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COLLINEAR INVARIANT SHAPES FOR THREE-CRAFT
COULOMB FORMATIONS

Erik Hogan∗ and Hanspeter Schaub†

University of Colorado, Boulder, CO 80309-0431

This paper investigates invariant shape conditions for a three-craft collinear for-
mation in deep space controlled solely by electrostatic Coulomb forces. It has been
proven, previously, that invariant shape solutions exist under certain circumstances
for a three-craft collinear configuration. However, little work has been done regarding
an analysis of this potential solution space. This paper investigates the problem from
a mission design perspective, examining whether or not charges can always be found
that will yield a desired invariant shape configuration. The paper proves that for any
three craft collinear invariant shape formation, an infinite set of real charges always
exists that will preserve the formation. Further, the null-space of the feasible charge
solutions is analyzed, and a method for determining an optimal solution is presented,
and demonstrated through use of numerical simulation.

I. Introduction
Close formation flying of satellites, on the order of tens of meters apart, presents many exciting possibilities.

By maintaining several different satellites within tens of meters of one another, a significant amount of scientific
instrumentation can be concentrated in a small area of space. This type of formation has several advantages over a
single large craft. Not all of the satellites need to be launched at the same time. Individual craft can take advantage
of available space on already scheduled launch vehicles. This allows for the assembly of a formation over a period
of time, rather than all at once. By designing a formation that does not require a physical structure to hold the
components together, complicated space based assembly can be avoided. Satellites could theoretically be launched
into their position into the formation and start integration and operation immediately. Because the separation distances
between each craft can be as large as tens of meters, scientific instruments can be spaced farther apart than would
be possible on a single craft. This type of formation is especially useful in interferometry applications, and has been
proposed for the Terrestrial Planet Finder.1, 2

One challenge present in close formation flying is the method used to maintain the formation. Traditional propel-
lant thrusters eject significant amounts of particles which can interfere with sensitive instrumentation onboard another
nearby craft.3 This concern is called the plume impingement issue, and becomes very challenging when the vehicles
are to operate only dozens of meters apart. An alternative to using traditional thrusters is electrostatic, or Coulomb,
force actuation.4, 5 By controlling the charges on individual spacecraft, electrostatic forces are generated to maintain
the shape of a particular formation.6 This type of control is nearly propellantless, and operates at a very high specific
impulse (up to 1013 seconds).3, 7 Further advantages to using electrostatic force actuation include a very minimal
power requirement (on the order of Watts or less), and very rapid charge times (on the order of milliseconds).7 The
charge levels that are proposed to implement this type of control are on the order of micro-Coulombs (µC). Such
charge concentrations naturally occur on spacecraft in GEO during shaded orbit segments, and results in forces on
the milli- or micro-Newton levels for craft separated by tens of meters.8 In order to implement Coulomb force con-
trol, however, natural charging would not be acceptable due to the fact that very specific charge levels are needed for
actuation. Simply allowing the craft to charge naturally would not result in the necessary charge levels to achieve
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a desired dynamic relative motion response. Instead, the craft would need to be able to perform active charge con-
trol. Fortunately, active charge control has been demonstrated in orbit on both the SCATHA and ATS missions in the
1970’s,9, 10, 11, 12 as well as in the current European CLUSTER mission.13, 14 The drawback to using Coulomb force
actuation is the high sensitivity to the plasma environment around the spacecraft. Electrostatic force control can only
be used in a plasma environment with a large Debye length, λD, (on the order of tens of meters or more) due to the
shielding effect caused by the plasma.3 As such, Coulomb formation flying is best suited to higher Earth orbit regimes
or deep space (interstellar) applications.

Of particular interest in Coulomb formation flying are constant charge invariant shape configurations in which
several craft maintain separation distances on the order of tens of meters. Here the spacecraft appear stationary or
frozen with respect to the circularly rotating formation center of mass frame.4 Such formations are investigated by
Berryman and Schaub in Reference 15 where analytic charge solutions are determined for 2- and 3-craft formations in
geosynchronous orbit, while Reference 16 investigates necessary conditions for such charged virtual space structure
solutions to exist. In Reference 15 the authors examine issues related to such charged relative equilibria requiring
imaginary charges for particular configurations. Another type of invariant shape Coulomb formation is investigated
by Hussein et al. in Reference 17, with a focus on deep space applications. Here three-craft formations are examined
which orbit about their collective center of mass in the absence of gravity. In contrast to the earlier Coulomb virtual
structures that are static relative to the orbiting Hill frame, here the charged spacecraft system is spinning. It is this type
of invariant shape formation which serves as the inspiration for the current work. A rotating three-craft collinear equi-
librium case for deep space applications is the focus of this paper. Hussein et al. describe the necessary conditions for
invariant shape formations of three-craft in a collinear formation, and extends this analysis to determining geometrical
configurations that yield invariant shapes given a particular set of charges.17 Determining a solution for the reverse
case has not been performed as of yet; given a specific geometrical configuration and formation orbital parameters,
determine a solution for the charges on the individual spacecraft. Previous work primarily focuses on defining the re-
quirements for collinear invariant shape formation. No analysis has been done from a mission design standpoint. With
this consideration in mind, an extension of previous work is performed to enable the design of a particular geometric
configuration for a three-craft invariant shape solution. Of interest is whether or not any desired configuration shape is
possible with real and constant charges, or whether or not the nature of using electrostatic actuation will limit the set
of realizable invariant shapes.

The paper is structured as follows. First a brief introduction to the concept of Coulomb formation flying, and
invariant shape solutions in particular, is provided, followed by a brief overview of some fundamental concepts of
spinning charged spacecraft equilibria. Next, the simplified equal mass case is presented to aid with clarity in under-
standing the theory behind the solution method. The simplified mathematics corresponding to this case allow for a
more succinct introduction to the problem. After covering the simplified case, the more general problem of a non-equal
mass formation is covered in detail, including how to determine an optimal solution that minimizes the charge usage.
It is at this point that the concept of orbit design for an invariant shape solution is covered. Once the theory behind the
solution method is established, it is applied to example cases and numerical simulation is used to verify the results.

II. Background
Before proceeding through the development, it is pertinent to discuss the basic theory behind Coulomb formation

flying and briefly introduce the concept of an invariant shape formation. The scope of this paper is limited to a
Coulomb formation of three-craft, as depicted in Fig. 1. As in the prior work in Reference 17, each craft is treated as
a particle with mass mi and charge qi. The vectors r1, r2, and r3 are the position vectors from the formation center
of mass to each of the three craft. The relative position vectors rij are defined as rij = rj − ri. In the absence of
any external forces, such as gravity, the dynamics of any single craft in the formation are influenced only by inter-craft
electrostatic forces. Due to the fact that Coulomb forces are internal to the formation,3 the center of mass must satisfy

M r̈c = 0, (1)

where M = m1 +m2 +m3. Thus, the center of mass of the formation is inertial. To arrive at the equation of motion
for a single craft in the formation, we first begin with the electric potential of a particle in a plasma environment with
a finite Debye length, λd.18 For a particle with charge q, the potential at a distance r is given as

φ(r) = kc
q

r
e−r/λd , (2)
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where kc = 8.99 × 109 Nm2/C2 is the Coulomb constant. This simple analytical solution for the potential about a
point charge or sphere assumes that the potential of the object is relatively small in comparison to the local plasma
temperature. For example, at geosynchronous orbit altitudes where the spacecraft fly the Earth’s plasma sheath, this
potential threshold is about 1-10 kV. If the full Poisson-Vlaslov partial differential equations are solved instead of using
a truncated version that yields the simple analytical result in Eq. (2), then large potentials can reduce the plasma charge
shielding effect. This Coulomb force behavior is discussed in Reference 19 where the electrostatic forces to move an
astroid in deep space are discussed. For example, effective Debye lengths that are multiple times the conventional
Debye lengths have been computed.

The electric field created by the potential distribution φ(r) is defined as

E = ∇rφ. (3)

The full equation of motion for a craft in the Coulomb formation is then determined by the dynamics of a charged
particle in an electric field. For craft i in the formation, the equation of motion is determined as

mir̈i = qiE =
3∑

j=1,j 6=i
kc
qiqj
r2ij

erij/λd
(

1 +
rij
λd

)
n̂ji (4)

where n̂ji is the unit vector from craft j to craft i. In this paper, we consider only the case where the separation
distances are much smaller than the effective Debye length of the local plasma environment (rij � λd). While it is
true that Debye lengths in the interplanetary medium at 1 AU from the sun can be 30-50 meters,4 on the order of the
craft separation distances, objects charged to high potentials (>1 kV) will experience effective Debye lengths many
times larger.19 Considering that such potential levels are proposed for Coulomb force actuation,3 it is a reasonable
approximation to assume minimal Debye shielding effects for the current study. The electrostatic force Fc = qiE in
Eq. (4) must be considered a conservative lower bound on the achievable Coulomb actuation, while treating λd →∞
provides the upper bound used in this paper. Using the conservative analytical Debye shielding expression in Eq. (4)
with the exponentially decaying terms makes analytical insight into the charged dynamical motion very challenging.
The assumption of infinite effective Debye lengths is a weak assumption for deep space vehicles charged to 10’s of
kilo-Volts, while allowing for closed form analytical solutions to the charge-shape relationships for spinning three-craft
systems.

r1

r2

r3

r13

r12

r23

m1, q1

m2, q2

m3, q3

Figure 1: The three-craft Coulomb formation.

Hussein et al. describe the first solutions for the invariant shape Coulomb formation.17 In their analysis, a three-
craft formation is considered under the assumption that only inter-craft Coulomb forces are present. Indeed, the
development of the necessary conditions to maintain such a formation is dependent on this assumption; invariant
shape, center of mass orbiting formations would not be possible in the presence of gravity. This limits their potential
immediate applications to deep-space (interstellar) missions, where gravitational effects would be minimal. In the
current work, this assumption will be maintained.

An invariant shape is classified as a configuration that maintains the initial shape of the formation for all time,
with a set of constant charge levels. There is no requirement that the exact dimensions of the shape are maintained for
all time, only that the entire shape scales proportionately relative to the initial dimensions. That is, at any time t the
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formation must satisfy

r12(t)
r12(0)

=
r13(t)
r13(0)

=
r23(t)
r23(0)

. (5)

Thus, the separation distances may scale up or down, as long as the side length ratios are maintained. Naturally, it
follows that the angular rotation vector of each craft, ωi = ri × ṙi, must be equal at any point in time, so that

ω1(t) = ω2(t) = ω3(t). (6)

Note that this development of the invariant shape spinning formation of charge vehicles mimics the development of
Lagrange’s classical approach to the search for invariant shape solutions of the three gravitational bodies.20, 21

Recall that the only forces acting on the formation are the inter-craft Coulomb forces which are internal to the
formation. As a result, the angular momentum of the formation is constant. It can be shown that as a direct consequence
the momenta of each individual craft is constant.17 Performing a time derivative of the individual craft momenta yields

Ḣi = ri × (mir̈i) = ri × Fi = 0. (7)

This result, used by Hussein et al., demonstrates that a necessary condition to maintain an invariant shape formation
is that the resulting force vector acting on any craft, Fi, be aligned with the formation center of mass. In their
work, the authors identify two different configurations that yield invariant shape solutions for the formation: collinear
arrangements and equilateral triangles.

For an equilateral triangle configuration to maintain an invariant shape, all craft must have the same charge po-
larity.17 Consequently, all the craft will repel each other. With mutual repulsion, the shape will scale to infinite
dimensions if given enough time. Thus, such a configuration is not a practical longterm option for designing a close
formation of spacecraft that need to maintain separation distances on the order of tens of meters for a long period
of time. A collinear arrangement of craft, however, allows for the craft to remain in close proximity through the use
of closed orbits about the formation center of mass. Such a configuration is depicted in Fig. 2. The geometry of a
collinear invariant shape is defined by the separation distances r12 and r23, which need not be constant. All that is
required to satisfy Eq. (5) is that the ratio of the side lengths be constant for all time. This ratio, denoted as χ, is
defined as

χ =
r23
r12

> 0. (8)

Because the separation distances will always be strictly positive quantities, the value of χ must always be greater than
zero. The individual separation distances may change with time, so long as they maintain the original value of χ.
There are several potential trajectories for the collinear invariant shape; depending on the configuration, the craft will
take on one of the Keplerian orbit types.17 If the separation distances are to remain fixed, circular trajectories will
result. For the case where separation distances grow and shrink in an oscillatory manner, the craft will take on elliptic
trajectories. The craft may also grow infinitely far apart on parabolic or elliptic trajectories.

m1, q1 m2, q2 m3, q3
ω(t)

r12 r23

Figure 2: Collinear invariant shape formation of three craft.

The necessary charges required to maintain an invariant shape formation are a function of the craft masses, sepa-
ration distances, and χ value. For an invariant shape formation to exist, the configuration parameters must satisfy17

0 =c1c2 [m1 + χ(m1 +m2)]χ2(1 + χ)2 + c1c3(χm3 −m1)χ2e−
r12χ
λd

− c2c3(m2 +m3 + χm3)(1 + χ)2e
r21(1−χ)

λd , (9)

where ci = qi/mi. Note that this modified quintic equation assumes the simple, and overly conservative, plasma
shielding of the electrostatic force with F = kc

q1q2
r2 e−r/λd . Because we are assuming effective Debye lengths that are
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much larger than the separation distances rij , this assumption in this quintic equation does not impact the presented
work. Equation (9) provides a means to determine a necessary χ value if given a set of charges, or vice-versa. Previous
work investigates the determination of an appropriate χ if given a set of charges. From a mission design standpoint,
this is not ideal. Rather, it would be more useful to be able to design some desired formation geometry and associate
spin rate, and then determine a set of charges that would enable such a configuration. This mission design perspective
is the focus of the current paper.

III. Problem Statement
A. Equal Mass Case

Reference 17 demonstrates a method for determining a solution to the invariant shape case with a given charge
configuration. This work extends the solution for the collinear invariant shape Coulomb formation by developing a
method to determine charge configurations which will yield a desired orbital configuration about the center of mass.
Let us first examine the solution space for a configuration where all craft have equal mass, that is, m1 = m2 = m3.
Furthermore, assume the craft are operating in an environment with large Debye lengths. With these assumptions,
Eq (9) can be simplified to

−2q2q3 − 5q2q3χ+ (q1q2 − q1q3 − 4q2q3)χ2 + (4q1q2 + q1q3 − q2q3)χ3 + 5q1q2χ4 + 2q1q2χ5 = 0 (10)

Recall that the goal of this work is to determine a charge solution for a given configuration. Consider a particular
mission where a certain χ is needed. In order to satisfy the requirements for a three-craft equilibrium formation,
charge values must be determined which satisfy Eq. (10) for the desired χ value. In its current form, Eq. (10) is
nonlinear with respect to the individual charges. However, by replacing the actual charges with the charge products

Qij = qiqj

the system becomes linear. Once a solution for the charge products is obtained, the individual vehicle charges can be
determined from15

q1 =

√
Q12Q13

Q23
(11a)

q2 =
Q12

q1
(11b)

q3 =
Q13

q1
. (11c)

This formulation, however, leads to an important constraint. In order to determine real charge values for each craft,
it required that Q12Q13Q23 > 0.15 Using the charge product Qij to charge qi mapping described in Eqs. (11), the
quintic Eq. (10) can be rewritten in terms of charge products as

Q12

(
2χ5 + 5χ4 + 4χ3 + χ2

)
+Q13

(
χ3 − χ2

)
+Q23

(
−χ3 − 4χ2 − 5χ− 2

)
= 0. (12)

This is an underdetermined system with three unknowns and only one constraint. There are an infinite number of
solutions to to determine necessary charge productsQij , which are defined by a two-dimensional null space. Rewriting
Eq. (12) in matrix form, we obtain

[X]Q =
[
2χ5+5χ4+4χ3+χ2 χ3−χ2 −χ3−4χ2−5χ−2

] Q12

Q13

Q23

 = 0 (13)

The realm of all allowable charge solutions, then, is described by the 2x3 null space [N ] matrix of the 3x1 mapping
[X],

[N ] =

[
2+χ

χ2(1+2χ) 0 1
1−χ

(1+2χ)(1+χ)2 1 0

]
. (14)
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Now, each charge product may be written in terms of a nominal solution, Q̂ij which satisfies Eq. (12), and the null
space such that

Q12 = Q̂12 + γ1
2 + χ

χ2(1 + 2χ)
+ γ2

1− χ
(1 + 2χ)(1 + χ)2

(15a)

Q13 = Q̂13 + γ2 (15b)

Q23 = Q̂23 + γ1, (15c)

where γ1 and γ2 are real scaling parameters of any arbitrary value. By inspection, it is evident that Q = 0 is a
nominal solution which satisfies Eq. (12). This nominal solution can be used to determine which values of γ1 and γ2

are acceptable given the inequality constraint Q12Q13Q23 > 0. Using Eqs. (15) and the nominal solution Q = 0, this
inequality can be expressed as

γ1γ2

(
γ1

2 + χ

χ2(1 + 2χ)
+ γ2

1− χ
(1 + 2χ)(1 + χ)2

)
> 0. (16)

In order to determine real charge solutions for each of the craft, it is necessary to find values of γ1 and γ2 that satisfy
the inequality in Eq. (16). Notice that in the null space, there is only one possibility of a sign change among the six
elements. This occurs in [N ](2,1), and is dependent on the value of χ. Recalling that the only constraint on χ is that it
be greater than zero, three different cases arise which must be analyzed. To analyze permissible regions of γ1 and γ2

values, a two-dimensional cartesian coordinate system, as depicted in Fig. 3, is used. The horizontal axis corresponds
to the γ1 parameter, while the vertical axis corresponds to the γ2 parameter.

γ1

γ2

0 +

+

-

-

III

III IV

Figure 3: γ1 − γ2 axes used in discussion of permissible regions.

Case 1: 0 < χ < 1
When χ is between 0 and 1, the permissible regions of γ1 and γ2 are defined by the line

γ2 =
(1 + χ)2(2 + χ)

(χ− 1)χ2
γ1. (17)

Due to the value of χ the χ− 1 term will be negative, leading to a line with a negative slope. In this case, any values
in quadrant I are acceptable. In quadrant II, any values below the line in Eq. (17) are permissible. Nothing in quadrant
III is permissible, and in quadrant IV, values below the line in Eq. (17) are permissible. These regions are illustrated
in Fig. 4(a). The regions of the graph that are white are permissible, while the hatched regions are non-permissible.
Case 2: χ = 1
When the value of χ is exactly 1, the inequality in Eq. (16) reduces to

γ2 > 0.

As a result, all values above the γ1 axis, not including the axis itself, are permissible. This is illustrated in Fig. 4(b).
Case 3: χ > 1
When χ > 1, the permissible regions of γ1 and γ2 are again defined by the line in Eq. (17). In this case, however,
the χ − 1 term will be positive, giving the line a positive slope. In quadrant I, values below this line are acceptable.
All of quadrant II is a permissible region, while in quadrant III any values below the line in Eq. (17) will satisfy the
constraint inequality. No values from quadrant IV are acceptable. These regions are illustrated in Fig. 4(c).

Noting that these three cases describe every possible value for χ, it becomes apparent that a real charge solution
can be determined for any desired χ. In fact, there are an infinite number of real solutions. What this analysis does
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γ1

γ2

γ2 =
(1 + χ)2(2 + χ)

(χ− 1)χ2
γ1

a) Case 1

γ1

γ2

b) Case 2

γ1

γ2

γ2 =
(1 + χ)2(2 + χ)

(χ− 1)χ2
γ1

c) Case 3

Figure 4: Permissible regions for each of the three cases. Values from white areas will satisfy Eq. (16), while
values from hatched areas will not.

not reveal, however, are the resulting orbits that the three craft must experience to maintain the invariant shape for
any given charge solution. Indeed, it is possible that the craft could experience circular, elliptical, or hyperbolic orbits
relative to the formation center of mass. While this analysis cannot be used directly to design any specific orbital
configuration, it does imply that there are no restrictions on the value of χ for the assumptions made (aside from
χ > 0). Knowing this, the design of a particular invariant shape solution can now be analyzed.

B. General Mass Case

Returning to the general case where the craft may have different masses, the design of a particular orbital con-
figuration will now be considered. Rather than simply specifying a χ value, desired orbital parameters will also be
factored into the solution for the necessary craft charges. Using the same linear form for the charge products as before,
Eq. (9) can be expressed as

Q12

(
m1χ

2 + (3m1 +m2)χ3 + (3m1 + 2m2)χ4 + (m1 +m2)χ5

m1m2

)
+Q13

(−m1χ
2 +m3χ

3

m1m3

)
+Q23

(−(m2 +m3)− (2m2 + 3m3)χ− (m2 + 3m3)χ2 −m3χ
3

m2m3

)
= 0, (18)
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providing one constraint equation. To allow further control of craft orbit parameters, we invoke an alternate form
for the craft dynamics developed by Hussein et al.17 When the craft are in a collinear invariant shape formation, the
motion of each craft is described by

r̈i = −µi
r3i

ri, (19)

where ri is the vector from the center of mass of the formation to craft i and µi is a constant, sometimes called the
effective gravitational parameter, which is a function of the craft charges, the masses, and χ. It is important to note
that the value of µ is different for each craft in the formation. In order to maintain an invariant shape, each craft in
the formation must have the same mean motion, denoted as n. Furthermore, if a semi-major axis for the orbit of one
craft is selected, along with a χ value, the shape of the entire system is defined. When choosing a craft to use in
the semi-major axis constraint, it is important to choose either craft 1 or 3 to avoid possible singularity issues. The
reason for this will be explained further momentarily. For the development here, craft 1 will be used to formulate the
second constraint and allow for the design of the resulting craft orbits. Recall that the expression for mean motion of
an orbiting body is

n =
√
µi
a3
i

.

Rearranging for µi yields

µi = n2a3
i . (20)

Because charge products appear in the formulation of the µ value of each craft, Eq. (20) can be used as a second
constraint on the system. This allows for the designation of an orbital period for the formation and the semi-major
axes of the individual craft orbits. As mentioned, craft 1 will be used to formulate this additional constraint, though
this is a somewhat arbitrary selection as craft 3 would also work. Hussein et al.17 gives the formulation for µ1 as

µ1 = −kc (m2 + (1 + χ)m3)
2

m1(m1 +m2 +m3)2
Q12 −

kc(m2 + (1 + χ)m3)2

m1(m1 +m2 +m3)3(1 + χ)2
Q13. (21)

Notice that Eq. (21) is linear with respect to the charge products. Using this as a second constraint provides a system
of two linear equations to solve for three variables. Again, this will yield an infinite number of solutions based on the
null space of the system. Let us define our new system of equations as

[X∗]Q = b, (22)

where Q =
[
Q12 Q13 Q23

]T
and b =

[
0 n2a3

1

]T
. The importance of using craft 1 or 3 in the formulation

of the second constraint is related to the rank of [X∗], which is populated using Eqs. (18) and (21). In Eq. (18), the
coefficient of Q13 would be zero if χ = m1/m3. The formulation of µ2 excludes the charge product Q13. If craft 2
were used in the second constraint, and the right χ value was used, the [X∗] matrix would not be full rank, leading to
a singularity in the solution due to the fact that no constraint would be placed on Q13. Using craft 1 or 3 in the second
constraint guarantees that [X∗] will always be full rank, ensuring a solution exists. In fact, there are an infinite number
of solutions for any desired configuration, governed by a one-dimensional null space. The introduction of a second
constraint, however, has eliminated the Q = 0 nominal solution. In order to explore the null space set of solutions, a
nominal solution is first determined by taking the pseudoinverse of [X∗], so that

Q̂ = [X∗]+b. (23)

This nominal solution does not guarantee that the Q12Q13Q23 > 0 inequality constraint will be satisfied. To ensure
compliance with this criterion, the null space must be used. The one-dimensional null space takes the form of

[N∗] =
[

1
χ2 − (1+χ)2

χ2 1
]
. (24)

8 OF 15
AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS



Using the null space, the set of solutions for any desired configuration is

Q12 = Q̂12 + γ
1
χ2

(25a)

Q13 = Q̂13 − γ
(1 + χ)2

χ2
(25b)

Q23 = Q̂23 + γ, (25c)

where γ is a real number scaling parameter. The inequality constraint can be formulated in terms of the null space as

(Q̂12 +
1
χ2
γ)(Q̂13 −

(1 + χ)2

χ2
γ)(Q̂23 + γ) > 0, (26)

which is cubic in terms of the γ parameter. This cubic inequality constraint on the charge products is similar to the
Qij constraint form determined by Wang in his one-dimensional three vehicle charge feedback control study.22 The
effect of varying γ can be seen in Fig. 5. It is evident that for any nominal charge solution, an infinite number of values
for γ exist that will satisfy the inequality constraint. Additionally, the line will always intersect the γ-axis three times,
meaning there will always be two regions of the curve that are positive, as shown in Fig. 5.

γ

Q12Q13Q23

Figure 5: The inequality constraint is cubic with respect to γ, ensuring a real solution for the charges can always
be found. Hatched areas represent γ values which will yield imaginary charges.

C. Use of L∞ Norm for γ Selection

With an infinite number of acceptable values for γ, it is of interest to determine a method for selecting an ideal
value. To do so, the γ value that corresponds with the global minimumL∞ norm of the three craft charges is used. This
has the effect of ensuring that the maximum charge on any of the craft will be as low as possible. In recognizing that
the minima of the L∞ norm correspond to points where two of the craft charges have equal values, the corresponding
value for γ can be determined. Using the charge products, the magnitudes of the individual craft charges can be
determined as

|q1| =
√
Q12Q13

Q23
(27a)

|q2| =
√
Q12Q23

Q13
(27b)

|q3| =
√
Q13Q23

Q12
. (27c)
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The minima of the L∞ norm will occur when |q1| = |q2|, |q1| = |q3|, or |q2| = |q3|. Substituting Eq. (25) into
Eq. (27) provides three relationships which correspond to potential L∞ norm minima,

(
Q̂23 + γ

)2

=
(
Q̂13 − γ

(1 + χ)2

χ2

)2

(28a)(
Q̂12 + γ

1
χ2

)2

=
(
Q̂23 + γ

)2

(28b)(
Q̂12 + γ

1
χ2

)2

=
(
Q̂13 − γ

(1 + χ)2

χ2

)2

(28c)

from which six corresponding γ values arise,

γ =
χ2(Q̂13 − Q̂23)
2χ2 + 2χ+ 1

,
χ2(Q̂13 + Q̂23)

1 + 2χ
,
χ2(Q̂12 − Q̂23)

χ2 − 1
, −χ

2(Q̂12 + Q̂23)
χ2 + 1

,

χ2(Q̂13 − Q̂12)
χ2 + 2χ+ 2

,
χ(Q̂12 + Q̂13)

χ+ 2
. (29)

While the global minimum for the L∞ norm will correspond with one of these values, it is not immediately apparent
which γ it is. Furthermore, there is no guarantee that any one of these six values will produce real charge solutions. It
is entirely possible that any two of the craft charges may intersect each other in imaginary space. Once the six γ values
have been found, they need to be checked against the inequality constraint in Eq. (26). Immediately, any γ values
that violate this constraint can be eliminated. Another potential issue is that intersections may occur in real number
space, but not at minima of the L∞ norm. This is illustrated in Fig. 6, which shows an example of individual charge
magnitudes, as well as the L∞ norm, as a function of γ. As mentioned previously, there will be two regions on which
γ will satisfy Eq. (26). These are depicted in Fig. 6. It is important that the appropriate γ value be chosen such that it
corresponds to the global minimum, otherwise higher charge values than necessary will be used.

|q1|
|q2|
|q3|
L∞

|q|

γ

Charge Intersections

Figure 6: Example of individual craft charges and L∞ norm as a function of γ. Charge intersections are
possible at non-minima of L∞ norm.

IV. Numerical Simulation
Numerical simulation of the charged relative motion differential equations in Eq. (4) are used to verify the theo-

retical spinning shape versus charge results developed above. Because closed orbit configurations are the focus of this
research, hyperbolic and parabolic trajectories will be ignored, though they are possible for a collinear invariant shape
formation.17 Instead, we consider the design of a particular configuration where the craft may take circular or elliptical
trajectories about the formation center of mass. First, let us consider the case where the craft are desired to maintain
fixed separation distances. This naturally results in circular orbits for all three craft in the formation. Denoting the
separation distance between craft i and craft j as rij , the value of χ can quickly be determined from Eq. (8). To
determine a solution for the necessary craft charges, the orbit radius of craft 1 needs to be determined. Recall that for
circular orbits, the orbit radius is equal to the semimajor axis. This can be found by determining the distance between
craft 1 and the formation center of mass. With χ and a1 determined, the desired orbit mean motion, n, is all that
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Table 1: Orbital parameters for fixed separation distances.

a1 a2 a3 n χ
(m) (m) (m) (rad/sec)

33.3 16.6 41.6 π/7200 0.5

remains to determine a set of craft charges that will yield this orbit configuration. Assuming a specific orbit period, P ,
is desired for the formation, the mean motion is defined as

n =
2π
P
. (30)

As an example, consider a collinear formation wherem1 = 100, m2 = 75, and m3 = 50 kg. The craft are desired
to maintain fixed separation distances of r12 = 50 and r23 = 25 m with an orbital period of 4 hrs. The resulting orbital
parameters are summarized in Table 1. By defining only separation distances and an orbital period, all necessary
orbital parameters can be determined. These parameters provide the necessary initial conditions which can be used for
numerical verification.

Using Eq. (23), a nominal value for the charge products is determined. These values are presented in Table 2. It
is evident that this nominal solution will not satisfy the inequality constraint Q12Q13Q23 > 0. This is illustrated in
Fig. 7(a), a plot of Q12Q13Q23 as γ is varied. When γ = 0, which corresponds to the nominal solution, the inequality
does not hold. As predicted, there are two regions on which γ will satisfy the inequality constraint. An acceptable
value of γ must thus be selected to ensure real charges will be obtained. Using Eq. (29), the value of γ corresponding
to the minimum of the L∞ norm is chosen. As shown in Fig. 7(b), this minimum corresponds to γ = −1.093×10−11.
Applying this value to Eq. (25) allows for the determination of real charges, which are presented in Table 2. Notice
that the magnitude of q1 is equal to that of q2, which corresponds to

γ =
χ2(Q̂13 + Q̂23)

1 + 2χ
.

�2.� 10�11 2.� 10�11 4.� 10�11 6.� 10�11

�1.� 10�30

�5.� 10�31

5.� 10�31

1.� 10�30

γ

Q12Q13Q23

a) Inequality Constraint

||L||∞

γ
�4.� 10�11�2.� 10�11 2.� 10�11 4.� 10�11

0.00005

0.0001

Minimum

b) ||L||∞ Norm

Figure 7: Effect of varying γ on a) inequality constraint and b) L∞ norm for circular orbit case.

To verify the results, Eq. (4) is integrated numerically using appropriate initial conditions for the formation, and
the charge values computed in Table 2. The trajectories are presented in Fig. 8. As expected, the three craft take

Table 2: Charge product nominal solutions and resulting charges using γ = −1.093 × 10−11 for circular orbit
case.

Q̂12 Q̂13 Q̂23 q1 q2 q3
(C2) (C2) (C2) (µC) (µC) (µC)

−1.4654× 10−10 −6.7361× 10−11 −2.0090× 10−11 13.794 -13.794 2.249
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Table 3: Orbital parameters for elliptic orbits.

a1 a2 a3 n χ
(m) (m) (m) (rad/sec)

30 15 37.5 π/7200 0.5

on circular orbits about the formation center of mass, with the desired separation distances. The solid black lines
connecting the orbits indicate the positions of the three craft at different instances in time, demonstrating that they
maintain collinearity throughout the orbit. Notice that craft 2 and 3 orbit on the opposite side of the center of mass
than craft 1. This is a result of the craft masses and desired χ value of the formation.

�40 �20 20 40

�40

�20

20

40

Craft 1

Craft 2

Craft 3

x (m)

y (m)

Figure 8: Circular trajectories resulting from fixed separation distances.

Next, the design of a formation with dynamic separation distances is considered. Assume that the craft are desired
to sweep in and out over a range of separation distances, which requires elliptic orbits. At the maximum, the craft
separation distances will be r12 = 50 and r23 = 25 m, as before. This corresponds to the apoapses of the orbits.
When the craft are at their closest approaches, the separation distances are desired to be r12 = 40 and r23 = 20 m.
This corresponds to the orbit periapses. Note that for both of the defined separation distances, the value of χ is the
same. This is a requirement for the design of any invariant shape formation configuration, because χ is constant. To
determine the semi-major axes of the craft orbits, the distances from the craft to the center of mass of the formation
are found at apoapsis and periapsis. Denoting these distances as ra and rp, respectively, the semimajor axis of craft i
is determined by

ai =
rpi + rai

2
. (31)

The orbital parameters for the corresponding craft orbits are presented in Table 3. The craft masses and orbital period
are assumed to be the same as those of the circular orbit case.

The nominal solution of the charge products for the elliptic orbit case is presented in Table 4. As before, the
nominal solution will not satisfy the inequality constraint Q12Q13Q23 > 0, as shown in Fig. 9(a). Use of the null
space is required to guarantee that real charges will be obtained. Using Eq. (29), the value of γ corresponding to the
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minimum of the L∞ norm is γ = −7.969× 10−12, as illustrated in Fig. 9(b). Using this γ value, real charge solutions
are obtained which are presented in Table 4

�2.� 10�11 2.� 10�11 4.� 10�11 6.� 10�11

�1.� 10�30

�5.� 10�31

5.� 10�31

1.� 10�30
Q12Q13Q23

γ

a) Inequality Constraint

γ
�4.�10�11 �2.�10�11 2.�10�11 4.�10�11

0.00005

0.0001
||L||∞

Minimum

b) ||L||∞ Norm

Figure 9: Effect of varying γ on a) inequality constraint and b) L∞ norm for elliptic orbit case.

To simulate the trajectories for the elliptical case, initial conditions corresponding to the orbit periapses are used.
To determine the required velocity the vis-viva equation is used, where

vi =

√
2µi
rpi
− µi
ai
. (32)

These initial conditions are then used to determine the trajectories by integration of Eq. (4). The resulting elliptic
orbits are presented in Fig. 10. Again, the solid black lines are used to connect the locations of the three craft at
different instances in time, which demonstrates that the craft maintain collinearity throughout the orbit. To verify that
the separation distances do in fact reach the desired levels, the separation distances are computed from the simulation
results and plotted in Fig. 11. Initially, the craft are at periapsis where the desired separation distances are r12 = 40
and r23 = 20 m. From here, the craft sweep out to apoapsis, where r12 = 50 and r23 = 25 m, and back to periapsis.
Thus, the desired separation distances are achieved using the charges in Table 4 and the appropriate initial conditions.

V. Conclusion
In this paper, a method is developed to solve for necessary charge levels required to maintain a desired three-craft

invariant shape Coulomb formation. The formation is considered to be in deep space with the local space weather
and spacecraft potential yielding large effective Debye lengths, and no external perturbations are present. An equal
mass configuration is analyzed, followed by the general non-equal mass case. The underdetermined nature of the
system allows for an infinite number of real charge solutions for any desired shape, whether circular or elliptic orbits
are desired. Using numerical simulation, circular and elliptical invariant shapes are designed to meet required craft
separation distances. Through the use of an L∞ norm, a set of charges is chosen to minimize the maximum charge
magnitude, which has important implications for power requirements on the craft. This work demonstrates that for
any desired invariant shape formation geometry, real charge solutions are always possible.
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