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REINFORCEMENT LEARNING FOR THE MULTI-SATELLITE
EARTH-OBSERVING SCHEDULING PROBLEM

Adam Herrmann∗, João Vaz Carneiro† and Hanspeter Schaub‡

This work explores the use of reinforcement learning (RL) for the multi-satellite,
multi-target Earth-observing satellite (EOS) scheduling problem. In this work, a
decision-making agent is trained independently in a stationary, single satellite en-
vironment on a fixed number of imaging targets that are updated as they are imaged
and downlinked by the spacecraft. The trained agent is then deployed in a non-
stationary, multi-satellite scenario where different spacecraft can share imaging
targets. The distributed nature of the architecture simplifies the training process
and required training time but requires cross-communication between satellites
and is inherently suboptimal in terms of global reward due to the competition be-
tween agents. The prospect of this method is that the constellation design and size
can scale up and down without requiring the decision-making agent be retrained.
This method is evaluated and benchmarked for various Walker-delta constellations
and target numbers. Furthermore, extrapolation of the trained agents to orbits out-
side of the training distribution is explored. An increase in spacecraft leads to
an increase in global reward, but a decrease in reward per spacecraft due to the
competition among agents. Furthermore, local reward is highest for orbits with a
longitude of the ascending node close to the training distribution.

INTRODUCTION

Large Earth-orbiting satellite constellations require on-board planning and scheduling to reduce
the burden on spacecraft operators and decrease the cost of operations. Reinforcement learning
has been shown to be a viable method for developing autonomous decision-making agents for on-
board planning and scheduling.1–4 In prior work, the single satellite Earth-observing satellite (EOS)
scheduling problem is cast as a Markov decision problem, and various algorithms are applied to
generate near-optimal policies. However, the scalability of these methods to multi-satellite scenar-
ios has not been demonstrated. The primary challenge of scaling reinforcement learning to multiple
decision-making agents is non-stationarity. Multi-agent environments with limited to no commu-
nication between agents appear non-stationary to individual agents because other agents change
the environment with their actions. The problem may be cast as a decentralized partially observ-
able Markov decision process (Dec-POMDP) to account for the uncertainty in the environment due
to other agents. Several multiagent robotics problems using macro-actions have demonstrated the
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success of such an approach.5–7 However, finding an optimal solution for a finite-horizon Dec-
POMDP is NEXP-complete.8 If free communication between agents and full observability of the
environment is assumed, the Dec-POMDP can be reduced to a multiagent Markov decision process
(MMDP).9 An MMDP is an MDP for multiagent systems in which there is a set of agents and a
joint action space.10 The state space, reward function, and transition function are a function of
the joint action space. Finding an optimal solution for a finite horizon MDP is only P-complete,11

but an MMDP joint action space is exponential in the number of agents. To avoid the computa-
tion required to solve a Dec-POMDP or MMDP formulation of the multi-satellite Earth-observing
satellite scheduling problem, this work first formulates the problem as a single agent Markov de-
cision process for training. During deployment in the environment, cross-link communication be-
tween spacecraft is utilized to communicate which ground targets have and have not been imaged,
thereby providing agents with the ability to maintain a collective belief state. By training agents in
a stationary, single-satellite spacecraft environment and deploying them in a non-stationary, multi-
spacecraft environment with cross-link communication, the required training time is dramatically
reduced. However, the agents are in competition with one another for the shared targets because
they are trained using local reward functions that do not independently sum together to make up
the global reward function. Therefore, the resulting global reward is inherently suboptimal, but the
degree to which it is suboptimal is dependent on how sparse the targets are and how many spacecraft
are in the constellation. As the number of targets increases and the number of spacecraft decreases,
the competition decreases.

This paper begins by formulating the single satellite EOS scheduling problem as a Markov deci-
sion process. The training process which utilizes Monte Carlo tree search and supervised learning
is shown. The nuances of applying the single-satellite MDP and training pipeline to a multi-satellite
environment is then discussed. Specifically, the Walker-delta constellation design,12 assumptions
of the cross-link communication between spacecraft, generation of the ground targets, and multi-
satellite simulation architecture used to model the problem are explained. Finally, the performance
of the trained agents for different Walker-delta constellation designs is explored. The performance
of the agents for different longitude of ascending nodes is also discussed.

SINGLE SATELLITE MARKOV DECISION PROCESS

In the Earth-observing satellite (EOS) scheduling problem, one or more spacecraft collect and
downlink data to one or more ground stations over the specified planning interval, which is defined
as the total amount of time considered for planning and scheduling. An example of the multi-
satellite EOS scheduling problem may be found in Figure 1. For training purposes in this work,
a single-satellite EOS scheduling problem is formulated where a satellite orbiting the Earth must
choose between imaging different ground-based targets, charging its batteries, desaturating its reac-
tion wheels, or downlinking data to any available ground stations. Over the duration of the planning
horizon, the satellite has a set of targets along its flight path available for imaging. This set of targets
is referred to as T. Each target has its own priority, one being the highest priority and three being
the lowest. The goal is to maximize the weighted sum of the targets in T imaged and downlinked
over the planning horizon while minimizing resource management failures.

The EOS scheduling problem is formulated as a Markov decision process, a sequential decision-
making process where an agent follows a mapping from states to actions, known as the policy
π : S ×A, to take an action ai in state si until the end of the planning horizon or early termination.
The agent transitions to a new state si+1 following a transition function T (si+1|si, ai), which is
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Figure 1: Multi-satellite Earth-observing scheduling problem.

the conditional probability of transitioning to state si+1 given si and ai. MDPs follow what is
known as the Markov assumption, which states that the next state is conditioned on the current
state and action alone. This is represented as T (si+1|si, ai) = T (si+1|si, ai, si−1, ai−1, ..., s0, a0).
A generative transition function is one in which the next state is sampled from a distribution or
computed via simulation, si+1 ∼ G(si, ai). A generative model is used in this work because of
the difficulty in representing a complex spacecraft simulation using discrete probabilities. At each
state, the agent receives a reward ri based on the reward function R : S × A → R. The goal is
to maximize the sum of reward over the planning horizon. The described process is depicted in
Figure 2.

In the EOS scheduling problem, hundreds of ground targets may be considered over a day of op-
erations. However, the relative geometry of the targets and limited spacecraft resources prevent the
collection of every target. As a result, the agent must make trade-offs between spacecraft resources
and ground targets to maximize the total reward. In order to adhere to the Markov assumption, each
target should be included in the state and action space. The problem with including each target in
the state and action space is the increase in the wall-clock time required to solve the problem. A
problem formulated using hundreds of targets can take days to solve for because of the problem
complexity and the use of a high-fidelity astrodynamics simulation. Only a subset of the targets in
T are available for imaging at each time step, though. In order to simplify the problem and approx-
imately adhere to the Markov assumption, a subset of T that contains the next upcoming, unimaged
targets are considered at each step. This subset is given in Equation 1, where J is the total number of
targets in the state and action space and D is a subset of T containing the imaged or passed targets.

U = {cj ∈ (T−D) | ∀ j ∈ [1, J ]} (1)
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Figure 2: Markov decision process.4

State Space

The state space for the single-satellite EOS scheduling problem may be found below. The state
space is designed to balance adherence to the Markov assumption and the total dimensionality of
the state space.

• ECEF spacecraft position, Er

• ECEF spacecraft velocity, Ev

• Image tuples for targets cj ∈ U

– Target position in the spacecraft Hill frame, Hrj

– Priority, pj
– Imaged indicator, wj
– Downlinked indicator, dj

• L2 norm of attitude error, ||σB/R||

• L2 norm of attitude rate, ||BωB/N ||
• Reaction wheel speeds, Ω

• Battery charge, z

• Eclipse indicator, k

• Stored data in buffer, b

• Data transmitted, h

• Ground station access indicator gi, i = 1 :M

The left superscript on a vector denotes the coordinate frame in which vector components are ex-
pressed.13 The body-fixed frame is referred to as B. The Earth-centered, Earth-fixed (ECEF) posi-
tion and velocity of the spacecraft provide state information for upcoming downlink windows. The
position of each target in the satellite’s Hill frame provides spacecraft-relative state information for
each target. A target priority, imaged indicator, and downlinked indicator are also provided for each
target in order to provide reward-specific state information.
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Several states are included for spacecraft resource management. TheL2 norm of the attitude error,
L2 norm of the attitude rate, and reaction wheel speeds provide state information for management
of the attitude control subsystem. The battery charge and eclipse indicator provide state information
for resource management of the power subsystem. Likewise, the data stored in the buffer, data
transmitted, and ground station access indicators provide state information for the on-board data
management subsystem.

For the purposes of function approximation, each state is normalized to a range of [−1, 1] or
[0, 1]. The normalization of each state variable is performed such that minimal state information is
lost.

Action Space

This work takes a mode-based planning approach where low-level behaviors are dictated by high-
level abstractions of actions. The mode-based planning approach is identical to the macro-actions
described in the aforementioned Dec-POMDP formulations of robotics problems. Similarly, by
discretizing the actions, the problem becomes tractable to solve in an MDP formulation. In this
problem, the low-level behavior of each mode is dictated by the attitude reference and which space-
craft subsystems are on or off. The mode-based planning approach discretizes continuous behavior
into discrete modes that are taken at each step through the environment. The spacecraft modes
modeled are given below, which comprise the action space A:

• Charge

• Desaturate

• Downlink

• Image target c1 ∈ U

...

• Image target cj ∈ U

In the charge mode, the spacecraft turns off all instruments and transmitters and points its solar
panels at the sun. In the desaturation mode, the spacecraft maintains a sun-pointing attitude refer-
ence and maps reaction wheel momentum to thruster firings. In the downlink mode, the spacecraft
points in the nadir direction and turns on the transmitter. If a ground station is accessible, which is
determined by a simple range and elevation model, the spacecraft downlinks data. In the imaging
mode, the spacecraft points at target cj . If the target is within elevation, range, and attitude error
requirements, the spacecraft takes the image and the data is added to the on-board data buffer.

Transition Function

A generative transition function is implemented using the Basilisk astrodynamics software ar-
chitecture which is an open-source software architecture for high-fidelity spacecraft simulations.14

The Basilisk simulation is wrapped within a Gym environment. Gym provides a standard interface
agents can interact with during training and deployment. The decision-making agent passes an ac-
tion to the Gym environment, which turns the relevant models on or off and runs the simulation for
a specified amount of time at each step. This process is depicted in Figure 3.
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Figure 3: Gym environment interface.4

Reward Function

The reward function R(si, ai, si+1) is given in Equation 2.

ri =



−10 if failure∑|T|
j H(dj) if ¬failure ∧ ai is downlink

0.1H(wj) if ¬failure ∧ ai is image cj

0 otherwise

(2)

If the agent fails to manage its resource during the step, a failure penalty of -10 is returned and
the episode terminates. The failure condition is true if the agent drains the spacecraft’s batteries,
exceeds the maximum reaction wheel speeds, or overflows the data buffer. Failure is computed as
follows:

failure = (z = 0 ∨ any(Ω̂ ≥ 1) ∨ b ≥ 1) (3)

If a failure does not occur and the downlink mode was initiated, each ground target in T is checked
to determine if it was downlinked for the first time. A function H(xj) is created to check if a state
variable xj is false at step i and true at step i + 1, returning one divided by the ground target’s
priority if true. This function is applied to the downlinked flag, and is given as follows:

H(xj) = (1/pj) if ¬xji ∧ xji+1 (4)

If a failure does not occur and an image of a ground target was attempted, the same function is
applied to the imaged flag. This reward is multiplied by a scaling factor of 0.1 to provide a small
positive reward in the short term for imaging targets. This reward engineering aids convergence
during training by making the reward less sparse.

TRAINING PROCESS

Solving Markov Decision Processes

The goal of a Markov decision process is to maximize the sum of future reward with each action
taken. To solve a Markov decision process, a policy must be computed that maximizes the sum of
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Figure 4: Monte Carlo tree search.4

future reward. This is known as the optimal policy, π∗(si). The optimal policy can be computed as
a function of the optimal value function, V ∗(si), which is the expected value of all future reward
when following the optimal policy until the episode terminates.

π∗(si) = arg max
π

V π(si) (5)

V ∗(si) = max
a

(
R(si, ai) + γ

∑
si+1∈S

T (si+1|si, ai)V ∗(si+1)
)

(6)

Instead of solving for π∗(si) or V ∗(si), a third function may be solved for that can be used to find
the optimal policy. The state-action value functionQ(si, ai) is the expected sum of all future reward
when taking action ai in state si when following some policy. The optimal value function can be
represented by the optimal state-action value function with the following equation

V ∗(si) = max
a
Q∗(si, ai) (7)

If the optimal state-action value function is known, the optimal policy may be derived with the
equation below.

π∗(si) = arg max
a

Q∗(si, ai) (8)

This work solves for Q∗(si, ai) for a single spacecraft using Monte Carlo tree search, an online
search algorithm, and state-action value function regression using artificial neural networks (ANNs).

Monte Carlo Tree Search

Monte Carlo tree search is an online search algorithm, meaning that it searches reachable states
to maximize the expected reward. MCTS uses a combination of simulation and rollout to explore
the state space, building an estimate of the state action value function, Q̂(si, ai), as it interacts with
the environment. The process is depicted in Figure 4.

During the selection step, MCTS selects the action that maximizes Q̂(si, ai) + U(si, ai), where
U(si, ai) is an exploration bonus based on the number of times a particular state-action pair has
been visited. The selection step repeats until a state that has not been visited before is reached.
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Figure 5: Updating the state-action value function.4

The expansion step is then taken, where Q̂(si, ai) and N(si, ai) are initialized for each state-action
pair. Then, a rollout is performed where actions are taken until the episode terminates. The rollout
policy is a heuristic policy used by MCTS to find states with high reward that are more promising
to search. The rollout policy is discussed in detail in past work.4 In this problem, if the resource
states are nominal, the spacecraft attempts to image the nearest target. Otherwise, the spacecraft
takes an action to maintain the spacecraft resources such as power or the level in the data buffer.
After rollout, the reward is backed up through each state-action pair to update Q̂(si, ai) using an
incremental averaging operator. The total return is denoted with q.

Q̂(s, a) = Q̂(s, a) +
q − Q̂(s, a)

N(s, a)
(9)

State-Action Value Function Approximation

Monte Carlo tree search is used to solve hundreds of planning problems, generating an estimate
of Q(si, ai) for various initial conditions that is regressed over using an artificial neural network to
approximate the state-action value function. This approximation is referred to as Qθ(si, ai). How-
ever, before the MCTS estimates of Q(si, ai) can be used for regression, the realized reward from
stepping through the simulation must be backed up through the main tree such that the correspond-
ing state-action values reflect the real reward found in the environment, not the averaged reward.
This process is demonstrated in Figure 5.

After updating the state-action value estimates, the ANN training begins as depicted in Figure 6.
First, several hundred episodes are solved for using the process described above. Then, the data is
assembled and split into a training set and a validation set. 90% of the data is used for training. The
remaining data is used for validation. This helps monitor for overfitting during training. Various
hyperparameters (i.e. the activation function, depth, width) are used to generate a number of neural
networks. These neural networks are then deployed in the environment and evaluated based on per-
formance metrics such as reward, the number of targets imaged, the number of targets downlinked,
and resource management failures.
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Table 1: Initial condition distributions during training.

Orbit Parameters Value
Semi-Major Axis, a 6871 km
Eccentricity, e U[0, 0.01]
Inclination, i U[40, 60] deg
Long. of Ascend. Node, Ω U[0, 20] deg
Arg. of Periapsis, ω U[0, 20] deg
True Anomaly, f U[0, 360] deg
Spacecraft Parameters
Disturbance Torque, τ ext 2× 10−4 Nm
Attitude Initialization, σB/R U[0, 1.0] rad
Rate Initialization, BωB/N U[-1e-05, 1e-05] rad/s
Reaction Wheel Speeds U[-4000, 4000] RPM
Initial Battery Charge U[30, 50] Whr

Trained Agents

The training pipeline described in previous sections is applied to train agents which are deployed
in the multi-satellite environment. For each number of targets included in the action space (|U| =
{1, 2, 3, 4}), MCTS is used to generate thousands of estimates of Q(si, ai), and a number of agents
are trained using different artificial neural network parameters to compute an approximation of
the state-action value function, Qθ(si, ai). The hyperparameter search conducted for the artificial
neural networks is covered in past work.15 However, the distributions of the initial conditions for
training are included in Table 1. These distributions are selected to encompass a small range of low-
Earth orbits with the same semi-major axis. Because the initial conditions do not cover all possible
combinations of Walker-delta constellations, some overfitting of the trained agents on these initial
conditions is anticipated once deployed in a multi-satellite scenario. This provides the opportunity
to assess the degree to which agents are overfit or poorly extrapolate if not trained over all possible
initial conditions.

The average reward for highest performing agents for each |U|, along with the 95% confidence
intervals for each agent, is provided in Figure 7. The average reward for each size of |U| provides
an upper bound on the expected performance in the multi-satellite scenario. Note that by including
additional targets in the action space that the agent can choose from, the average reward increases.
As shown in prior work, this is largely due to the spacecraft selecting high-priority targets over
low-priority targets, which is the desired behavior.
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Figure 7: Average reward for each agent after training.15

MULTI-SATELLITE DEPLOYMENT

The trained agents are deployed in a multi-satellite spacecraft scenario. The design, communi-
cation assumptions, methods for target generation, and simulation architecture are described in this
section.

Walker-Delta Constellation Design

The constellations described in this work follow the Walker-Delta notation. The k satellites are
distributed evenly between n orbit planes, which are distributed at 360/n deg intervals of the lon-
gitude of ascending node. A relative phase, g, between satellites in adjacent spacecraft planes is
also specified. Each satellite in the constellation has the same semi-major axis and inclination, and
each orbit is circular. By using the Walker-Delta constellation notation, different constellation ar-
chitectures may be quickly prescribed and insights about performance as it relates to the training
parameters can be easily obtained.

Cross-link Communication

Decentralized POMDPs operate under the assumption that there is limited to no communication
between agents. In order to train and deploy agents using an MDP problem formulation, instan-
taneous cross-link communication between every spacecraft is added as an assumption such that
communication is free. In large constellations where every spacecraft has a path to each other
spacecraft via line-of-sight communication, this assumption holds well. The smaller the constel-
lation, the less the assumption holds without adding uplink and downlink, but it is still useful for
comparison purposes.

Each spacecraft k has a set of Tk targets available for imaging during the planning horizon. Each
set Tk is a subset of a global set of targets shared between all spacecraft, M. At the end of every
step, the spacecraft come to a consensus on which targets in M have been imaged and which have
not. If a target in M has been imaged, the corresponding target for all Tk is removed and added to
Dk for each spacecraft, the subset of Tk containing the imaged or passed targets.
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(a) Training target distribution. (b) Deployment target distribution.

Figure 8: Target generation for a single spacecraft.

Ground Targets

Ground targets are generated differently for training and deployment. In training, the spacecraft
has access to all global targets. In deployment, the spacecraft has access to a subset of the global
targets. During training, before MCTS solves the planning problem, the spacecraft translational
state is propagated forward and rotated into an Earth-centered, Earth-fixed (ECEF) frame. Once
rotated, points are randomly selected from the orbit. Zero mean Gaussian noise is added to the point,
which is then projected onto the surface of the Earth. This point is added as a ground target and time-
stamped for when it is accessible to the spacecraft, and the process is repeated for the desired number
of ground targets. For deployment, a set of ground targets is generated by projecting a number of
random unit vectors onto the surface of the Earth. The spacecraft orbits are propagated, and once
these points are accessible to the spacecraft based on a range requirement, they are timestamped and
added to a target list. An example of the training targets and deployment targets may be found in
Figure 8. The spacecraft orbits are shown projected onto the surface of the Earth. Qualitatively, the
two methods generate nearly identical looking sets of targets. However, the deployment method of
generation has more targets in the off-nadir direction because of the standard deviation selected to
add noise to the training set.

Multi-Satellite Simulation Architecture

The multi-satellite EOS scheduling problem is simulated using the Basilisk∗ Astrodynamics and
Flight Software Framework.14 Basilisk is chosen due to the speed at which is can run a high-
fidelity spacecraft simulation. The speed of Basilisk allows for rapid training and validation, and its
ability to simulate real flight software lends itself to flying this work on-board real spacecraft. Its
modularity also facilitates the rapid creation of a simulation with spacecraft that have the precise
characteristics needed.

∗http://hanspeterschaub.info/basilisk
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Figure 9: Simulation architecture.

Single spacecraft Basilisk simulations are described in detail in past work.4 In this work, the
most significant change to the simulation is its integration into a multi-satellite architecture, which
is described in Figure 9. The simulation modules are split into three different classes: environment,
dynamics, and flight software (FSW). While each spacecraft has its own dynamics and FSW classes,
the environment class is shared between all spacecraft. This architecture is built to be easily scalable
to any number of satellites, as one only needs to add dynamics and FSW classes for each spacecraft
in the simulation and set the initial conditions for each. This amounts to changing values of the
Walker-delta parameters in a single line of code.

The environment class contains the modules that are not spacecraft specific, but instead describe
the simulation environment. The gravity field is modeled to include J2 perturbations from the Earth
and third-body perturbations from the sun. The effect of drag is modeled through the use of an
atmospheric density model. The environment class also contains several ground locations which
return an access state to each spacecraft. The ground stations for downlinking data are modeled
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using the ground locations, as are the ground targets for imaging. During each integration step,
the environment class is the first to be updated, and the outputs of its modules are shared with all
spacecraft via the dynamics and FSW classes.

The dynamics class contains the modules that represent each spacecraft and its components. For
simplicity, all spacecraft models are identical, but the initial conditions for each are set to different
values. A comprehensive power module is simulated, leveraging Basilisk’s high fidelity dynamics
capabilities to accurately compute power consumption and generation. Solar panels take into ac-
count incidence angle, eclipse regions, and distance from the Sun to calculate power generation,
which is stored in a battery. This battery is connected to power-consuming devices, such as the
imager, transmitter, and reaction wheels. The latter are part of the attitude control system, and are
modeled after the Honeywell HR16 reaction wheels. Thrusters are also implemented to allow for
momentum-dumping maneuvers in the desaturation mode and are modeled after the Moog Monarc-
1 thrusters. Attitude perturbations are added to the simulation using random disturbance torques and
drag-induced torques. An on-board data management system is also modeled, which takes the data
generated by the instrument during imaging modes and stores it in a data buffer. The transmitter
then downlinks this data to the ground stations specified in the environment class when access is
available.

The FSW class contains the modules responsible for control of the various spacecraft subsystems.
It sets the attitude modes, which consist of Sun pointing for battery charging, nadir pointing for
downlinking data, target pointing for imaging, and momentum dumping to remove some of the
momentum in the reaction wheels. This class also contains the logic for the attitude control system.
A reference attitude and attitude rates are computed depending on the current attitude mode, and the
attitude error is calculated by comparing the reference and the current attitude states. This error is
fed into an MRP-based controller,13 which outputs the necessary control torques to converge to the
reference attitude. This control torque is then mapped into the reaction wheel configuration, which
yields a requested motor torque for each. The thruster commands are also defined in this class, where
a module maps the reaction wheel momentum to thruster on-time commands to remove momentum
from the reaction wheels if the momentum dumping mode is active. Finally, the instrument control
is implemented, which sends an image command to the imager once the ground target is accessible
for imaging.

RESULTS

Three separate experiments are conducted to explore the performance of the trained agents when
deployed in a multi-satellite environment. For each experiment, results are generated for each size
of U, the total number of targets in the action space. The global reward of each experiment refers
to the sum of local rewards of each spacecraft, which is computed using the reward function for the
single satellite MDP. However, reward is not duplicated for imaging or downlinking the same target.
If two spacecraft image a target at the same time, the reward for doing so is only added to the global
reward once. As a result, the performance of the trained agents is inherently suboptimal as the only
coordination between agents is sharing which targets are still available for imaging or downlinking.
Please note that all results are preliminary as this work is ongoing.

In the first experiment, an increasing number of spacecraft (from 5 to 30) are placed in 5 orbit
planes to validate that the reward grows with an increase in global of targets for all constellations and
sizes of U. The change in reward as more spacecraft are added is also investigated. As more space-
craft are added, the global reward should increase, but the reward-per-spacecraft should decrease
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(a) 1 target in action space.
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(b) 2 targets in action space.
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(c) 3 targets in action space.
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(d) 4 targets in action space.

Figure 10: Global reward vs. the number of global targets for 6 orbit planes.

due to an increase in competition. In Figure 10, the mean global reward is plotted for 6 separate
constellation designs and 4 different sizes of U. As expected, for all sizes of U, the mean global
reward increases with both the number of spacecraft and number of global targets. Reward begins to
plateau with the increase in the number of global targets. The frequency of downlink windows and
size of the data buffer constrains the maximum possible global reward at this point, and the addition
of more targets results in less of an increase in reward. Interestingly enough, |U| = {2, 3, 4} are
similar in mean global reward. However, |U| = 1 generates a mean global reward about half of
the other sizes of U. The reason for this is unclear, but two possibilities are presented: an error
in the way in which targets are distributed or poor extrapolation to orbits outside of the training
distribution exacerbated by fewer target tuples in the state space. Future work will investigate this
further.

In Figure 11, the local reward (reward per spacecraft) for experiment 1 is plotted. Plotting the
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(b) 2 targets in action space.
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(c) 3 targets in action space.
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(d) 4 targets in action space.

Figure 11: Reward per spacecraft vs. the number of global targets for 6 orbit planes.

mean local reward can give insights into how efficiently each spacecraft is being utilized when more
spacecraft are introduced. Note that when compared to Figure 7, the mean local reward for each
spacecraft is much lower than during training. The reason for this is covered in experiment 3. For all
sizes of U, the mean local reward decreases as more spacecraft are added to the simulation, which
is expected. As more spacecraft are added to the simulation, the competition for ground targets
increases, which leads to a decrease in the availability of targets to image for a given spacecraft
and an increased probability that two spacecraft will attempt to image the same target. It should be
noted that the probability of the latter occurrence is low, but possible.

In the second experiment, the number of spacecraft is fixed at 30, and the spacecraft are evenly
distributed among the following number of planes: {2, 3, 5, 6, 10, 15}. In this experiment, it is
expected that mean local reward will display a dependency on the number of planes. In Figure
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0 500 1000 1500 2000 2500 3000
Number of Global Targets

0

2

4

6

8

10

12

M
ea

n 
Lo

ca
l R

ew
ar

d

(b) 2 targets in action space.
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(c) 3 targets in action space.
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(d) 4 targets in action space.

Figure 12: Reward per spacecraft vs. the number of global targets for 30 spacecraft.

12, the mean local reward is plotted for the 6 separate constellations. The same reward plateau
as the number of global targets increases shown in experiment 1 remains. However, there is no
consistent pattern between all sizes of U as the number of planes increase. Furthermore, there is
no pattern between complementary retrograde and prograde orbits (planes = {2, 6, 10}). This lack
of clear pattern was not anticipated because of relationships between the number of orbital planes
and constellation metrics such as maximum revisit time and mean coverage time.16 It appears that
the total number of spacecraft has a larger impact on the mean local reward than the total number
of orbital planes, but future work should explore this in greater depth.

Finally, in experiment 3, the local reward for each spacecraft plane is explored for 21 spacecraft,
each in its own orbital plane. During training, each episode begins with a spacecraft in an orbit sam-
pled from uniform distributions of Keplerian orbital parameters as shown in Table 1. In particular,
the longitude of the ascending node is sampled from a uniform distribution of 0 to 20 degrees. In
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Figure 13: Reward per spacecraft vs. longitude of the ascending node.

Figure 13, the local reward is plotted vs. the longitude of the ascending node. The distribution sam-
pled from during training is highlighted in green. Furthermore, a line for each size of U is included.
The maximum local reward for all |U| occurs within the training distribution and matches the max-
imum reward during training shown in Figure 7. As the longitude of the ascending node increases,
the local reward decreases until reaching a minimum value in the range of 100 - 250 deg. The reward
then begins to increase as the longitude of the ascending node approaches 0 degrees once more. The
decrease in reward for initial conditions outside of the training distribution explains the low average
local reward in Figures 11 and 12. This plot demonstrates two things: a dependency on the training
distribution and a gradual degradation in performance the farther away from the training distribution
the spacecraft’s orbit is. Two possible solutions are presented to remedy this issue, which will be
addressed by future work. First, the training distributions should cover all possible Keplerian orbital
parameters experienced by the spacecraft. Second, alternative state spaces, particularly regarding
the spacecraft’s position and velocity, should be explored. Two candidates should be considered:
normalized Keplerian parameters and 4D-spherical coordinates.

CONCLUSION

This work shows that an agent trained in a stationary, single-spacecraft environment for the Earth-
observing satellite (EOS) scheduling problem can be deployed as a part of a large constellation of
spacecraft with the addition of cross-link communication between spacecraft. Several experiments
are performed to explore the performance of the agents when deployed in such a constellation. It is
shown that for all constellation designs, global and local reward plateaus as the number of targets
available to the agents increases because of data buffer and ground station constraints. Further-
more, as more spacecraft are added to the constellation, the competition to image ground targets
increases, so local reward (reward per spacecraft) is lower when compared to a constellation with
fewer spacecraft. Finally, the performance of each agent is explored for different longitudes of the
ascending node to determine how well the agents extrapolate to orbits outside of the training distri-
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bution. As the longitudes of ascending node get farther away from those of the training distribution,
performance decreases until the nominal training distribution is approached once again.

Future work should explore alternative state spaces and increase the upper bound of the training
distribution for the longitude of the ascending node to attempt to eliminate this issue. Additionally,
future work will tie the performance of the agents to typical evaluation metrics for Walker-delta con-
stellation designs such as maximum revisit time and mean daily visibility time. Future work should
also compare these results to other problem formulations such as multi-agent Markov decision pro-
cesses (MMDPs) or decentralized partially-observable Markov decision processes (Dec-POMDPs).
The addition of a global reward function during training would result in more coordination between
spacecraft. In the MMDP formulation, communication between agents is free and always available.
In the Dec-POMDP formulation, a belief state would need to be maintained over the probability
that a given target has been imaged or downlinked.
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