
Autonomous On-board Planning for Earth-Orbiting
Spacecraft

Adam Herrmann
Graduate Research Assistant

Department of Aerospace Engineering Sciences
University of Colorado, Boulder

Boulder, CO 80303
adam.herrmann@colorado.edu

Hanspeter Schaub
Glenn L. Murphy Endowed Chair

Department of Aerospace Engineering Sciences
University of Colorado, Boulder

Boulder, CO 80303
hanspeter.schaub@colorado.edu

Abstract—This work explores on-board planning and scheduling
for the multi-target, single spacecraft Earth-observing satellite
(EOS) scheduling problem. The problem is formulated as a
Markov decision process (MDP) where the number of targets
included in the state and action space is an adjustable parameter
that may account for clusters of targets with varying priorities.
As targets are passed or imaged, they are replaced in the state
and action space with the next set of upcoming targets. Unlike
prior EOS problem formulations, this work explores how the
size of the state and action space can be reduced to produce
optimal, generalized policies that may be executed on board the
spacecraft in a fraction of a second. Performance of the agents
is shown to increase with the number of targets in the state and
action space. The number of imaged and downlinked targets
stays relatively constant, but the reward increases significantly,
demonstrating that the agents are prioritizing high priority
targets over low priority targets.

TABLE OF CONTENTS

1. INTRODUCTION . 1
2. PROBLEM STATEMENT . 2
3. METHODS . 4
4. RESULTS . 5
5. CONCLUSIONS . 7
ACKNOWLEDGMENTS . 8
REFERENCES . 8
BIOGRAPHY . 9

1. INTRODUCTION
On-board planning and scheduling for spacecraft operations
will become a requirement for future mission architectures in
multiple domains. In the Earth-observing domain, on-board
planning and scheduling is useful for replanning in the event
of a ground station outage or unexpected science collection
opportunity. For large constellations, on-board planning and
scheduling can reduce the burden on operators, saving both
time and cost. For deep space missions, on-board planning
and scheduling will reduce constraints imposed by the round-
trip light-time delay and facilitate operations in the uncertain
dynamics environments of asteroids and comets. This work
explores on-board planning and scheduling for Earth-orbiting
spacecraft, but the lessons learned can be also be applied to
deep space mission architectures.

Typically, planning and scheduling is a ground-based activity
in which a plan is generated on the ground using a suite of op-
erations tools, sequenced, and uplinked to the spacecraft for
open-loop execution. Efforts have been made to automate the

978-1-6654-3760-8/22/$31.00 c©2022 IEEE

ground-based process. The Automated Planning/Scheduling
Environment (ASPEN) software architecture is one such
architecture used for a variety of spacecraft missions [1].
Significant work has been performed to develop on-board
systems that modify the plans generated by ASPEN. The
Continuous Activity Scheduling Planning Execution and Re-
planning (CASPER) tool uses iterative repair to modify plans
generated by ASPEN in the event of resource constraint vio-
lations or unexpected science opportunities [2]. ASPEN and
CASPER have been applied to several missions to demon-
strate this process and improve operations. ASPEN and
CASPER were deployed on the Earth-Observing 1 (EO-1)
mission as a part of the Autonomous Sciencecraft Experiment
(ASE) to demonstrate on-board planning and scheduling
modification to detect and respond to opportunistic science
events [3] [4]. These tools were also deployed as a part of a
larger web of space- and ground-based sensors to detect and
capture data on volcanoes and floods [5] [6]. While ASPEN
and CASPER have increased the autonomous capability of
spacecraft, saving millions of dollars in operations costs,
methods with more control over operational decisions are
required for fully autonomous spacecraft.

In the Earth-observing satellite (EOS) scheduling problem,
one or more spacecraft must collect and downlink science
data to one or more ground stations on the Earth. Several
science objectives may be considered. One such science
objective is nadir-pointing data collection to maximize the
surface area of the Earth imaged and downlinked. Another
is a target-pointing science objective in which hundreds or
thousands of individual targets must be imaged and down-
linked by the spacecraft. Combinations of these science
objectives may also be considered, depending on the mission
architecture. In literature, optimization-based approaches are
commonly applied to the EOS scheduling problem. Span-
gelo et al. apply mixed integer programming to the EOS
scheduling problem where operational decisions such as col-
lecting images, downlinking data, and charging batteries are
scheduled to maximize the amount of data downlinked to
ground stations [7]. Nag et al. apply dynamic programming
to solve a similar EOS scheduling problem, demonstrating
a large performance improvement when the spacecraft is
provided with discrete pointing options as opposed to nadir-
pointing [8]. While these approaches find optimal solutions
to the EOS scheduling problem, the solutions are brittle to
a change in initial conditions. Furthermore, because they
are executed open-loop on board the spacecraft, a significant
deviation in resource consumption or the addition of new
science opportunities cannot be easily accounted for on board
and require that a new plan is generated.

Reinforcement learning has recently been posed as a can-
didate for the EOS scheduling problem due to its ability to
generalize across different initial conditions, rapidly compute

1

plans after training, and execute closed-loop on board space-
craft to dynamically respond to changes in the environment.
Harris and Schaub formulate an EOS scheduling problem
in which the goal is to maximize the amount of time the
spacecraft spends in the nadir-pointing science mode while
also managing resources such as power and reaction wheel
momentum [9] [10]. They apply shielded proximal policy op-
timization (PPO) to demonstrate safe operations while max-
imizing data collection. Herrmann and Schaub formulate an
EOS scheduling problem where the goal is to maximize the
amount of science data downlinked while managing power,
reaction wheel momentum, and on-board data storage [11].
They show that Monte Carlo tree search (MCTS) and state-
action value network regression can achieve near-optimal
performance on this problem. The state-action value neural
networks may be executed in tenths of a second to compute
the next mode the spacecraft should enter. While these
problem formulations are an important step towards more
complicated planning problems, they do not account for the
presence of multiple targets that require precise pointing for
imaging. Eddy and Kochenderfer formulate a semi-Markov
decision process for the multi-target EOS scheduling problem
and apply MCTS to generate optimized task schedules [12].
While the authors formulate a multi-target problem, they do
not generalize the solutions to arbitrary initial conditions for
on-board execution. This work applies Monte Carlo tree
search methods to the multi-target EOS scheduling problem,
generating optimal spacecraft plans that may be rapidly exe-
cuted on board.

This work formulates an Earth-observing satellite scheduling
problem in which multiple targets on the surface of the Earth
must be downlinked by scheduling a sequence of actions to
image the targets, downlink them, and manage spacecraft
resources such as power, reaction wheel speeds, and on-
board storage. The problem is formulated as a Markov
decision process where the number of targets included in the
state and action space is explored to determine the effect on
performance. The targets in the state and action space are
replaced with the next set of upcoming targets as they are
passed over or imaged by the agent. Monte Carlo tree search
and state-action value neural network regression are applied
to compute near-optimal state-action value approximations.

2. PROBLEM STATEMENT
Earth-Observing Satellite Scheduling Problem

In the Earth-observing satellite scheduling problem, one or
more spacecraft collect and downlink data to one or more
ground stations on the surface of the Earth over some plan-
ning horizon, which is defined as the total amount of oper-
ational time considered for planning and scheduling. In this
formulation of the EOS scheduling problem, a single space-
craft in low-Earth orbit collects images of targets located on
the Earth’s surface, which are downlinked to ground stations
in NASA’s Near Earth Network [13]. Over the course of a 3-
orbit planning horizon, the spacecraft has a set of 135 targets
available along its flight-path for imaging, each with its own
priority (1 is the highest, 3 is the lowest). This set of all targets
is referred to as T. The goal is to maximize the weighted
sum of the targets in T that are collected and downlinked.
The planning horizon is broken into a number of discrete
planning intervals where new scheduling decisions are made.
The spacecraft schedules resource management and imaging
tasks at each planning interval to achieve the goal. Figure 1
depicts this problem.

1. Charging
Mode

2. Downlink
Mode

3. Imaging Mode

4. Desaturation
Mode

Imaging Targets Ground Stations

Figure 1: Multi-target Earth-observing satellite schedul-
ing problem.

S0 S1 S2

A0 A1

R0 R1

Figure 2: Markov decision process.

Markov Decision Process

The EOS scheduling problem is formulated as a Markov
decision process, a sequential decision-making process in
which an agent observes some state si and selects and action
ai following a policy π : S × A, which maps states to
actions. The agent observes a new state si+1 and receives
a reward ri based on the reward function R : S × A →
R. This process is demonstrated in Figure 2. Markov
decision processes follow the Markov assumption, meaning
the next state is conditionally dependent only on the current
state and action. Mathematically, this may be stated as
T (si+1|si, ai) = T (si+1|si, ai, si−1, ai−1, ..., s0, a0). All
relevant state information for the purposes of maintaining this
assumption must be included in the state space.

In this formulation of the EOS scheduling problem, the
collection and downlink of individual targets is of particular
interest. The relative geometry of the targets, length of the
planning interval, length of the planning horizon, and limited
spacecraft resources preclude the collection of every target.
Therefore, the decision-making agent must make tradeoffs
between the targets and resources to maximize the weighted
sum of targets collected and downlinked. To achieve the
Markov assumption, each target should be included in the
state and action space. However, this significantly increases
the complexity of the problem by increasing the size of the
state and action space because there are 135 targets in set T.
Therefore, a subset of T that contains the next upcoming,
unimaged targets should be considered to approximate this

2

Figure 3: Sample target distribution. Red is high priority.
Orange is medium priority. Yellow is low priority.

property. This subset is given in Equation 1, where J is the
total number of targets in the state and action space and D is
a subset of T containing the imaged or passed targets.

U = {cj ∈ (T−D) | ∀ j ∈ [1, J]} (1)

The targets in set T are generated by sampling the positions
of the spacecraft in the Earth-centered, Earth-fixed frame and
projecting them onto the surface of the Earth. Before the
projection, a small amount of noise is added to the spacecraft
position so the target locations are not just ground-track
coordinates. An example of the generated targets may be
found in Figure 3. The red dots are targets, and the blue
line is the projected orbit of the spacecraft in the Earth-
centered, Earth-fixed frame. Due to the nature of the target
generation, there are varying concentrations of targets with
varying priorities that the agent will encounter.

State Space— Real world problems are difficult to cast as
MDPs with strict adherence to the Markov assumption. The
designer of the MDP must decide which information is most
relevant to the problem. The state space, S, for the EOS
scheduling problem may be found in the bulleted list below:

• ECEF spacecraft position, Er
• ECEF spacecraft velocity, Ev
• Image tuples for targets cj ∈ U
– Target position in the spacecraft Hill frame, Hrj
– Priority, pj
– Imaged indicator, wj
– Downlinked indicator, dj
• L2 norm of attitude error, ||σB/R||
• L2 norm of attitude rate, ||BωB/N ||
• Reaction wheel speeds, Ω
• Battery charge, z
• Eclipse indicator, k
• Stored data in buffer, b
• Data transmitted, h
• Ground station access indicator gi, i = 1 :M

The left-superscript on a vector denotes the coordinate frame
relative to which vector components are taken [14]. The
body-fixed frame is called B. The position and velocity of
the spacecraft expressed in an Earth-centered, Earth-fixed

(ECEF) frame E are included in the problem to retain in-
formation on upcoming downlink windows. For each target
included in the state and action space, a target tuple is also
included that contains the target position expressed in the
spacecraft Hill frame H, the target priority, whether or not it
has been imaged, and whether or not it has been downlinked.
The position of each target expressed in the spacecraft Hill
frame allows the agent to understand the geometric relation-
ship between each target to make tradeoffs between access
and priority.

The attitude error σB/R, attitude rate BωB/N , and reaction
wheel speeds Ω provide state information for the attitude
control system. The battery charge z and eclipse indicator k
provide state information on the spacecraft’s power system.
Likewise, the amount of data stored in the buffer, amount
of data downlinked over the planning interval, and ground
station access indicators provide state information on the
spacecraft’s data management system and ability to downlink
data to the ground.

Each state is approximately normalized to a range of [−1, 1]
or [0, 1] to aid convergence in function approximation. The
ECEF position vector is normalized by the radius of the
Earth, and the velocity is normalized by the velocity of a
circular orbit at the Earth’s surface. The target position is
normalized by the radius of the Earth. Reaction wheel speeds
are normalized using the maximum reaction wheel speed.
Likewise, the battery charge and data buffer storage level are
normalized by their maximum capacity.

Action Space— A mode-based planning approach is taken
where each mode represents a high-level spacecraft behav-
ior. The low-level behavior of each mode is dictated by
the attitude reference and on/off states of each spacecraft
subsystem. By utilizing a mode-based planning approach,
the continuous behavior of the spacecraft is decomposed into
discrete actions, making the planning problem tractable. The
action space, A, is given by the bulleted list below:

• Charge
• Desaturate
• Downlink
• Image target cj ∈ U

In the charging mode, the spacecraft turns off the imager
and transmitter and points its solar panels at the sun. The
desaturation mode is the same as the charging mode, but
the spacecraft thrusters are used to remove momentum from
the reaction wheels. In the downlink mode, the spacecraft
points in the nadir-direction and turns on the transmitter to
downlink data to available ground stations. A ground station
is accessible if the spacecraft is within the elevation and
range requirements of the station. In the imaging mode,
the spacecraft points at target i and takes an image once the
spacecraft is within the elevation and range requirements of
the target. The same access model is shared between ground
stations and imaging targets for simplicity. For imaging,
an additional attitude requirement is added such that the L2

norm of the attitude error is below a threshold of 0.1 rad.

Transition Function—Due to the continuous dynamics of the
EOS scheduling problem, it is difficult to construct an ex-
plicit transition function using conditional probabilities that
accurately captures state transitions. Therefore, the transition
function is represented with a generative model given in
Equation 2. A generative model simply returns a new state
si+1 and reward ri by sampling an underlying distribution,

3

Agent
Gym Environment

action

reward, observation

BSK Simulator

Figure 4: Gym environment interface [11].

integrating equations of motion, or some combination of
both.

si+1, ri = G(si, ai) (2)

The Basilisk astrodynamics software architecture [15] is used
to construct a simulation to model the complex behavior of
the spacecraft and environment. The Basilisk simulation
is wrapped within a Gym environment which provides a
standard interface for the agent to interact with the simulation.
This is depicted in Figure 4. The agent passes an action to the
environment, which turns Basilisk models on or off based on
the mode. The simulation is integrated forwards in time for
six minutes with a time step of 1 second. Afterwards, the
agent receives a reward and the new state.

The Basilisk astrodynamics software architecture is a high-
fidelity astrodynamics simulation tool developed by the Au-
tonomous Vehicle Systems Laboratory at CU Boulder2 . The
Basilisk simulation described within this work is an iteration
of the simulator used in past work [11]. The base simulator
for the EOS scheduling problem includes high-fidelity orbit
and attitude dynamics, an on-board data system, and an on-
board power system. In this work, an instrument controller is
included that turns the imager on to take an image if access
and attitude requirements are met. The simulated image is
then passed to the data buffer and downlinked if and when a
downlink is initiated by the spacecraft.

Reward Function— The reward function R(si, ai, si+1) is
formulated as a piecewise function of the current state, action,
and next state. The return at step i is computed as follows:

ri =

−10 if failure∑|T|
j Hj(d) if !failure and ai is downlink

0.1Hj(w) if !failure and ai is image cj

0 otherwise

(3)

If the agent fails, a failure penalty of -10 is returned and
the episode terminates. The failure condition is true if
the spacecraft exceeds the maximum reaction wheel speeds,
expends all charge in the battery, or overfills the data buffer.
Mathematically, this is represented as:

failure = (z = 0 or any(Ω̂ ≥ 1) or b ≥ 1) (4)

A function Hj(x) is formulated for each image tuple that
checks if the state variable x is false at step i and true at step

2http://hanspeterschaub.info/basilisk

i + 1, returning 1 divided by the image priority pj if these
conditions are met.

Hj(x) = (1/pj) if !xji and xji+1
(5)

If the downlink mode is initiated and a resource management
failure does not occur, the Hj(d) function for all targets is
computed and summed using the downlink state. In other
words, each target is checked to see whether or not it has
been downlinked for the first time. Reward is returned for
each target this condition is true for, and the total reward for
all targets is summed together.

If the image target cj mode is initiated and a resource man-
agement failure does not occur, the Hj(w) operator for target
cj is computed, returned, and scaled by 0.1. In other words,
target cj is checked to see if an image was captured for the
first time, and a small reward is returned if this is true. The
addition of this small positive reward helps to make reward
less sparse, which facilitates exploration in Monte Carlo tree
search.

Target Replacement—After each step i through the environ-
ment, the targets in U are checked to see if they have been
imaged or passed. If so, these targets are added to D, and
U is updated and added to the action space. While this
does add non-stationarity to the problem, there is a value
for J = |U| that will render this impact negligible because
the added information of more targets will only marginally
improve stationarity while increasing problem complexity
and required training time. In stationary Markov decision
processes, the underlying dynamics (i.e transition function)
do not change with time. If each target were included in the
state and action space, the underlying dynamics would appear
stationary to the agent. By only including a subset of targets
in the state and action space, the underlying dynamics appear
non-stationary because the available targets are randomly
changing. An agent operating within this MDP will therefore
have difficulty computing the expected reward for each action
because it has no state information on targets encountered far
in the future of the planning horizon.

3. METHODS
Solving Markov Decision Processes

Solving Markov decision process is done by solving for the
optimal policy π∗(si), which is the mapping from states to
actions that results in the maximum expected reward.

π∗(si) = arg max
π

V π(si) (6)

The optimal value function V ∗(si) is the expected value of
future reward when starting in state si and following the
optimal policy until the episode terminates [16]. It may be
defined recursively using the Bellman operator, as shown
below:

V ∗(si) = max
a

(
R(si, ai)+γ

∑
si+1∈S

T (si+1|si, ai)V ∗(si+1)
)

(7)
The state-action value function Q(si, ai) is the expected
value of future reward given a state si and action ai. The op-
timal value function can be found by maximizing Q∗(si, ai).

V ∗(si) = max
a
Q∗(si, ai) (8)

4

http://hanspeterschaub.info/basilisk

If the optimal state-action value function is known, the opti-
mal policy is:

π∗(si) = arg max
a

Q∗(si, ai) (9)

This work solves for the state-action value function Q(s, a)
using online algorithms and supervised learning. The benefit
of using online algorithms is that only states that are reach-
able from state si are explored. Therefore, online algorithms
are well suited for generative transition functions, which this
work implements. Adding supervised learning allows for the
policies found by the online algorithms to generalize across
the state space.

Monte Carlo Tree Search

Monte Carlo tree search is an online search algorithm that
uses a combination of simulation and rollout to determine
the next optimal action the agent should take in the planning
problem [17] [18]. At each step through the environment,
MCTS computes the optimal action by following the process
in Figure 5.

During the selection step, MCTS selects the action that
maximizes the state-action value estimate, Q̂(s, a), and the
exploration bonus, U . The exploration bonus is a function
of an exploration constant, ε, the number of times the state
has been visited, N(s), and the number of times a particular
state-action tuple has been selected, N(s, a).

U = ε

√
logN(s)

N(s, a)
(10)

If MCTS reaches a state in the search tree it has not seen
before, it initializes Q̂(s, a) and N(s, a). Then, MCTS
executes a rollout policy to a specified depth. A rollout policy
is a random or heuristic policy MCTS uses to find areas of
high reward, which are promising to search. After rollout,
MCTS backs up the reward through each state-action tuple to
update Q̂(s, a) with an incremental averaging operator, where
q is the return after simulation and rollout.

Q̂(s, a) = Q̂(s, a) +
q − Q̂(s, a)

N(s, a)
(11)

This process is repeated for a specified number of
simulations-per-step. Afterwards, the action that maximizes
the state-action value estimate is selected and the agent takes
a step forward in the environment.

Rollout Policy—A safety MDP and rollout policy are derived
as described by Herrmann and Schaub [11]. The safety MDP
discretizes the state space to reduce dimensionality to several
safety states:

Ssafety : {Tumbling, Low Power, Saturated, Buffer Full}
(12)

The safety states take a value of true or false depending on
whether or not the relevant resource state variables in the orig-
inal MDP are above or below a safety limit. A rollout policy
is generated for this safety MDP that guarantees a resource
constraint failure does not occur, which allows MCTS to only
explore areas in the state space that are promising. At times,
the safety MDP achieves a nominal state (si = {0, 0, 0, 0}),
meaning that any action can be safely taken. For this problem,

Table 1: Neural network hyperparameters.

Parameter Value
Nodes Per Hidden Layer {50, 100}

Hidden Layers {3, 4, · · · , 8, 9}
Activation Function Leaky ReLU

α 0.1
Dropout 0.1
Epochs 10,000

Batch Size 45,000
Loss Function Mean Squared Error

the target in the state space with the minimum Hill-frame
position is selected for imaging if the state of the safety MDP
is nominal. However, if a ground station is accessible, the
downlink mode is initiated instead.

Supervised Learning

To create a state-action value function that is generalizable
over a range of initial conditions, Monte Carlo tree search
is used to solve the planning problem for hundreds of initial
conditions sampled from distributions of the true anomaly,
argument of periapsis, longitude of the ascending node, bat-
tery charge level, etc. [11]. Since MCTS estimates the state-
action value function for each state-action pair, the estimates
from each solved planning horizon are first updated using the
realized reward from stepping through the planning problem,
as shown in Figure 6.

Afterwards, each state-action value estimate is placed in a
dataset that is split between a training set and validation set.
These state-action value estimates are regressed over using
artificial neural networks to produce a state-action value func-
tion approximation, Qθ(s, a). This process is demonstrated
in Figure 7. After Qθ(s, a) is computed, a new policy may
be derived in which the action that maximizes Qθ(s, a) is
returned. This is the policy used by the on-board agent to
determine the next optimal action the spacecraft should take.

π(si) = arg max
ai

Qθ(si, ai) (13)

The benefit of a neural network representation of the state-
action value network is that it may be executed in fractions of
a second on board the spacecraft.

4. RESULTS
State-Action Value Function Approximation

To determine the artificial neural network size for approxi-
mating the state-action value estimates generated by MCTS, a
hyperparameter search is conducted over the number of nodes
and hidden layers in the network. The number of hidden
layers is increased from three to nine. Three network widths
are considered - 50, 100, and 200 nodes. MCTS is used to
generate 45,000 data points (1,000 unique planning horizons
solved). 90% of the data is used for training, and 10% of
the data is used for validation. Other network parameters are
included in Table 1. For this hyperparameter search, the size
of U is two. In other words, the next two upcoming targets
are included in the action space. Experiments are performed
for the other sizes of U but are not shown here for brevity.

5

Select Expand Rollout Backup

Repeat

Q0(s, a), N0(s, a)

<latexit sha1_base64="6yQ8JGDzhUEaNxVv1iCS9G//ShQ=">AAADw3icfVJbaxNBFJ5mvdR4aar45MtiKFQNYVcqCkWo1aCCl5aatpBdwuzsSbJkd2admdWEYf6G777qL/LfeDbd0CTVHhj4+M75zm1OlKeJ0p73Z63mXLl67fr6jfrNW7fvbDQ27x4rUUgGXSZSIU8jqiBNOHR1olM4zSXQLErhJBq/Lv0n30CqRPAveppDmNEhTwYJoxqpfuP+Yd/bVi2XPmoFu5/muN9oem1vZu5F4FegSSo76G/WfgSxYEUGXLOUKtXzvVyHhkqdsBRsPSgU5JSN6RB6CDnNQIVm1r91t5CJ3YGQ+Lh2Z+yiwtBMqWkWYWRG9Uit+kryX75eoQcvQpPwvNDA2VmhQZG6WrjlMtw4kcB0OkVAmUywV5eNqKRM48rqS2UUaIV4eRRD06FA3Sj7D52wyfLsXACPwzIgV1DgykRcppTA4TsTWUZ5HCyo9Qi4ucQfi8u8WKp0IxPDwBx1bO+ou//qw9vQvOcx/pQ1HR7PoTUr0sC1WzOxhol+PJcsMOfienDegAnyFAf+ivnKD5GQmif2JYa8AbwMCR+R/JyDpFpIE3SqsCgyHbuSh8phRie254cmKLCQxD8wTR8VotKXZ4Q3NrRBa5krdTbYtXW8ZH/1bi+C46dtf6f97HCnubdf3fQ6eUAekm3ik+dkj7wjB6RLGDHkJ/lFfjsdZ+xIR5+F1tYqzT2yZI79C5nhRPo=</latexit>

Rollout

Update Q

<latexit sha1_base64="EGcbO+ZTaufEbKaGr1VYXySevH4=">AAAEHHicfVNbaxNBFJ4mXmq8tNVHXxZDQVRCtlQURKjVoIJiS5u2kF3C7OzZZOnszDozWxOG+SWCT/pPfBNfBX+I755Nt7SbagcGPr5zvjPnNlHOU2263d8Ljealy1euLl5rXb9x89bS8srtPS0LxaDPJJfqIKIaeCqgb1LD4SBXQLOIw350+LK07x+B0qkUu2aaQ5jRkUiTlFGD1HB5KTAwMbafx9SA57aHy+1upzs73nngV6BNqrM1XGn8CWLJigyEYZxqPfC7uQktVSZlHFwrKDTklB3SEQwQCpqBDu0sc+etIhN7iVR4hfFm7FmFpZnW0yxCz4yasZ63leS/bIPCJE9Dm4q8MCDY8UNJwT0jvbINXpwqYIZPEVCmUszVY2OqKDPYrFYtlGaUQxzaMfAjMFiQAgGfmMwyKuIgoVnKpzEktODGBjqpoPNqQXb90JYllsnUwlsNRiOud8pSPpKY1jj7D52ySb21QoLAJNEh11DgRGQM87meUZsxCHuBPZYXWfGp0owMVmt3em6w09988e51aN+KGBfB2Z6IT6Czc9LAc6szcbl6D04kZ5hTcSs4TcAGOceCP2K8ct4KuH3onqPLK8DFU/AeyQ85KGqkskGvcosi23NzcagaZXTiBjiToMCHFM7Atn1UyEpfbimu8MgFj+pcqXPBM9fCj+LPf4vzYG+t4693Hm+vtzc2qy+zSO6Se+Q+8ckTskHekC3SJ4wU5DP5Sr41vzS/N380fx67NhYqzR1SO81ffwHlCmys</latexit>

Update Q

<latexit sha1_base64="EGcbO+ZTaufEbKaGr1VYXySevH4=">AAAEHHicfVNbaxNBFJ4mXmq8tNVHXxZDQVRCtlQURKjVoIJiS5u2kF3C7OzZZOnszDozWxOG+SWCT/pPfBNfBX+I755Nt7SbagcGPr5zvjPnNlHOU2263d8Ljealy1euLl5rXb9x89bS8srtPS0LxaDPJJfqIKIaeCqgb1LD4SBXQLOIw350+LK07x+B0qkUu2aaQ5jRkUiTlFGD1HB5KTAwMbafx9SA57aHy+1upzs73nngV6BNqrM1XGn8CWLJigyEYZxqPfC7uQktVSZlHFwrKDTklB3SEQwQCpqBDu0sc+etIhN7iVR4hfFm7FmFpZnW0yxCz4yasZ63leS/bIPCJE9Dm4q8MCDY8UNJwT0jvbINXpwqYIZPEVCmUszVY2OqKDPYrFYtlGaUQxzaMfAjMFiQAgGfmMwyKuIgoVnKpzEktODGBjqpoPNqQXb90JYllsnUwlsNRiOud8pSPpKY1jj7D52ySb21QoLAJNEh11DgRGQM87meUZsxCHuBPZYXWfGp0owMVmt3em6w09988e51aN+KGBfB2Z6IT6Czc9LAc6szcbl6D04kZ5hTcSs4TcAGOceCP2K8ct4KuH3onqPLK8DFU/AeyQ85KGqkskGvcosi23NzcagaZXTiBjiToMCHFM7Atn1UyEpfbimu8MgFj+pcqXPBM9fCj+LPf4vzYG+t4693Hm+vtzc2qy+zSO6Se+Q+8ckTskHekC3SJ4wU5DP5Sr41vzS/N380fx67NhYqzR1SO81ffwHlCmys</latexit>

max
a

(Q + U)

<latexit sha1_base64="nnCZb6A1BQOfbXE/HncC1/PJmLo=">AAAENHicfVNba9RAFJ52vdT11uqjL8GlWK2UjVQUilCriwqKLe22hU0ok8nJbuhkJs5M6i7D/AR/jeCT/hDBN/HVN9892aZ0s9UOBD6+c76Tc41ynmrTbn+fmW1cuHjp8tyV5tVr12/cnF+4tatloRh0meRS7UdUA08FdE1qOOznCmgWcdiLDl+U9r0jUDqVYseMcggz2hdpkjJqkDqYvxcUIkY7GBsYGBpLnatQRofOecHa0tZy9/7BfKu90h4/7yzwK9Ai1ds8WJj9E8SSFRkIwzjVuue3cxNaqkzKOLhmUGjIKTukfeghFDQDHdpxRc5bRCb2EqnwE8Ybs5MKSzOtR1mEnhk1Az1tK8l/2XqFSZ6GNhV5YUCw4x8lBfeM9Mr2eHGqgBk+QkCZSjFXjw2oosxgk5q1UJpRDnFoB8CPwGBBCgR8ZDLLqIiDhGYpH8WQ0IJjb3VSQefVguz4oS1LLJOphbc4Eo243ilLeV9iWoPsP3TKhvXWCgkCk0SHXEOBE5ExTOc6oTYDEPYceyzPs+KvSjMyWK3d7rjednfj+dtXoX2DWyaMsx0Rn0Dcs7o08NziWFyu34MTyQRzKm4GpwnYIOdY8AeMV85bAbfL7hm6vARcPAXvkHyfg6JGKht0Krcosh03FYeqfrn0PZzJ6Vm0fFTISl9uKa5w3wUP69z4WII118RD8afP4izYfbTir6483lptrW9UJzNH7pC7ZIn45AlZJ6/JJukSRj6Rz+Qr+db40vjR+Nn4dew6O1NpbpPaa/z+C1Ccdxc=</latexit>

Figure 5: Monte Carlo tree search [11].

Q = r1 + r2 + r3 + r4
r1

r2

r3

r4

Construct Tree Compute Q(s,a) Along Main Tree Assemble Training Data

Q = r2 + r3 + r4

Q = r3 + r4

Q = r4

Figure 6: Updating the state-action value function [11].

Training Episodes

Value Network
Training

Value Network
Validation

Performance
Metrics

Figure 7: Supervised learning process [11].

To validate the performance of each trained neural network,
the state-action value networks are used to generate the policy
described in Equation 13, which is executed on a standard
set of initial conditions. Figure 8 displays the results for 50
nodes per hidden layer, and Figure 9 displays the results for
100 nodes per hidden layer. In each plot, the dotted black
line is the mean reward from MCTS (N = 80 samples). The
distribution of the reward for each trained agent is given as
a box and whisker plot with where the triangle is the mean
and green line is the median (N = 100 samples). The set of
initial conditions remains constant between each experiment.

For each number of nodes per hidden layer, the performance

3 4 5 6 7 8 9
Hidden Layers

10

0

10

20

30

Re
wa

rd

Figure 8: Reward as hidden layers increase. 50 nodes per
layer. Two targets.

3 4 5 6 7 8 9
Hidden Layers

10

0

10

20

30

Re
wa

rd

Figure 9: Reward as hidden layers increase. 100 nodes
per layer. Two targets.

typically matches Monte Carlo tree search at either 3 or 4
hidden layers. However, once the number of hidden layers
exceeds this point, the performance begins to degrade until
resource management failures begin to occur. This is most
evident for 8 or 9 hidden layers. Overfitting is likely the
largest contributing factor to the degradation in performance.
In Figure 10, the mean squared error loss vs. training epoch
is plotted for 100 nodes per hidden layer. As the overfitting
on the training data set becomes more pronounced, the state-
action value networks begin to produce less reward on av-
erage and eventually begin producing resource management
failures. This is most notable for 7, 8, and 9 hidden layers.
A duplicate experiment is performed for 50 nodes per hidden
layer that shows the most overfitting occurring at 8 hidden
layers, where performance suffers the most in Figure 8.

Action Space Parameterization

The effect of the size of U on performance is an important
question this work explores. A constant target density of 45
possible targets per orbit (135 total targets in T over three
orbits) is assumed. It is worth mentioning that in addition to
target density, the required number of targets in U is also a
function of the length of the planning interval. A spacecraft
that makes a decision every three minutes will be able to
collect more targets than a spacecraft that makes a decision
every six minutes, assuming the spacecraft can slew from
target to target fast enough. This work only considers six-
minute planning intervals.

An experiment is performed in which the number of targets
in U is increased from one through four. For each |U|,
the MCTS hyperparameters that balance performance and
execution time are selected. For all sizes of U, an exploration
constant of 10 is selected. The number of simulations-per-
step for each |U| is linearly increased from 15 to 30, with
|U| = 1 at 15 simulations-per-step and |U| = 4 at 30
simulations-per-step. The increase in simulations-per-step is
due to the increase in problem complexity due to additional
actions in the action space. The number of times future state-

6

0 2000 4000 6000 8000 10000
Epochs

0

10

20

30

40

50
M

ea
n

Sq
ua

re
d

Er
ro

r
Training Set
Validation Set

(a) 3 hidden layers

0 2000 4000 6000 8000 10000
Epochs

0

10

20

30

40

50

M
ea

n
Sq

ua
re

d
Er

ro
r

Training Set
Validation Set

(b) 4 hidden layers

0 2000 4000 6000 8000 10000
Epochs

0

10

20

30

40

50

M
ea

n
Sq

ua
re

d
Er

ro
r

Training Set
Validation Set

(c) 5 hidden layers

0 2000 4000 6000 8000 10000
Epochs

0

10

20

30

40

50

M
ea

n
Sq

ua
re

d
Er

ro
r

Training Set
Validation Set

(d) 6 hidden layers

0 2000 4000 6000 8000 10000
Epochs

0

10

20

30

40

50

M
ea

n
Sq

ua
re

d
Er

ro
r

Training Set
Validation Set

(e) 7 hidden layers

0 2000 4000 6000 8000 10000
Epochs

0

10

20

30

40

50

M
ea

n
Sq

ua
re

d
Er

ro
r

Training Set
Validation Set

(f) 8 hidden layers

0 2000 4000 6000 8000 10000
Epochs

0

10

20

30

40

50

M
ea

n
Sq

ua
re

d
Er

ro
r

Training Set
Validation Set

(g) 9 hidden layers

Figure 10: Overfitting as the number of hidden layers increase. 100 nodes per layer. Two targets.

action pairs are visited is on the order of:

1

|A|depth (14)

The depth is the depth of the search. To equalize ex-
ploration between the different experiments, the number of
simulations-per-step is marginally increased to account for
this decay. Futhermore, past work has shown that after
a certain point, additional simulations-per-step in the EOS
scheduling problem do not result in a large difference in
the quality of MCTS solutions [11]. Therefore, the smallest
number of simulations-per-step is selected for each |U| such
that an MCTS performance plateau is achieved. These hyper-
parameter combinations are used to generate a data set that is
regressed over using various neural network sizes which are
described in Section 4.

Once the state-action value network hyperparameterization
is performed for each |U| as described in Section 4, the
best state-action value networks for each |U| are selected for
comparison. In Figure 11, the average reward for each size
of U are plotted, along with the 95% confidence intervals for
each. The mean number of imaged and downlinked targets
are also plotted. As the size of U increases, so does the
reward. However, the reward begins to plateau at |U| = 4,
which is expected. At a certain point, adding more targets

to the action space does not add more value. As reward
increases, the number of targets imaged and downlinked
increases, but the increase in targets imaged and downlinked
is only partially responsible for the increase in reward, and
both of these metrics plateau more quickly than the reward.
The majority of the increase in reward is due to the state-
action value networks prioritizing high-priority targets over
low-priority targets.

5. CONCLUSIONS
This work demonstrates the use of Monte Carlo tree search
(MCTS) and state-action value function regression using
artificial neural networks for the multi-target Earth-observing
satellite (EOS) scheduling problem. The performance of
state-action value function approximators are benchmarked
for different combinations of hidden layers and nodes per
hidden layer and are shown to match the performance of
MCTS. However, overfitting is shown to negatively impact
performance of the trained agents and cause resource con-
straint violations.

This work also shows that for a constant target density,
increasing the number of targets in the action space provides
the agent with the ability to make trade-offs between target
priorities and target geometry, resulting in higher reward,

7

1 2 3 4
Targets in Action Space

30.0

30.5

31.0

31.5

32.0
M

ea
n

Im
ag

ed

(a) Number of imaged targets.

1 2 3 4
Targets in Action Space

25.0

25.5

26.0

26.5

27.0

27.5

28.0

M
ea

n
Do

wn
lin

ke
d

(b) Number of downlinked targets.

1 2 3 4
Targets in Action Space

18

20

22

24

26

M
ea

n
Re

wa
rd

(c) Reward.

Figure 11: Performance vs. targets in action space.

imaged targets, and downlinked targets on average. This
increase in mean reward, imaged targets, and downlinked tar-
gets for |U| = {1, 2, 3, 4} is demonstrated for density of 135
targets over three orbits. Future work should study how the
size of U affects performance when different target densities
are considered, and the impact of using target densities not
trained for should also be studied.

ACKNOWLEDGMENTS
This work is supported by a NASA Space Technol-
ogy Graduate Research Opportunity (NSTGRO) grant,
80NSSC20K1162.

REFERENCES
[1] A. Fukunaga, G. Rabideau, S. Chien, and D. Yan, “To-

wards an application framework for automated planning
and scheduling,” in 1997 IEEE Aerospace Conference,
April 1997, pp. 375–386.

[2] S. Knight, G. Rabideau, S. Chien, B. Engelhardt, and
R. Sherwood, “Casper: Space exploration through con-
tinuous planning,” IEEE Intelligent Systems, vol. 16,

no. 5, pp. 70–75, September 2001.

[3] S. Chien, R. Sherwood, D. Tran, B. Cichy, G. Rabideau,
R. Castano, A. Davis, D. Mandl, S. Frye, B. Trout,
S. Shulman, and D. Boyer, “Using autonomy flight
software to improve science return on earth observing
one,” Journal of Aerospace Computing, Information,
and Communication, vol. 2, no. 4, pp. 196–216, 2005.

[4] S. Chien, D. Tran, G. Rabideau, S. Schaffer, D. Mandl,
and S. Frye, “Timeline-based space operations schedul-
ing with external constraints,” in Twentieth Interna-
tional Conference on Automated Planning and Schedul-
ing, 2010.

[5] S. A. Chien, A. G. Davies, J. Doubleday, D. Q. Tran,
D. Mclaren, W. Chi, and A. Maillard, “Automated
volcano monitoring using multiple space and ground
sensors,” Journal of Aerospace Information Systems,
vol. 17, no. 4, pp. 214–228, 2020.

[6] S. Chien, D. Mclaren, J. Doubleday, D. Tran, V. Tan-
pipat, and R. Chitradon, “Using taskable remote sensing
in a sensor web for thailand flood monitoring,” Journal
of Aerospace Information Systems, vol. 16, no. 3, pp.
107–119, 2019.

[7] S. Spangelo, J. Cutler, K. Gilson, and A. Cohn,

8

“Optimization-based scheduling for the single-satellite,
multi-ground station communication problem,” Com-
puters and Operations Research, vol. 57, May 2015.

[8] S. Nag, A. S. Li, and J. H. Merrick, “Scheduling
Algorithms for Rapid Imaging Using Agile Cubesat
Constellations,” Advances in Space Research, vol. 61,
no. 3, pp. 891–913, Feb. 2018.

[9] A. Harris and H. Schaub, “Deep on-board scheduling
for autonomous attitude guidance operations,” in AAS
Guidance, Navigation and Control Conference, Breck-
enridge, CO, January 30 – Feb. 5 2020, aAS 02-117.

[10] ——, “Spacecraft command and control with safety
guarantees using shielded deep reinforcement learning,”
in AIAA SciTech, Orlando, Florida, January 6–10 2020.

[11] A. P. Herrmann and H. Schaub, “Monte carlo
tree search methods for the earth-observing satellite
scheduling problem,” Journal of Aerospace Information
Systems, pp. 1–13, 2021. [Online]. Available: https:
//doi.org/10.2514/1.I010992

[12] D. Eddy and M. Kochenderfer, “Markov decision pro-
cesses for multi-objective satellite task planning,” in
2020 IEEE Aerospace Conference. IEEE, 2020, pp.
1–12.

[13] G. S. Center, “Near earth network users’ guide,” Na-
tional Aeronautics and Space Administration, Green-
belt, MD, Tech. Rep., March 2019.

[14] H. Schaub and J. L. Junkins, Analytical Mechanics of
Space Systems, 4th ed. Reston, VA: AIAA Education
Series, 2018.

[15] P. W. Kenneally, H. Schaub, and S. Piggott, “Basilisk: A
flexible, scalable and modular astrodynamics simulation
framework,” AIAA Journal of Aerospace Information
Systems, vol. 17, no. 9, pp. 496–507, 2020.

[16] R. S. Sutton and A. G. Barto, Reinforcement Learning:
An Introduction. MIT press, 2018.

[17] L. Kocsis, C. Szepesvári, and J. Willemson, “Improved
monte-carlo search,” Univ. Tartu, Estonia, Tech. Rep,
2006.

[18] M. J. Kochenderfer, Decision Making Under Uncer-
tainty: Theory and Application. Massachusetts Insti-
tute of Technology, 2015, ch. Sequential Problems, pp.
102–103.

BIOGRAPHY[

Adam Herrmann received his B.S. in
Aerospace Engineering from the Univer-
sity of Cincinnati and is a current Ph.D.
student at the University of Colorado,
Boulder, in the Autonomous Vehicle Sys-
tems (AVS) Laboratory. His research
focuses on the application of reinforce-
ment learning to spacecraft planning
and scheduling in Earth-orbiting and
small body domains.

Hanspeter Schaub is a professor in the
Aerospace Engineering Sciences depart-
ment and the Glenn L. Murphy Chair
in Engineering at the University of Col-
orado. He has over 20 years of research
experience, of which 4 years are at San-
dia National Laboratories. His research
interests are in nonlinear dynamics and
control, astrodynamics, relative motion
dynamics, relative motion sensing, and

spacecraft autonomy. In the last decade he has developed
the emerging field of charged astrodynamics. Dr. Schaub
has been the ADCS lead in the CICERO mission and the
ADCS algorithm lead on a Mars Mission. He is an AAS and
AIAA Fellow, and has won the AIAA/ASEE Atwood Educator
award, as well as the AIAA Mechanics and Control of Flight
award. He currently serves as the Editor-In-Chief for the
AIAA Journal of Spacecraft and Rockets.

9

https://doi.org/10.2514/1.I010992
https://doi.org/10.2514/1.I010992

	Introduction
	Problem Statement
	Methods
	Results
	Conclusions
	Acknowledgments
	References
	Biography

