
(Preprint) AAS 21-228

AUTONOMOUS SPACECRAFT TASKING USING MONTE CARLO
TREE SEARCH METHODS

Adam Herrmann∗ and Hanspeter Schaub†

This work explores the use of Monte Carlo tree search (MCTS) and state-action value net-
work regression to solve the single-spacecraft, multi-ground station Earth-observing satellite
scheduling problem. Both algorithms are explored for their potential use as ground-based and
on-board planning tools. An in-depth hyperparameter search is conducted for Monte Carlo
tree search on the basis of performance, safety, and downlink opportunity utilization. A hy-
perparameter search is also conducted on the neural network architectures, and the general
behavior of each network is explored to determine and validate learned behavior. Further-
more, each algorithm is compared to a genetic algorithm to determine the optimality gap and
compare and contrast the use of reinforcement learning algorithms to classical optimization
techniques. MCTS is shown to compute near-optimal solutions in comparison to the genetic
algorithm. Furthermore, the state-action value networks are shown to match or exceed the
performance of MCTS in five orders of magnitude less execution time, showing promise for
execution on-board spacecraft.

INTRODUCTION

Autonomous spacecraft planning is becoming an enabling capability for future spacecraft missions. As
the number of Earth-orbiting constellations increases, current operations infrastructure will be stretched to
meet the operational needs of these missions. Furthermore, some environments and mission architectures
will require autonomous exploration as the round-trip light-time communication delay will constrain maneu-
vers and prevent opportunistic science collection. Several challenges must be addressed to enable on-board
planning. On-board planning algorithms must be safe and verifiable in order to guarantee the longevity of
spacecraft. Additionally, the computational overhead of on-board planning algorithms must be addressed.
While advances in radiation hardened processors can be expected to increase on-board computational re-
sources, current missions rely on limited processing solutions such as the RAD750. Lastly, on-board solu-
tions for operations should utilize the full capability of the spacecraft. Without sacrificing safety or exceeding
computational limitations, planning solutions should be near-optimal or optimal. This research focuses on
addressing these challenges - safety, computational overhead, and optimality - in the context of a single Earth-
orbiting spacecraft downlinking data to multiple ground stations. This is a problem commonly referred to as
the single-spacecraft, multi-ground station Earth-observing satellite (EOS) scheduling problem.

State-of-the-art solutions to the EOS scheduling problem for real spacecraft missions are typically ground-
based. Spacecraft plans are generated on the ground, sequenced, and uplinked to the spacecraft for execution.
A notable example, which automates this process, is the Automated Planning/Scheduling Environment (AS-
PEN) software architecture.1 ASPEN is an autonomous, ground-based planning and scheduling architecture
that can be applied to a variety of spacecraft missions. Significant work has also been performed to de-
velop on-board solutions that give spacecraft the ability to iteratively repair a ground-based plan if a resource
constraint violation or unexpected science opportunity occurs. CASPER addresses this need by continually
checking an existing plan for resource constraint violations and modifying the plan on-board the spacecraft
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if necessary.2 CASPER has been applied to several missions such as EO-13 and IPEX,4 in combination with
science detection algorithms to mark future science targets, to demonstrate autonomous science operations.
While state-of-the-art solutions to spacecraft planning have decreased the burden on operators, algorithms
with more control over operational decisions are required for full autonomy.

In literature, many solutions to the EOS scheduling problem follow an optimization-based approach.
Optimization-based approaches find high-quality, optimal solutions, but are brittle to uncertainty and do not
generalize or scale well for complex scenarios with many targets, ground stations, and spacecraft. Spangelo et
al. formulate the Earth-observing satellite scheduling problem as an optimization problem where operational
decisions such as collecting imagery, downlinking data, and charging batteries are considered to maximize
downlinked data and keep the spacecraft within its resource constraints.5 Cho et al. apply a two-step binary
linear programming algorithm to solve the EOS scheduling problem for a constellation of agile spacecraft
imaging a set of user-defined targets by scheduling imaging and downlink tasks.6 Optimization-based solu-
tions are executed open-loop on board spacecraft based on modeling done on the ground. Replanning must
occur in the event of resource constraint violations due to mismodeling. Future planning solutions should
take into account observations from the spacecraft in a closed-loop implementation to minimize the impacts
of mismodeling without having to re-run computationally intensive optimization algorithms.

Recent work has proposed Reinforcement Learning (RL) as a viable alternative to state-of-the-art space-
craft operations and guidance algorithms due to its speed and ability to generalize across training data. In the
small-body domain, RL is well-suited to solve many challenging problems that require fault detection or rig-
orous handling of unknown or uncertain dynamics. Gaudet et al. develop an adaptive guidance system using
recurrent neural networks to respond real-time to faults or unknown dynamics in landing scenarios.7 Hock-
man and Pavone apply policy iteration for hopping rover motion planning on the surface of an asteroid, rigor-
ously handling the uncertainty of the dynamics on the surface of small bodies.8 Chan and Agha-mohammadi
solve the small body mapping problem by formulating it as a partially-observable Markov Decision Process
and applying the REINFORCE algorithm to maximize map quality by learning when to execute thrust and
imaging commands.9 In the EOS domain, Harris et al. train Deep Q-Learning or shielded Proximal Policy
Optimization agents on the ground and execute them real-time on board simulated spacecraft.10–12 These
techniques allow operators to forgo the arduous ground-based planning process by developing generalized
plans through RL policies or value functions that may be rapidly executed on board spacecraft. However,
Deep Q-Learning requires many modifications to achieve good performance as it suffers from maximization
bias, single-step learning, etc.13 While policy gradient methods offer several benefits such as stochastic poli-
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cies and good performance in continuous state and action spaces, only convergence to local maxima can be
guaranteed, which can result in training and initialization sensitivities. Furthermore, stochastic policies can
take unsafe actions and necessitate the use of a shield to safely bound the behavior of the agent.

To address these problems, this work focuses on a class of techniques that use Monte Carlo tree search
(MCTS) to compute optimal policies that can be regressed over using neural networks to produce generalized,
deterministic, and optimal behavior for on-board spacecraft planning. Kocsis et al. propose a variant of
MCTS, the Upper Confidence Bound for Trees (UCT), that will converge to the globally optimal action as the
number of simulations-per-step approaches infinity.14 Shah et al. propose a variant of UCT with a polynomial
bonus, and pose that this algorithm holds the property that Kocsis et al. claim.15 Theoretical guarantees aside,
Silver et al. demonstrate that MCTS methods, specifically AlphaZero, can achieve super-human performance
in the game of Go.16 MuZero, a model-based variant of AlphaZero, also demonstrates the power of MCTS
methods on a myriad of canonical reinforcement learning problems.17 Fedeler et al. extend these methods
to the space situational awareness domain, demonstrating telescope tasking for tracking space objects using
a novel MCTS method.18 While these methods have demonstrated promise on real-world problems, none
have considered the use of MCTS for spacecraft operations with resource constraints as this paper does.
Building upon previous work,19 this work explores neural network value regression over optimal or near-
optimal policies generated by UCT, which can be rapidly executed on board spacecraft. The generalizability
of the neural network architectures is explored to determine how well the neural networks compute planning
solutions within the distributions of the training data. The execution times of each algorithm presented in this
work are also compared to determine which may be useful for on-board execution and which are better suited
as ground-based planning tools.

In this paper, the implementation of EOS scheduling problem is first described in detail. Then, the problem
is formulated as a Markov Decision Process. The MCTS algorithm and associated rollout policies are also
described, as are the techniques used to regress over the state-action value pairs generated by MCTS. The
results from a hyperparameter search for both Monte Carlo tree search and the state-action value networks
are shown and discussed. Each algorithm is evaluated on the basis of average reward, downlink utilization,
and resource management success. The learned behavior of the state-action value networks is also explored.
Finally, a comparison to genetic algorithms is made to determine the optimality gap and compare and contrast
to optimization-based planning techniques.

PROBLEM STATEMENT

Earth-Observing Spacecraft Simulation

In this formulation of the Earth-observing satellite scheduling problem, a satellite in a 500-km orbit makes
operational decisions to collect and downlink science data to any of seven different ground stations around the
Earth. As shown in Figure 1, operational decisions include sun-pointing charging, nadir-pointing imaging,
nadir-pointing communications, and reaction wheel desaturation. The Earth-observing satellite scheduling
problem is simulated using the Basilisk∗ Astrodynamics Software Framework.20 A complete diagram of the
associated Basilisk modules may be found in Figure 2. Each module in the diagram represents a separate,
modularized block of code that receives inputs from other modules, performs computations, and sends outputs
to modules subscribed to its messages. The modularity and speed of Basilisk allows for a high-fidelity simu-
lation with cross-couplings between disparate spacecraft subsystems to be constructed and quickly executed.
Furthermore, the framework provides the opportunity to simulate flight software used on board spacecraft,
which lends itself to future autonomy work that may one day fly on board a real spacecraft.

The Basilisk simulation includes a full attitude control system to simulate a representative spacecraft mis-
sion where many systems are coupled to the attitude dynamics. Hill-pointing and inertial reference frames
are switched between based on the specific mode and passed to an attitude error computation module, which
then passes the attitude error to an MRP feedback control law. The MRP feedback control law sends torque
commands to reaction wheels, which change the dynamics of the spacecraft. The reaction wheels are mod-
eled after the Honeywell HR16 reaction wheels. A momentum dumping module is also implemented, which
∗http://hanspeterschaub.info/basilisk
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Table 1: Ground Station Parameters

Location Latitude Longitude Elevation (m) Min. Elevation Angle
Boulder, CO (USA) 40.0150 N 105.2705 W 1624 m 10 deg
Ka Lae, HI (USA) 19.8968 N 155.5828 W 9.0 m 10 deg
Merritt Island, FL (USA) 28.3181 N 80.6660 W 0.9144 m 10 deg
Singapore, Malaysia 1.3521 N 103.8198 E 15.0 m 10 deg
Weilheim, Germany 47.8407 N 11.1421 E 563 m 10 deg
Santiago, Chile 33.4489 S 70.6693 W 570 m 10 deg
Dongara, Australia 29.2452 S 114.9326 E 34.0 m 10 deg

maps reaction wheel momentum to thrust commands to dump momentum from the system. The thrusters
are modeled after the Moog Monarc-1 thrusters. Faceted drag, random external torque, third-body gravity
effects, and J2 perturbations are implemented to build up momentum in the reaction wheels over time or
change the orbital parameters, albeit almost negligibly.

A power system is simulated in Basilisk, leveraging Basilisk’s high-fidelity dynamics capabilities to ac-
curately compute power consumption and generation. Simulated solar panels generate power based on inci-
dence angle, panel area, and efficiency. Eclipse effects are also considered. Generated power is stored in a
modeled battery, and the imager, transmitter, and reaction wheels all consume power from the battery. Sim-
ilarly, an on-board data management system is modeled. An instrument generates data during the imaging
mode, which is stored in a data buffer. In the communications mode, a transmitter downlinks data from the
buffer to ground stations located on the Earth. The spacecraft antenna is omni-directional, and it is assumed
that nadir pointing will suffice to communicate with a ground station that is within line of sight. The location
and parameters of each ground station are provided in Table 1. The ground stations are selected from a list of
stations utilized by NASA’s Near Earth Network.21 A Boulder, Colorado ground station is also implemented.
The ground stations are selected from the list such that they are located within the minimum and maximum
boundaries of the randomly generated orbits, which are discussed in more detail in the Gym Environment
section.

The spacecraft simulation parameters may be found in Table 2. The subsystem specifications were sized
to provide a representative, but challenging mission scenario. Specifically, the small storage capacity in
comparison to the instrument baud rate creates a mission scenario in which the spacecraft must continually
alternate between collecting and downlinking data at a relatively high frequency.

In Table 3, the details of the four flight modes of the spacecraft are provided. The agent makes operational
decisions by selecting the next flight mode to enter. The Basilisk tasks and models are provided in the left-
hand column. Enabling or disabling tasks and setting different models on or off dictates the behavior of each
flight mode. During the observation mode, the spacecraft points in the nadir direction and the instrument data
and power models are turned on. During the downlink mode, the spacecraft points in the nadir direction and
the transmitter data and power models are turned on. The transmitter will only downlink data if a ground
station is accessible. Otherwise, it remains on and consumes power until a ground station becomes available.
In the charging mode, the spacecraft points the solar panels in the direction of the sun. All power and data
models are turned off. Lastly, in the desaturation mode, the spacecraft points its solar panels towards the sun
while the thrusters are used to dump momentum from the reaction wheels. Like the charging mode, all power
and data models are turned off.

Gym Environment

The Basilisk simulation described in the previous section is wrapped in a Gym environment, building upon
previous open-source work∗ from the AVS Laboratory. Gym environments provide a standardized interface
for test environments that decision-making algorithms can act on and learn from†. A simple depiction of this

∗http://github.com/atharris/basilisk env
†https://gym.openai.com/
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Table 2: Spacecraft Parameters

General Spacecraft Parameters
Mass 330 kg
Dimensions 1.38 x 1.04 x 1.58 m
Power System
Solar Panel Area 1.0 m2

Solar Panel Efficiency 0.20
Instrument Power Draw 30 W
Transmitter Power Draw 15 W
Battery Capacity 80 Whr
Attitude Control System
Max Wheel Speeds 6000 RPM
Max Momentum 50 Nms
Max Wheel Torque 0.2 Nm
Max Thrust 0.9 N
Thruster Min On Time 0.02 s
Data & Communications System
Data Buffer Storage Capacity 1 GB
Instrument Baud Rate 4 Mbps
Transmitter Baud Rate 4 Mbps

Table 3: Flight Modes

Modes
Basilisk Tasks & Models Observation Downlink Charge Desaturation
Nadir Point Task Enabled Enabled Disabled Disabled
Sun-Point Task Disabled Disabled Enabled Enabled
MRP Control Task Enabled Enabled Enabled Enabled
RW Desat Task Disabled Disabled Disabled Enabled
Instrument Power Model On Off Off Off
Instrument Data Model On Off Off Off
Transmitter Power Model Off On Off Off
Transmitter Data Model Off On Off Off

interface is provided in Figure 3. The Gym environment provides standardized methods that an agent can
use to interact with the environment. At each step through the environment, the agent takes an action and
receives a reward and a new observation. The agent uses the new observation to take the next action, and the
process continues until the finite time-horizon is reached or the episode terminates due to success or failure.
When the agent passes an action to the environment, the environment passes the action through to the BSK
simulator, which turns the relevant models on or off and executes the dynamics for a specified amount of
time.

Table 4 provides the simulation parameters used in the Gym environment. The semi-major axis of the
orbit is set to a constant 6871 km. However, the other orbital parameters are sampled from distributions.
The eccentricity is sampled from a distribution with a relatively large range for low-Earth orbit, U [0, 0.01].
Therefore, the agent experiences a range of orbit altitudes for training purposes. The inclination, longitude of
the ascending node, and argument of the periapsis are selected from uniform distributions with a range of 20
deg. By sampling the initial conditions from many uniform distributions, agents are presented with a diverse
set of training data. If the agents can learn to operate in any of the orbits generated from these distributions,
a case for generalizability within the range of low-Earth orbits can be made. Generalizability makes agents
more robust to mismodeling or an erroneous orbit insertion. Note, the orbital parameter ranges do not include
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Table 4: Simulation Parameters

Orbit
Semi-Major Axis, a 6871 km
Eccentricity, e U[0, 0.01]
Inclination, i U[40, 60] deg
Long. of Ascend. Node, Ω U[0, 20] deg
Arg. of Periapsis, ω U[0, 20] deg
True Anomaly, f U[0, 360] deg
Spacecraft
Disturbance Torque, τext 2× 10−4 Nm
Attitude Initialization, σB/R U[0, 1.0] rad
Rate Initialization, BωB/N U[-1e-05, 1e-05] rad/s
Reaction Wheel Speeds U[-4000, 4000] RPM
Initial Battery Charge U[30, 50] Whr
Planning Horizon
Maximum Simulation Time, tmax 270 minutes
Mode Length, tmode 6 minutes

any imaginable low-Earth orbit to keep the amount of training data needed to generalize behavior reasonable.
Furthermore, a larger inclination range would necessitate ground stations closer to the poles in the event
of high inclination orbits. This would increase simulation complexity while making a marginal increase
in the case for generalizability. Furthermore, more specific orbit conditions allow for the demonstration of
generalization extrapolated to orbits outside of the conditions provided in Table 4. This gives the opportunity
to demonstrate robustness outside of training data distributions.

Markov Decision Process

The Basilisk simulation described in the previous section is formulated as a finite-horizon, deterministic
Markov Decision Process (MDP). An MDP is a sequential decision-making problem in which an agent selects
an action, ai, in state, si, following some policy, ai = π(si), which maps states to actions. At the next state,
si+1, the agent receives a reward, ri, based on a reward function, R(si, ai, si+1). An MDP follows the
Markov assumption, which states that the next state is dependent only on the current state and action taken.
Mathematically, this is represented with the equality below, where T (si+1|si, ai) represents the probability
of transitioning to state si+1 given state si and action ai.

T (si+1|si, ai) = T (si+1|si, ai, si−1, ai−1, ..., s0, a0) (1)
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A Markov Decision Process is represented by the 5-tuple (S,A, T,R, γ). S is the state-space for the
problem and is shown in Equation (2). Planet-centered, planet-fixed inertial position and velocity unit vectors,
expressed in inertial frame N components as N r̂ and N v̂, are included in the state space of this MDP. The
reason for this is two-fold. Specifically, the function approximators can correlate the orbital parameters of
the satellite to high-value states when ground station access is approaching. Ground station access, qj , is
defined for each ground station location j as the percentage of the planning interval i that the ground station
is visible to the spacecraft. Because access is computed at the end of the interval, the inertial position and
velocity provide function approximators with a state that indicates a high-value state tuple. More generally,
the position and velocity of the spacecraft may give function approximators additional information on the
type of orbit the spacecraft is in so decision-making agents can make more non-intuitive decisions related
to resource management or data collection. Theoretically, radius and velocity allow function approximators
to generalize its behavior to all orbits within the training parameters. While the agent will not have state
information on altitude because radius and velocity are normalized, the small range of altitudes (due to
eccentricity and perturbations) render this lack of state information relatively inconsequential. The percentage
of the total planning horizon that has already passed, p, is also included in the state space. Because the
problem is a finite-horizon problem, value at the start of the simulation (before any downlink windows have
passed) is typically higher than the value at the end of a simulation (when the majority of access windows
have already passed). By including p, the function approximator can compute more accurate value estimates.

S = {N r̂,N v̂,σB/R,
BωB/N , Ω̂, z, k, b, h, q1:7, p} (2)

To keep the satellite within resource constraints, several other states are added to S. The Modified Ro-
drigures Parameter22 (MRP) attitude error, σB/R, the inertial angular velocity, BωB/N , and reaction wheel
velocities over the maximum allowable velocities, Ω̂, are included to manage the attitude determination and
control system. The percent charge of the battery, z, an eclipse indicator, k, and the percent fill of the data
buffer, b are also included in the state space so the function approximator can correlate other constraint viola-
tions with low-value states so corrective actions may be taken (ie. charging batteries and downlinking data).
The percentage of the planning interval spent downlinking data, h, is also included in the state space. This
state represents how much of the access time is utilized by the satellite.

A = {Image,Downlink,Charge,Desaturate} (3)

The action-space, A, includes the four separate flight modes previously described - image, downlink,
charge, and desaturate. The mode-based planning approach lends itself well to Markov Decision Processes.
High-level behavior can be abstracted by the use of modes, with the low-level behavior of the modes dictated
by the state of the system. Each mode lasts for a total of six minutes, ∆tmode. A timespan of six minutes
was selected to ensure attitude error is negligible by the end of the planning interval and to give the satellite
enough time to dump the momentum in the reaction wheels during desaturation.

The reward function is defined as the amount of data downlinked over each planning interval in megabytes,
Hi. Because the problem is finite-horizon, a γ = 1.0 is used. A +1 success bonus is included in the reward
if the agent reaches the end of the planning horizon without failing. If the agent does fail at any point during
planning, a reward of -1000 is returned and the episode terminates immediately.

R(si, ai, si+1) =


Hi if !failure

Hi + 1 if t ≥ tmax and !failure

−1000 if failure

(4)

In the EOS Markov Decision Process, a failure constitutes a violation of resource constraints. Failures
include zero charge in the battery, reaction wheels exceeding their maximum speeds, or an overflow in the
data buffer. Failures are evaluated at the end of a planning interval i.

failure if z = 0, any(Ω̂ ≥ 1), or b ≥ 1 (5)

The transition function, T , is represented by a Basilisk simulation formulated as a Gym environment inte-
grated forward six minutes at a time.
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METHODS

Monte Carlo Tree Search

Solutions to MDPs involve finding either the optimal policy, π∗(si), or the optimal value function, V ∗(si).
The optimal policy is the mapping from states to actions that maximizes the value function.

π∗(si) = arg maxπV
π(si) (6)

The value function, V π(s), is defined as the expected sum of all future reward following a policy π.

V π(si) = R(si, π(si)) + γ
∑

si+1∈S
T (si+1|si, π(si))V

π(si+1) (7)

The state-action value function, Q(si, ai), is the value of a particular state-action pair. The optimal value
function can be found by evaluating Q∗(si, ai) with the action that maximizes Q∗(si, ai).

V ∗(si) = maxaQ∗(si, ai) (8)

Many algorithms have been posed to solve Markov Decision Processes. Two of the most well-known al-
gorithms, policy iteration23 and value iteration,24 compute the optimal policies and value functions offline
by repeatedly iterating over the policy or the value function using a form of the Bellman operator. While
these techniques provide exact solutions, they require an explicit transition function and discrete state spaces.
Conversely, online algorithms solve Markov Decision Processes while interacting with the environment such
that only reachable states are considered. In a deterministic environment, this allows for the relatively fast
computation of optimal policies in large state spaces. Furthermore, online algorithms may be combined with
the generalization power of artificial neural networks. In this work, the authors hypothesize that MCTS can
compute optimal state-action value functions and artificial neural networks can be trained to generalize the
optimal policies.

Monte Carlo tree search, specifically the Upper Confidence Bound for Trees (UCT), is an online search
algorithm that computes optimal solutions to decision-making problems by continually simulating interac-
tions with the environment to compute intermediate state-action values, which are used to incrementally step
through the real environment. The specific version of UCT used in this work is described in detail by Kochen-
derfer.25 Figure 4 demonstrates this process. The agent executes the demonstrated process from the current
state a specified number of times, which is known as the number of “simulations-per-step.”

During selection, the agent chooses the action that maximizes the intermediate state-action value, Q, plus
an exploration bonus, U . During the expansion step, if the agent reaches a state that it has not visited before,
it initializes a state-action value for each possible action in that state, as well as the number of times the
state-action combinations have been visited (initialized to zero). After expansion, the agent executes a rollout
policy to step through the problem until the episode ends. In this problem, the agent stops executing the
rollout if it violates the resource constraints or the end of the planning interval is reached. A rollout policy
is a policy that either randomly selects actions or follows some heuristic that will lead the agent to reward.
The reward generated during rollout is then backed up through each state, and the state-action value pairs are
updated.

This process is repeated until the specified number of simulations-per-step is reached. The agent then
decides on which action to select in the real environment by selecting the action associated with the maximum
state-action value pair. The process is repeated for the designated number of simulations-per-step at the next
state in the real environment. The process continues until the episode ends due to failure or reaching the end
of the planning interval.

Rollout Policy

Two different rollout policies are explored - random and heuristic. The random rollout policy selects ran-
dom actions unless a downlink opportunity is present (ie. any of the states q1:7 are non-zero), which initiates
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a downlink mode. The heuristic rollout policy, however, examines the states most relevant to constraint vio-
lations to determine which action will guarantee a resource constraint violation does not occur. In the event
that a nominal resource state is achieved, the heuristic policy either downlinks or images.

The states most relevant to resource constraint violations are the body rate of the spacecraft (BωB/N ), the
rate of the reaction wheels (Ω), the power in the battery (Z), and the amount of data in the data buffer (B).
The limits on each state variable are provided in Equations 9 - 12. A low-fidelity safety MDP is constructed
using these variables. The state of this safety MDP is given by the tuple (Tumbling, Saturated, Low Power,
Buffer Limit), where each state in the tuple can take the value true or false. In total, there are 16 possible
states. This technique is similar to what Harris et al. employ for shielded deep reinforcement learning in the
EOS scheduling problem.11 However, Harris et al. use the shield to conservatively bound a learning agent’s
actions based on the safety MDP during training. In this work, the heuristic policy derived from the safety
MDP guides MCTS to high-value states that avoid constraint violations during rollout. The heuristic policy
does not interfere with the action selected by MCTS when the agent takes a step in the real environment or
selects intermediate actions during simulation.

|BωB/N | ≥ 1e-2 rad/s→ Tumbling = True (9)

|Ω| ≥ 400 rad/s→ Saturated = True (10)

Z ≤ 40 Whr→ Low Power = True (11)

B ≥ 0.8 GB→ Buffer Limit = True (12)

Based on the state of the safety MDP, the heuristic policy selects the action that guarantees a resource
violation will not occur. The value of the state tuple and associated action may be found in Table 5. Like the
random rollout policy, if the image action is selected (which means the system state is nominal in terms of
the safety variables), but any of the ground station access variables q1:7 are non-zero, downlink is initiated
instead.

State-Action Value Function Neural Networks

Monte Carlo tree search is used to generate search trees that are regressed over using different neural
network architectures. In order for the trees generated by MCTS to be used, the intermediate state-action
value pairs found using MCTS must be modified. Only the intermediate state-action value pairs associated
with states that are visited in the real environment are used for neural network regression. At the end of each
planning interval solved using MCTS, the reward received in the real environment is used to compute new
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Table 5: Heuristic Policy Conditional States

Tumbling Saturated Low Power Buffer Limit Action
1 1 1 1 Charge
1 1 1 0 Charge
1 1 0 1 Desaturate
1 1 0 0 Desaturate
1 0 1 1 Charge
1 0 1 0 Charge
1 0 0 1 Downlink
1 0 0 0 Image
0 1 1 1 Desaturate
0 1 1 0 Desaturate
0 1 0 1 Desaturate
0 1 0 0 Desaturate
0 0 1 1 Charge
0 0 1 0 Charge
0 0 0 1 Downlink
0 0 0 0 Image

Q-values in the main tree for the actual actions selected. The intermediate state-action value pairs for each
other action are left as they are. This process is demonstrated in Figure 5.

Q = r1 + r2 + r3 + r4

r1

r2

r3

r4

a.) Construct Tree b.) Compute Value Along Main Tree c.) Assemble Training Data

Q = r2 + r3 + r4

Q = r3 + r4

Q = r4

Figure 5: UCT Tree Value Computation

Figure 6 demonstrates the training pipeline that is used to train and validate the neural networks. A large
number of episodes starting at random initial conditions are solved using MCTS, and the state-action value
pairs are assembled for each set of initial conditions. A total of 1,200 unique initial conditions are solved by
MCTS. Each state and its four associated state-action value pairs are separated from the tree and added to
the training set. The training set is randomized and split into a training and test set where 90% of the data
is used for training and 10% is used for testing. After generation and assembly of the data, neural networks
are trained to produce state-action value function approximators, Qθ(s, a). The neural networks are validated
on the environment by executing them on a test set of 100 initial conditions. At each step through each
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environment, the state is input into the value network and the action that returns the highest state-action value
pair is selected. The neural network policy is the selection of the action associated associated with the highest
state-action value pair at each step through the environment. This is represented in Equation (13).

πθ(s) = arg maxa Qθ(s, a) (13)

UCT Training Episodes

Value Network 
Training

Value Network 
Validation

Performance 
Metrics

Figure 6: Value Network Training

RESULTS

Monte Carlo Tree Search Hyperparameterization

A hyperparameter search is conducted to determine the best Monte Carlo tree search hyperparameteriza-
tion for generating neural network training data. In the following search, different combinations of two key
parameters for MCTS are tested: the exploration constant, c, and the number of simulations-per-step. Further-
more, this search is conducted for both types of rollout policies - random and heuristic. Each hyperparameter
combination is evaluated based on average episodic reward and downlink utilization. The downlink utiliza-
tion is a measure of how effectively the agent utilizes downlink opportunities and is defined as the percent
time the agent downlinks data over all available downlink windows.

Figure 7 displays both the average reward and average downlink utilization for MCTS with a heuristic
rollout policy. To generate these plots, MCTS is executed on the same set of 10 different initial conditions
for each combination of c and number of simulations-per-step. The results show that the average reward and
downlink utilization are much more dependent on the exploration constant than the number of simulations-
per-step. Adequate exploration ensures that the high-reward states discovered by the rollout policy are found
again during the simulation step. Furthermore, adequate exploration allows MCTS to find higher value
states than those discovered during rollout. While the exploration constant appears to be the most important
hyperparameter, the number of simulations per step is important in terms of optimality. At 10 simulations-
per-step, MCTS achieves a maximum average reward of 459 and downlink utilization of 95.5%. At 100
simulations-per-step, MCTS achieves a maximum average reward of 469 and downlink utilization of 97.1%.
In the literature, MCTS is shown to converge as the number of simulations-per-step approaches infinity.
While MCTS achieves acceptable performance for this problem at 10 simulations-per-step, it takes many
more simulations-per-step to converge to the optimal solution.

In Figure 8, the same hyperparameter search is conducted for a random rollout policy. Both average
reward and downlink utilization are much lower than results from the heuristic rollout policy. In Figure 9, the
resource management success rate is shown. 50 simulates-per-step is the minimum required number for most
exploration constants to achieve a 100% success rate. In the case of the heuristic rollout policy, the success
rate is 100% regardless of the combination of hyperparameters. As hypothesized, the heuristic rollout policy
does a far better job at avoiding resource constraint violations.
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Figure 7: UCT Hyperparameter Search - Heuristic Rollout Policy

State-Action Value Network Hyperparameterization

As described in the State-Action Value Function Neural Networks section, state-action value data is gen-
erated by using MCTS to solve the EOS scheduling problem for 1,200 randomized initial conditions. An
exploration constant of c = 500 and 10 simulations-per-step are the selected hyperparameters for MCTS.
The selected hyperparameters balance the quality of the solutions with the time it takes to generate a reason-
able amount of training data. To determine the best neural network architecture, a hyperparameter search is
conducted over many different hyperparameter values.

The first hyperparameter search examines the performance of the state-action value networks by varying
the number of hidden layers, number of nodes per hidden layer, and activation functions. The dropout rate,
which is the probability that a node will be randomly dropped during a training epoch to avoid overfitting,26

is held constant at 0.25. Furthermore, the α parameter for Leaky ReLU is kept at the default of 0.3. α controls
the slope of the Leaky ReLU activation function for x < 0. Each network is trained for a total of 3000 epochs,
which is the number of times the training data is run through the network. The performance is benchmarked
using total reward, downlink utilization, and total time to execute. The percent time each action is taken is
also collected to determine the general behavior of each neural network.

In Tables 6 and 7, the performance of each network architecture is provided. For each architecture, the
top number is the average reward, and the bottom number is the average downlink utilization. Architectures
that achieve more than 95% downlink utilization are highlighted in green. Architectures that achieve between
90-95% downlink utilization are highlighted in yellow. The Leaky ReLU activation function is superior to
Tanh, as only network architectures with a Leaky ReLU activation function achieve more than 95% downlink
utilization. Furthermore, larger networks perform better on average. Between four and six hidden layers with
250 or 500 nodes each achieves the best performance, totaling between 2.0E5 and 1.3E6 trainable parameters.
A smaller number of trainable parameters is preferred to increase the speed of training the networks.

A second, more detailed hyperparameter search is also performed to determine the best combination of
parameters when the number of nodes per hidden layer and activation function are held constant. 250 nodes
per layer and a Leaky ReLU activation function are selected. The dropout rate, α, and the number of hidden
layers are all varied during the hyperparameter search. As demonstrated in Table 8, the general architecture
(nodes-per-layer and activation function) is relatively robust to the other hyperparameters. Each dropout rate
produces networks that achieve greater than 95% downlink utilization. Furthermore, each number of hidden
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Figure 8: UCT Hyperparameter Search - Random Rollout Policy

Table 6: Leaky ReLU General Architecture Search

Hidden Layers
Nodes 1 2 3 4 5 6

100 309 356 383 409 365 416
64.7% 75.6% 79.9% 84.4% 75.6% 87.4%

250 348 379 433 455 461 453
72.5% 78.3% 89.3% 94.2% 95.9% 94.0%

500 344 402 450 460 459 462
70.9% 82.4% 93.0% 95.5% 94.9% 95.8%

layers produces networks that achieve greater than 95% downlink utilization. α is the one parameter that does
not produce more than 95% downlink utilization for all values. In most cases, α = 0.50 struggles to produce
networks that can achieve greater than 90% downlink utilization. Note, the percentage sign is dropped from
the downlink utilization for each entry in the table for a compact representation of the results.

In addition to performance, other metrics may give insight into the learned behavior of each neural network
architecture. One such metric, the average amount of time each network architecture spends in each mode, can
give insight into how well the network has learned which planet-centered, planet-fixed position and velocity
vectors are correlated with ground station access. In Figure 10, the average time (expressed as the percent
time over each planning interval) each agent spends in each mode is plotted. Only the agents that achieve
greater than 95% downlink utilization from Table 8 are plotted. Each agent spends about the same amount
of time in the imaging mode. However, the time split between the charging, desaturation, and downlink
modes varies widely for different architectures. Several architectures spend between 30-40% of the time in
the downlink mode but achieve 95% downlink utilization. This suggests that they have learned where the
ground stations are located in terms of the planet-centered, planet-fixed position and velocity vectors. Other
architectures spend 60-70% of the time attempting to downlink data. While this does not make a strong case
for learning ground station locations, it is more likely than not that they have learned the locations to some
degree because of the high downlink utilization. This is encouraging for future work, especially for multi-
target scenarios in which the radius and velocity of multiple targets are input states and each target is its own
action.
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Table 7: Tanh General Architecture Search

Hidden Layers
Nodes 1 2 3 4 5 6

100 295 1.00 230 262 206 204
62.5% 0.00% 52.5% 59.5% 46.9% 46.9%

250 293 1.00 1.00 423 438 382
60.1% 0.00% 0.00% 88.7% 91.1% 82.3%

500 315 292 1.00 446 422 425
65.6% 60.3% 0.00% 93.0% 88.9% 88.9%

Another insight into the learned behavior of each network is demonstrated by the small variance in the
percent of time each agent spends in the imaging mode. In Figure 10, each agent spends around 10-15%
of the time in the imaging mode. This is due to the spacecraft filling up the data buffer and only having a
limited number of downlink opportunities available. The high-performing agents were limited by the size
of the data buffer. Another learned behavior demonstrated by a few networks highlights the dependence on
the activation function. In Table 7, where a Tanh activation function is used, several architectures achieve
an average reward of 1.00 and average downlink utilization of 0.00%. This is because the state-action value
approximation converged to a local minima where spacecraft charging was always the highest-value action
in Qθ(s, a).

Table 8: Leaky ReLU Architecture Tuning - 250 Nodes

Dropout 0.05 0.10 0.25
α 0.01 0.10 0.25 0.50 0.01 0.10 0.25 0.5 0.01 0.10 0.25 0.50

H
id

de
n

L
ay

er
s 4 459 454 449 403 462 459 419 373 445 459 446 436

94.9 94.5 93.0 84.3 96.0 95.0 87.0 77.0 92.7 95.1 92.6 90.9

5 452 461 461 384 459 466 456 401 455 459 462 418
94.3 95.4 95.5 79.4 95.3 96.7 94.6 84.4 94.1 95.4 95.8 86.6

6 455 462 463 403 455 462 453 362 451 463 460 453
94.7 95.9 96.1 84.4 94.5 95.8 94.4 76.3 93.7 95.8 95.3 94.4
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Table 9: Genetic Algorithm Performance

Population Generations
Size 45 100 200

10 445 463 447
94.0% 98.3% 96.2%

20 467 472 472
98.9% 99.8% 99.8%

Genetic Algorithm Comparison

To determine the optimality gap of Monte Carlo tree search and the resulting value networks for the given
spacecraft configuration, a genetic algorithm is also tested on the same set of initial conditions. The genetic
algorithm yields open-loop tasking solutions based on the expected environment, while MCTS and the neural
networks yield closed-loop tasking solutions specific to observations generated by stepping through a real
environment. Regardless, the genetic algorithm solution provides insight into how optimal the particular
MCTS and neural network solutions are. In the interest of time, only the first 10 out of 100 initial conditions
are used. The DEAP evolutionary computation framework∗ is used to implement a simple genetic algorithm
to solve for a mode schedule for each initial condition evaluated using the same reward and environment
specification described in the Markov Decision Process section. The crossover and mutation probabilities
are each set to 0.25. The number of generations and population size are varied between 45-200 and 10-20,
respectively. In Table 9, the genetic algorithm seemingly achieves the optimal solution of 472 reward and
99.8% downlink utilization.

Table 10 displays the reward, downlink utilization, and time-to-compute for each algorithm implemented
in this paper. The hyperparameter combination that achieves the highest reward is selected for each method.
The genetic algorithm produces the best performance on average. Furthermore, the genetic algorithm com-
putes the optimal solution much faster than both random and heuristic MCTS theoretically could. Note,
however, that the genetic algorithm is implemented with multi-processing for a single initial condition’s so-
lution, whereas the MCTS multi-processing implementation solves the planning problem for multiple initial
conditions in parallel. Regardless of execution-time implementation dependencies, the genetic algorithm
does not generalize to initial conditions that it has not solved for. Furthermore, the genetic algorithm only
generates a single trajectory as opposed to a search tree. The search tree generated by MCTS can be used
to train a neural network, Qθ(s, a), where the value of each action is an output of the network. The genetic
algorithm could be used to train a neural network where the action is an input via one-hot encoding. However,
the search state-action value pairs generated by MCTS, which are computed by combining the rollout and
simulation reward, produce state-action value estimates that indicate resource constraint violations or missed

∗https://deap.readthedocs.io/en/master/
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Table 10: Comparison of Algorithms

Random MCTS Heuristic MCTS Value Network Genetic Algorithm
407 469 466 472

83.9% 97.1% 96.7% 99.8%
19,100 s 11,400 s 0.0672 s 1,910 s

downlink opportunities in future states. The value of the optimal action is elevated over the noise-floor of
the sub-optimal actions during data generation, which would not happen if a genetic algorithm were used for
training.

After training, the neural networks achieve near-optimal performance several orders of magnitude faster
than any other algorithm implemented in this work. The value network is the best candidate for on-board
execution where execution speed is paramount on resource-constrained flight processors. Furthermore, the
value network should respond well to noisy radius and velocity measurements output from orbit determination
algorithms or the attitude states and rates output from Kalman filters. This would likely result in slightly sub-
optimal performance. However, the authors hypothesize that generalizability of the value network and the
continual evaluation of it every six minutes would result in a negligible degradation in performance due to
noisy measurements.

Finally, the state-action value networks achieve near-optimal performance by interacting with a given en-
vironment only one time, selecting an action after each observation. MCTS and the genetic algorithm require
many environment interactions to solve for the optimal solution. Due to the power of neural networks to
generalize across training data, the state-action value networks are able to interpolate and compute solutions
to planning horizons with initial conditions they have never experienced before. Future work should study
how the neural networks perform on initial conditions outside of the ranges of the distributions of the training
data to test their ability to extrapolate to orbital parameters outside of the training data ranges.

CONCLUSION

This work successfully demonstrates the use of Monte Carlo tree search (MCTS) and state-action value
regression with neural networks for the given Earth-observing satellite (EOS) scheduling problem. The per-
formance of Monte Carlo tree search is investigated by varying rollout policies, exploration constants, and the
number of simulations-per-step. It is shown that MCTS achieves near-optimal performance with a heuristic
rollout policy and relatively small number of simulations-per-step, Furthermore, the state-action value trees
generated by MCTS are regressed over using a variety of neural network architectures. Networks with 2.0E5
to 1.3E6 trainable parameters perform the best, with the Leaky ReLU activation function proving to be very
robust to the dropout rate, number of hidden layers, and α. Finally, MCTS and state-action value network
regression are compared to a genetic algorithm, which provides an upper bound on performance. The state-
action value networks achieve comparable performance to both the genetic algorithm and MCTS, but with
a fraction of the execution time after training, making a state-action value network a candidate for on-board
execution.
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