio of one to the other remains unchanged. It is
apparent that due to separation distances being positive quantities, χ will be positive. In a collinear
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Figure 1. Three-craft Coulomb formation.

invariant shape formation, the craft will orbit about the formation center of mass on Keplerian
trajectories with a time-varying angular velocity ω(t).11 The trajectories may be circular, elliptic,
parabolic, or hyperbolic and will evolve such that the craft are collinear for all time.

m1, q1 m2, q2 m3, q3
ω(t)

r12 r23

Figure 2. Collinear invariant shape Coulomb formation

In order to maintain this collinear invariant shape, the craft must be charged appropriately de-
pending on the formation geometry and cluster angular momentum. Given a set of charges, the
appropriate value of χ can be determined by satisfying the quintic equation11

0 = −w2w3 (m2 +m3)− w2w3 (2m2 + 3m3)χ

+ [w1m1 (w2 − w3)− w2w3 (m2 + 3m3)]χ
2

+ [w1w2(3m1 +m2) + w3m3(w1 − w2)]χ
3

+ w1w2(3m1 + 2m2)χ
4 + w1w2(m1 +m2)χ

5, (2)

where wi = qi/mi. Consideration of this quintic equation reveals there are six parameters which
may be varied to affect the possible solutions for χ: three craft masses and three craft charges. This
creates a high-dimensional search space which makes it difficult to analytically identify regions of
multiple invariant shape solutions where a single set of craft charges yields multiple roots of this
quintic equation. If the assumption is made that all craft are of equal mass, the quinitic equation is
reduced to

0 = −2− 5χ+ (δ − σ − 4)χ2 + (4δ + σ − 1)χ3 + 5δχ4 + 2δχ5, (3)

where the charge ratios δ and σ are defined as

δ =
q1
q3
, σ =

q1
q2
. (4)
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The six-dimensional search space has thus been reduced to two; only δ and σ now affect the roots
of the quintic invariant shape condition in Eq. (2) or Eq. (3). It is apparent that the coefficients in
Eq. 3 are dependent only on the craft charges. Depending on the values of these charges, it may
be possible to find multiple positive roots of the quintic equation. This observation was first made
by Hussein and Schaub in Reference 11, though the existence of such multiple shape solutions
was not determined. In their analysis, it is concluded that with the right values of σ and δ, up to
three invariant shape solutions may be possible for a given set of charges. However, these are only
necessary, and not sufficient conditions for multi-shape solutions. The current study resolves this
issue by examining the full δ − σ solution space in detail.

2

3

1
r1

r2

r3

b̂1

b̂2

θ̇

Figure 3. The rotating B frame.

3-Body Dynamics

To determine the stability of the equilibria of the collinear invariant shape Coulomb formation,
the system dynamics are derived in a rotating coordinate frame, B, defined by the orthogonal unit
vectors

B :
{
b̂1, b̂2, b̂3

}
.

The B frame is aligned such that craft 1 is confined to the b̂1 axis for all time, while craft 2 and 3
are free to move about in the b̂1 - b̂2 plane. The origin of the B frame is aligned with the center of
mass of the formation, and the frame rotates about this point as craft 1 moves around the center of
mass. This configuration is depicted in Figure 3. The angular velocity of the B frame relative to the
inertial frame, N , is expressed as

ωB/N = θ̇b̂3.

The kinematic equations for craft 1 in B frame components are

r1 = x1b̂1 (5)

ṙ1 = ẋ1b̂1 + θ̇x1b̂2 (6)

r̈1 = (ẍ1 − x1θ̇2)b̂1 + (x1θ̈ + 2θ̇ẋ1)b̂2. (7)
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The kinematic equations for craft two and three in B frame components are

ri = xib̂1 + yib̂2 (8)

ṙi = (ẋi − yiθ̇)b̂1 + (ẏi + xiθ̇)b̂2 (9)

r̈i = (ẍi − xiθ̇2 − yiθ̈ − 2ẏiθ̇)b̂1 + (ÿi − yiθ̇2 + xiθ̈ + 2θ̇ẋi)b̂2. (10)

To determine the equations of motion for the craft in the formation, an expression for the electro-
static force between the craft is needed. Here, the craft are modeled as point charges in the absence
of any plasma shielding effects. In Coulomb formations work these plasma effects are often consid-
ered, as they may considerably impact inter-craft electrostatic force magnitudes. See, for example,
References 6, 13, and 19. In the current work, however, we neglect the partial electrostatic force
shielding due to the Debye length20 because it has a small impact on the charged relative motion
considered, and the more complex expression with exponential functions prevents obtaining ana-
lytic solutions with insight into the charge-to-shape relationship. If finite Debye lengths (which
model the plasma shielding effect) are included the polynomial form of Equation (3) is lost, as each
of the terms will contain exponential functions. In the original work by Hussein and Schaub,11 it
is this polynomial form which allows for the application of Descartes’ Rule of Signs to determine
where multiple invariant shape solutions may exist. This analysis is lost if finite Debye lengths are
present. Furthermore, an infinite Debye length assumption serves as a reasonable approximation if
the actual Debye length is much larger than the craft separation distances. In this paper, separation
distances on the order of tens of meters are considered, which does coincide with Debye lengths
found in deep space. However, craft potentials on the order of tens of kilovolts are considered. At
such high potentials, the effective Debye length of the local plasma environment is several times
higher. This phenomen is discussed in more detail in Reference 21, where electrostatic forces are
considered as a method to deflect near-earth asteroids. In the absence of plasma shielding effects,
the electrostatic forces experienced on craft i in the formation are expressed as22

Fi =

3∑
j=1,j 6=i

kc
qiqj
r212

êji, (11)

where kc = 8.99 × 109 Nm/C2 is the Coulomb constant, qi is the charge on craft i, and êji is the
unit vector from craft j to craft i. Applying the Coulomb forces to craft 1, we obtain

ẍ1 =
kcq1
m1

(
q2
x1 − x2
r312

+ q3
x1 − x3
r313

)
+ x1θ̇

2 (12)

θ̈ = − kcq1
m1x1

(
q2
y2
r312

+ q3
y3
r313

)
− 2θ̇ẋ1

x1
. (13)

Similarly, the equations of motion for craft 2 and 3 are

ẍ2 =
kcq2
m2

(
q1
x2 − x1
r312

+ q3
x2 − x3
r323

)
+ x2θ̇

2 + y2θ̈ + 2ẏ2θ̇ (14)

ÿ2 =
kcq2
m2

(
q1
y2
r312

+ q3
y2 − y3
r323

)
+ y2θ̇

2 − x2θ̈ − 2ẋ2θ̇ (15)

ẍ3 =
kcq3
m3

(
q1
x3 − x1
r313

+ q2
x3 − x2
r323

)
+ x3θ̇

2 + y3θ̈ + 2ẏ3θ̇ (16)

ÿ3 =
kcq3
m3

(
q1
y3
r313

+ q2
y3 − y2
r323

)
+ y3θ̇

2 − x3θ̈ − 2ẋ3θ̇. (17)
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Contained in Eqs. 12- 17, then, are the dynamics of the Coulomb formation expressed in the
B frame. Note that these equations imply an 11-dimensional state space, described by the state
variables

X =
[
x1, ẋ1, x2, ẋ2, y2, ẏ2, x3, ẋ3, y3, ẏ3, θ̇

]T
.

The advantage of using the B frame is that a particular class of invariant shape solutions correspond
to a single point in state space. If we consider only the case where the craft orbit about the formation
center of mass on circular trajectories, the invariant shape satisfies a dynamic equilibrium such that
Ẋ = 0. In order for this to be true, ẋ1 = ẋ2 = ẋ3 = ẏ2 = ẏ3 = 0. Furthermore, all craft must lie on
the b̂1 axis so that y2 = y3 = 0. To maintain the equilibrium, the craft must be positioned at finite xi
values such that the centripetal forces acting along the b̂1 axis precisely balance with the Coulomb
forces acting on the craft. When this happens, θ̇ will be constant and the craft will maintain a
circular invariant shape. At this dynamic equilibrium the state variables all take on constant values,
corresponding to a single point in state space. In this manner, we have expressed the dynamics in
such a way that we can use linearization to analyze the stability of a circular invariant shape solution.
In limiting the analysis to circular invariant shape solutions, however, no insight is gained into the
stability of the more general classes of invariant shape solutions (elliptic, parabolic, and hyperbolic
trajectories).

System Constraints

As noted above, Eqs. (12)-(17) imply an 11-dimensional state space. There are a few important
constraints, however, which must be considered in the analysis of this three-body system. First,
consider the fact that the Coulomb forces are internal to the system. That is, the force from craft
i on craft j is exactly equal and opposite of the force from craft j on craft i. If these electrostatic
forces are the only forces acting on or within the system, the center of mass is inertial due to the
fact that

MR̈c = Fext = 0.

As a result, we can always establish initial conditions which will maintain the center of mass at the
origin of B for all time. Adopting this convention provides four constraint equations for the system,

0 = m1r1 +m2r2 +m3r3 (18)

0 = m1ṙ1 +m2ṙ2 +m3ṙ3. (19)

This means that at any point in time, if we know the positions and velocities of craft 1 and 2, we can
compute the position and velocity of craft 3. This is significant because it allows for a reduction in
state space to exclude x3, ẋ3, y3 and ẏ3.

We can reduce the state space even further using the total angular momentum. Recalling that
when only Coulomb forces are acting within a formation no external forces or torques are present,
we can conclude that the formation angular momentum is constant because

Ḣ = L = 0.

Note that due to all craft motion being contained in the b̂1 − b̂2 plane, the angular momentum will
always be aligned with the b̂3 axis. If we denote the initial angular momentum as H0, it naturally
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follows that at any time, t,

H0 =
3∑
i=1

ri(t)×miṙi(t). (20)

By expressing ri and ṙi in B frame components, we can explicitly solve for the angular rate θ̇ at
any point in time knowing the initial angular momentum. Contained in Eqs. (18)-(20), then, are five
constraints which can be used to reduce the state space from eleven dimensions to six. The reduced
state space can thus be described by the state variables

X∗ = [x1, ẋ1, x2, ẋ2, y2, ẏ2] .

The resulting equations of motion are

ẍ1 =
kcq1
m1

(
q2
x1 − x2
r312

+ q3
2x1 + x2
r313

)
+ x1θ̇

2 (21)

ẍ2 =
kcq2
m2

(
q1
x2 − x1
r312

+ q3
2x2 + x1
r323

)
+ x2θ̇

2 + y2θ̈ + 2ẏ2θ̇ (22)

ÿ2 =
kcq2
m2

(
q1
y2
r312

+ q3
2y2
r323

)
+ y2θ̇

2 − x2θ̈ − 2ẋ2θ̇, (23)

where

r13 =
√

(2x1 + x2)2 + y22 (24)

r23 =
√

(x1 + 2x2)2 + 4y22. (25)

Here, the center of mass constraint has been used to eliminate the position and velocity of craft 3.
The formation angular velocity can be computed at any time using

θ̇ =
m3H0 + (y2ẋ2 − x2ẏ2)(m2

2 +m2m3)−m1m2(x1ẏ2 − ẋ1y2)
2m1m2x1x2 + x21(m

2
1 +m1m3) + (m2

2 +m2m3)(x22 + y22)
. (26)

Once initial conditions are specified, the formation angular momentum, H0, can be computed and
used throughout the simulation. Note that Eqs. (21)-(23) are solely functions of the reduced state
X∗.

Equation Linearization

To determine stability properties of a circular invariant shape solution, a linearization of Eqs. 12-
15 is done about the corresponding dynamic equilibrium, X∗e. Using a first order Taylor series
approximation, the linearized dynamics are expressed as

Ẋ∗ =

[
∂Ẋ∗

∂X∗

]
X∗e

δX∗, (27)

where δ is used to signify small perturbations about the equilibrium point. The Jacobian matrix[
∂Ẋ∗

∂X∗

]
is evaluated at the equilibrium point, X∗e, and the eigenvalues of this matrix are computed.

These eigenvalues yield insight into the stability properties of the invariant shape solution. In order
for the equilibrium to be classified as stable, these eigenvalues must have negative real parts. If
the linearized system has imaginary eigenvalues with no real parts we can classify the system as
marginally stable in a linear sense but there is no guarantee that perturbations will not grow unstable
if given enough time due to higher order terms.23
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IDENTIFYING MULTIPLE INVARIANT SHAPE SOLUTIONS

In order to determine values of σ and δ that would yield multiple invariant shape solutions, a
numerical search is performed. In Reference 11, the authors identify four cases, defined by the
values of σ and δ, that impact how many potential invariant shape solutions result from a given
set of charges. Using Descartes’ Rule of Signs, the quintic equation is analyzed for potential sign
changes, which indicates the possible numbers of positive χ roots. For illustrative purposes, the
different cases are shown in Figure 4. The regions defined by these four cases are bracketed by the
coefficients of χ2 and χ3 in Eq. (3). Following the full analysis in Reference 11, the number of
possible invariant shapes for each case are found to be

Case A There will be one positive real solution, meaning one invariant shape solution.

Case B The number of real positive roots is dependent on the sign of δ. When δ > 0, Eq. 3 has one
positive real root and, thus, one possible invariant shape solution. When δ < 0, there will be
either two or no invariant shape solutions.

Case C Again, there is a dependence on the sign of δ. When δ > 0, there will be one invariant
shape solution satisfying Eq. 3. If δ < 0, there are no possible invariant shape solutions.

Case D As before, δ is not sign definite. When δ > 0, there will be either three or one invariant
shape solutions satisfying the quintic equation. If δ < 0, there will be either two or zero
invariant shape solutions.

Case D

Case A

Case B

Case C
δ = 4 + σ

δ =
1 − σ

4

δ

σ

Figure 4. Different cases which affect possible numbers of positive roots of quintic
equation, and thus, the number of invariant shape solutions.
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These results show that there are several potential cases where multiple invariant shape solutions
may be possible for a given set of charges. While their existence has been previously speculated, no
actual cases were found.11

Search Algorithm for Multiple Solutions

For the current research, a numerical search algorithm is developed to determine the existence of
constant charge multiple invariant shape solutions. In this scenario a given set of spacecraft charges
can result in 2 or 3 equilibrium shapes. Using the results from the above analysis, certain regions
of δ-σ space are identified and scanned using a basic grid search method. Starting at a nominal δ
value, σ values are incrementally increased or decreased depending on which of the four cases is
being examined, until a bifurcation into multiple invariant shape solutions is identified. Once this
boundary is crossed, a simple bisection algorithm24 is used to identify exactly where the bifurcation
occurs. The search algorithm is illustrated in Figure 5. In this case, the increment on σ was set at
±1. This allowed the algorithm to run quickly, searching a large region of space in a short period of
computational time.

In both of the two cases where multiple solutions are possible (Case B and Case D), bifurcations
are found by the search algorithm. These bifurcations are shown in Figure 6, where nχ is used
to denote the number of invariant shape solutions that result for a given pair of δ and σ values.
Looking first at Case B, on the right side of the graph, we see that there is a large region between the
boundary

(
δ = 1−σ

4

)
and the point where the bifurcation occurs. No invariant shape solutions are

possible in this dead space. The physical reason for this is currently under investigation. Also, note
that the existence of multiple invariant shape solutions for Case B abruptly stops at δ = 0. Recall
that δ < 0 was required for the existence of multiple solutions.
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Figure 5. Search algorithm used to find multiple invariant shape solutions for a single set of charges.
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Examining the results from Case D, we see that there are two separate regions of multiple invari-
ant shape solutions, with nχ = 2 and nχ = 3. These regions are separated by the horizontal axis
δ = 0, which corresponds to the effects that a sign change in δ has on the possible results. Interest-
ingly, the bifurcation is smooth across this axis even though the regions are topologically different.
The reason for this is that the roots of the quintic equation enjoy partial symmetry across the δ axis.
That is, for a given σ two of the roots from above the δ axis will approach the same values as those
below the axis as the magnitude of δ becomes increasingly small. Consider that the limit of Eq. (3)
as δ → 0 is

(σ − 1)χ3 + (−σ − 4)χ2 − 5χ− 2 = 0. (28)

On either side of the δ axis, the invariant shape solutions must approach the roots of Eq. (28) as
δ → 0. If we apply Descartes’ rule of signs, there will be two sign changes in Eq. (28) and, cor-
respondingly, either two or zero positive roots. Because we have already identified the bifurcation
into multiple invariant shape solutions, we know that there will be two positive roots. Below the δ
axis, the two invariant shape solutions approach the values of these two roots as the magnitude of δ
becomes increasingly small. Above the δ axis, two of the three invariant shape solutions approach
these two roots, while the third approaches infinity as δ approaches zero. Like with Case B, there
is a large region in Case D in between the region boundary and the bifurcation. Above the δ axis,
there will be one invariant shape at any point in this region, while below the axis there will be no
possible invariant shape solutions.

The results here only identify the inner boundaries of the multiple invariant shape solution re-
gions. That is, the bifurcations identify the minimum σ magnitudes that will yield multiple solutions
for a given δ value. It is not clear whether or not outer boundaries exist where multiple positive roots
will no longer be possible. Numerical searches have failed to identify such a boundary out to very
large magnitudes of σ, on the order of σ = 106, indicating that such outer boundaries are unlikely.

To illustrate physically what is meant by multiple invariant shape solutions, consider Figure 7,
where circular orbits are illustrated in a non-rotating frame. Each of these invariant shape solutions
corresponds to δ = −0.05 and σ = 7, which leads to two roots of Eq. (3): χ = 3.2508, 4.3283.
To determine a set of charges for the craft, a charge of 10µC is assigned to craft one. The charges
on craft two and three are determined using the relationships in Eq. (4). Each of these orbits corre-
sponds to an equilibrium in our rotating B-frame, and they both exist for the same set of charges.
Note that these trajectories are generated with the same angular momentum for each χ value, so that
they both belong to the same dynamical system. Examination of Figure 7 reveals slight differences
between the orbits. The orbit radius for craft 1 is slightly smaller for the χ = 3.2508 solution than
it is for the χ = 4.3283 solution. The orbit radius for craft 2, on the other hand, is slightly larger for
the smaller χ value. Finally, the radius of the craft 3 orbit is nearly the same for both χ values. This
particular multiple invariant shape solution is used in the next section, where a stability analysis is
performed.

Resulting Orbit Types

Having identified that multiple invariant shape solutions exist for a set of constant charges, it
is of interest to examine any restrictions on the resulting orbits. For example, can the orbits take
on any Keplerian motion, or are they restricted solely to being on open (parabolic, hyperbolic) or
closed (elliptical, circular) trajectories? To gain insight into this problem the effective gravitational
parameter, µi, is employed. This parameter, derived in Reference 11, allows the dynamics of each
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Figure 7. Two invariant shape solutions that exist for δ = −0.05 and σ = 7.

craft in the invariant shape formation to be expressed in the form

r̈i = −µi
r3i

ri. (29)

By studying the sign of µi, we can obtain information on allowable orbits. If µi is negative then
closed trajectories are not possible, as the natural dynamics of the system are repulsive. The effective
gravitational parameter need only be examined for one craft, because all craft in an invariant shape
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formation must be on the same trajectory type. Without loss of generality, the effective gravitational
parameter of craft one will be used, which is expressed as11

µ1 = −kcq1M1

[
q2e
−r21/λd +

q3
(1 + χ)2

e−r31/λd
]
, (30)

where

M1 =
m1(m1 +m2 +m3)

2

m2
2 +m2

3(1 + χ)2 + 2m2m3(1 + χ)
. (31)

By recalling the equal mass and large Debye length assumptions, as well as the definitions of δ and
σ, the effective gravitational parameter of craft one can be rewritten as

µ1 = −kcq
2
1(2 + χ)2

9m(1 + χ)2

[
(1 + χ)2

σ
+

1

δ

]
. (32)

To guarantee that closed orbits are not possible, the sign of µ1 must be negative. In order for this to
be the case, it is required that

(1 + χ)2

σ
+

1

δ
> 0. (33)

To analyze the full solution space, there are four quadrants which must be considered:

1: δ > 0, σ > 0 It is clear that when both δ > 0 and σ > 0, the inequality will hold and closed
orbits will not be possible. The reason is that all craft would be charged to the same polarity,
and thus experience repulsive forces. Invariant shape solutions would still be possible, but the
resulting trajectories would be relegated to unbounded hyperbolic orbits.

2: δ < 0, σ < 0 When both σ and δ are negative, the inequality will no longer be valid. Thus,
closed form trajectories are possible. It should be noted that the existence of closed form
trajectories does not preclude the existence of hyperbolic and parabolic trajectories. In fact,
either trajectory type is possible in this situation. This case corresponds to the nχ = 2 region
in quadrant III of Figure 6.

3: δ < 0, σ > 0 No immediate insight is obtained in this case. Instead we arrive at the relation
(1 +χ)2 > −σ/δ. Recalling Figure 6, we see that this case corresponds to the nχ = 2 region
in quadrant IV. Satisfaction of the inequality is dependent on the roots of Eq. 3.

4: δ > 0, σ < 0 In this case, we yield the inequality (1 + χ)2 < −σ/δ. Again, these δ and σ sce-
narios are inconclusive with regards to possible trajectory types. Satisfaction of the inequality
depends on the roots of the quintic equation for any given σ and δ values found in the nχ = 3
region of quadrant II.

To provide insight into the resulting orbit types for cases 3 and 4, a numerical search of the
solution space is performed and the resulting signs of µ1 are computed. Using a grid search similar
to that used to identify the bifurcations, the allowable orbit types are determined for the same δ
and γ ranges shown in Figure 6. The results indicate that in the nχ = 3 region of quadrant II only
hyperbolic trajectories are possible, while in the nχ = 2 region of quadrant IV, closed trajectories
are always possible across the range of σ and δ values examined.
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LINEAR STABILITY ANALYSIS

Particular Multiple Invariant Shape Case

To analyze the stability of a multiple invariant shape case, the values of δ = −0.05 and σ = 7
are selected to solve the quintic necessary condition equation for an invariant shape solution. Note
that these δ and σ values correspond the nχ = 2 region in quadrant IV. Thus, two positive real roots
are obtained from Eq. (3): χ = 3.2508, 4.3283. To determine the charge levels for each craft, c1 is
arbitrarily set at 10µC, and the other two charges are computed using δ and σ. In order to examine
the stability of these invariant shape solutions, we first need to determine the equilibrium point in
state space, which requires initial conditions. The invariant shape solution places no requirement
on the actual separation distances; it only requires that the ratio remain constant for all time. Thus,
we are free to choose one of the separation distances. In this case the distance between craft 1 and
2, denoted as x12, is chosen. As described above, a circular invariant shape solution confines all
craft to the b̂1 axis, with zero initial velocity. We only need to find the x coordinates for each craft,
and the angular rotation of the B frame that will yield a dynamic equilibrium. Consider arbitrarily
placing craft 1 at the origin (0,0) in the B frame. Note that for this development, we have not yet
aligned the origin with the formation center of mass. With craft 1 as the rightmost craft in the
formation, craft 2 and 3 would be located at r2 = −x12b̂1 and r3 = −(1 + χ)x12b̂1. Using the
positions of the three craft, the center of mass of the formation is computed as

Rc = −x12(2 + χ)

3
b̂1. (34)

To enforce the requirement that the origin of B be aligned with the center of mass, we compute the
compliant craft locations using

r1 = −Rc

r2 = −x12b̂1 −Rc

r3 = −(1 + χ)x12b̂1 −Rc.

Thus, given a desired separation distance, x12, we can immediately determine the equilibrium loca-
tion of the craft in the B frame as

r1 =
(2 + χ)x12

3
b̂1 (35)

r2 =
(χ− 1)x12

3
b̂1 (36)

r3 = −(1 + 2χ)x12
3

b̂1. (37)

To determine the angular rate, θ̇, the effective gravitational parameter is used. The angular rate of a
circular invariant shape formation is determined by

θ̇ =

√
µi
r3i
. (38)

Any of the craft in the formation may be used; they will all yield the same result if the craft form
an invariant shape solution. Recall that while θ̇ does not appear explicitly in the reduced set of state
variables, it is required in order to determine the initial angular momentum of the system, which

14



will be constant for all time. This introduces an important requirement when establishing initial
conditions for the invariant shape solutions. For a proper comparison between the two invariant
shape solutions, it is mandatory that both invariant shape equilibria be configured such that they
have the same angular momenta. If they do not, they are different dynamical systems occupying
an entirely different state space. To ensure this constraint is met, the initial conditions are set for
one invariant shape formation. The angular momentum resulting from this configuration is used to
determine the initial conditions for the other invariant shape solution. For a circular invariant shape
solution, the angular momentum of the formation is

H = mθ̇
(
r21 + r22 + r23

)
b̂3. (39)

In order to determine the necessary initial conditions, Newton-Raphson iteration is used on Eq. (39)
to find the appropriate value for x12 that will yield the required momentum.

Using the above procedure, the equilibrium conditions were determined for the two invariant
shape solutions under consideration. The results are summarized in Table 1. Only the six state
variables and the angular momenta are presented, to correspond with the reduced state space. The
position and velocity of craft 3 can be computed using the center of mass constraint. Likewise, θ̇
can be computed using the angular momentum from Eq. (26). Having determined the state-space
equilibrium point, we can proceed to a stability analysis using the linearized equations of motion.

χ x1 ẋ1 x2 ẋ2 y2 ẏ2 H0

(m) (m/s) (m) (m/s) (m) (m/s) (kg m2/s)

3.2508 44.616 0 19.125 0 0 0 350.972

4.3283 42.188 0 22.188 0 0 0 350.972

Table 1. Equilibrium conditions for circular invariant shapes in B-frame components

For the numerical simulation, two different sets of equations are integrated numerically using
an explicit Runge-Kutta (4,5) formula. For the rotating frame stability analysis Eqs. (21)-(23) are
used, where they are linearized about the equilibrium state outlined in Table 1 to determine the
eigenvalues of the equilibrium. Once the eigenvalues are determined, a perturbation of ∆x1 =
∆x2 = −0.1 m and ∆y2 = 0.1 m is applied and the full nonlinear equations are integrated to
verify the predicted behavior. These results are used to determine the distance of each craft from
its respective equilibrium point as time evolves. To determine the system response in a non-rotating
frame, full inertial equations of motion are also integrated. These equations are of the form

mir̈i = Fi, (40)

where Fi is defined in Eq. (11). In these inertial equations, no state reduction is performed. Aside
from providing craft trajectories in an inertial frame, the results also serve to verify what is obtained
in the rotating-frame dynamics integration.

Considering first the case where χ = 3.2508, the Jacobian matrix in Eq. (27) is computed using
the equilibrium state outlined in Table 1. The resulting six eigenvalues of this matrix, presented in
Table 2 , consist of three complex conjugate pairs with 0 real parts: ±7.687i × 10−4,±5.467i ×
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10−4,±2.966i × 10−4. In this sense, the equilibrium is expected to exhibit marginally stable be-
havior, implying that small perturbations will cause the craft to oscillate about the equilibrium con-
figuration. Indeed, this behavior is observed when the nonlinear system is perturbed slightly from
the equilibrium, as seen in Figure 8. As the perturbation evolves with time, the system exhibits a
bounded oscillation for ten orbital periods. The symmetry observed in Figure 8(a) is a result of the
center of mass constraint. Because craft 1 is confined to the b̂1 axis, craft 2 and 3 must always
have y values with opposite signs and equal magnitudes. The perturbed trajectory in a non-rotating
frame, determined from integration of Eq. (40), is shown in Figure 10(a). The craft largely maintain
the invariant shape orbits seen in Figure 7(a), with slight oscillations.

It must be noted that the results of this linearization do not necessarily yield a full picture of
the long term stability of the invariant shape. While it appears to be marginally stable for several
orbital periods, it is entirely possible that higher order terms in the dynamics, as well as unmodeled
perturbation effects, could cause the perturbation to grow slowly with time, ultimately resulting in
instability and large scale divergence from the invariant shape equilibrium. This is a concern for any
nonlinear system which has been linearized to yield purely imaginary eigenvalues.23 The marginally
stable behavior exhibited here is still a significant result, however. It is the first time a configuration
of 3-craft in a Coulomb formation has been found to be marginally stable about an equilibrium.13

χ Eigenvalues

3.2508 ± 7.687i×10−4, ± 5.467i×10−4, ± 2.966i×10−4

4.3283 ± 9.747i×10−4, ± 5.470i×10−4, ± 0.3284

Table 2. Eigenvalues of Jacobian matrices for the invariant shape solutions

Considering the second invariant shape solution where χ = 4.3283, the Jacobian matrix is re-
calculated with the parameter values in Table 1. The six eigenvalues of this matrix, shown in Table 2,
consist of two complex conjugate pairs with zero real parts, and two real numbers, one positive and
one negative: ±9.747i × 10−4,±5.470i × 10−4,±0.3284 . The appearance of the real number
eigenvalues means that this invariant shape solution is an unstable saddle point.23 Small perturba-
tions will deviate from the equilibrium and continue to grow due to this instability. This is observed
using numerical simulation when the system is slightly perturbed, as seen in Figure 9. In less than
one and a half orbital periods, the formation separates. Craft 2 escapes from the system, while craft
1 and 3 remain coupled, orbiting about each other. This behavior is observed in Figure 10(b), which
shows the trajectories in a non rotating frame (again, determined from integration of Eq. (40)). Note
how craft 2 escapes to the left, while craft 1 and 3 escape together to the right. The instability
quickly disrupts the formation, and the craft diverge from the origin.

Stability Results for Other Invariant Shape Solutions

In this paper, we have examined in detail a single multiple invariant shape solution case. To
provide insight into the stability properties for the different families, a numerical search is used on
the δ and σ ranges shown in Figure 6 (that permit closed orbits) to identify the stability properties
of the different regions. In each case of two invariant shape solutions for a single set of δ and σ, one
shape is found to be unstable while the other is marginally stable. When searching regions where
only one invariant shape is possible for particular σ and δ values, the shape is found to always be
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Figure 8. Offset from equilibrium for a) x and b) y coordinates after a small pertur-
bation for the χ = 3.2508 circular invariant shape.
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Figure 9. Offset from equilibrium for a) x and b) y coordinates after a small pertur-
bation for the χ = 4.3283 circular invariant shape.

unstable. These results are preliminary and still under investigation.

CONCLUSION

Using a numerical search routine, families of invariant shape solutions are identified where a
single set of craft charges permits multiple invariant shape solutions. Depending on the set of craft
charges, anywhere from zero to three collinear invariant shape solutions are possible. This is a
significant result, as it confirms speculation from earlier work11 and provides the first examples
of multiple invariant shape solutions. Furthermore, linear stability analysis has provided the first
examples of marginally stable behavior for a three-craft Coulomb formation. This marginal stability
appears to exist only in cases where multiple invariant shapes occur for a particular set of craft
charges. When a marginally stable shape is found, it has a corresponding unstable shape for the
same charge configuration. We hypothesize that in order for marginal stability to exist, the set of
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Figure 10. Perturbed trajectories in non-rotating frame for a) χ = 3.2508 and b)
χ = 4.3283 cases. Dashed lines represent unperturbed invariant shape orbits.

craft charges must yield multiple invariant shapes. Resolution of this hypothesis is left for future
work.
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