
AAS 20–117

DEEP ON-BOARD SCHEDULING FOR AUTONOMOUS ATTITUDE
GUIDANCE OPERATIONS

Andrew Harris∗ and Hanspeter Schaub†

Increasingly complex space missions have motivated the development
of autonomous mission guidance approaches capable of dealing with high-
dimensional, continuous observation and action spaces. Deep reinforce-
ment learning (DRL) techniques are a rising area of research for dealing
with such problems, but at present lack clear methods for verification or
validation, especially in the context of spacecraft operations. This work
identifies a specific problem architecture for addressing a high-level atti-
tude mode guidance problem on-board through the use of a pre-trained
learning agent using contemporary strategies for safety and verification
from the deep learning community. Additionally, high-performance, open-
source space-specific simulation tools derived from the AVS Basilisk as-
trodynamics simulation package are presented and discussed. The result-
ing end-to-end development and verification pipeline is presented against
other approaches and compared on the basis of accuracy, computational
efficiency, and safety.

INTRODUCTION

Operating spacecraft without human operators in the loop has become a major enabler
for future mission architectures ranging from deep-space asteroid sample return to large-
scale Earth-orbiting constellations.11 While decades of development have yielded notable
successes in the development of decision support software for operators8 or on-board ob-
servation planning,5–7 these approaches require substantial development efforts and may
struggle to scale as the number of parameters considered increases. At the same time, the
machine learning community has renewed its focus Reinforcement Learning techniques
that leverage the capabilities of deep neural networks (termed “deep” reinforcement learn-
ing or DRL) to address similar high-dimensional decision problems, such as those pre-
sented by strategy games20 or multi-agent coordination problems.15 This work explores the
application of DRL approaches to a representative attitude mode guidance problem.

At present, examples of spacecraft autonomy typically fall into two categories: rule-
based autonomy and optimization-based autonomy. Rule-based autonomy treats a space-
∗Research Assistant, Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of
Colorado Boulder, Boulder, CO, 80309 USA. AAS Member, AIAA Member.
†Glenn L. Murphy Chair of Engineering, Smead Department of Aerospace Engineering Sciences, University of
Colorado, 431 UCB, Colorado Center for Astrodynamics Research, Boulder, CO 80309-0431. AAS Fellow,
AIAA Fellow.

1

craft as a state machine consisting of a set of mode behaviors and defined transitions be-
tween modes. Pioneered by missions like Deep Impact,16 and currently used by missions
such as the PlanetLabs constellation,10 spacecraft using rule-based autonomy transition be-
tween operational and health-keeping modes (charging, momentum-exchange device de-
saturation) autonomously without ground contact. In contrast, optimization-based auton-
omy treats the spacecraft and its mission in the framework of constrained optimization,
with the spacecraft’s hardware and trajectory acting as constraints and metrics of mission
return–images taken, communication link uptime, or other criteria–are the values being
optimized. In contrast to rule-based autonomy, optimization-based autonomy typically re-
quires large amounts of computing power throughout the mission life-cycle. Examples of
this work include the Applied Physics Laboratory’s SciBox software library (used to gen-
erate MESSENGER mode sequences) and the ASPEN mission planning suite developed
by the Jet Propulsion Laboratory and applied to the Earth Observing-1 mission.7

Owing to their successes in solving other high-dimensional, complex online decision-
making problems, Deep RL strategies appear well-suited to the spacecraft operations man-
agement problem; the scaling properties of deep networks allows them to tackle high-
dimensional, non-convex problems, while trained neural networks themselves are relatively
quick to execute in comparison to optimization strategies. A small collection of other works
in the application of machine learning techniques to spacecraft problems exists in the recent
literature, mostly focusing on the application of learning approaches to control problems in
uncertain environments. Several works, such as References13 and,9 consider reinforcement
learning in the context of autonomous aerobraking planners, with mixed results. Others ex-
plore machine learning techniques for asteroid proximity operations12 or autonomous lunar
landing.17 This work builds on prior work in high-level spacecraft tasking and planning,14

creating a problem in the domain of attitude mode guidance that considers high-level mis-
sion objectives, traditional guidance considerations (such as mis-modeled dynamics), and
spacecraft health constraints.

While few guarantees outside of bounds on performance improvement are available for
deep reinforcement learning strategies, new approaches that augment pure DRL strategies
to provide safety and correctness guarantees have appeared in the literature. Shielded learn-
ing2 uses a low-dimensional representation of safety constraints as a basis for forming a
“shield” algorithm that prevents a trained (or in-training) agent from taking unsafe actions.
As a result, shielded learning approaches combine the scalability of traditional DRL with
the safety gauruntees provided by correct-by-construction control approaches. At the same
time, statistical verification theory has also made strides in providing autonomous, compu-
tationally expedient tools for determining the correctness and robustness of black-box con-
trollers while minimizing the use of computationally expensive Monte Carlo analysis. The
work presented herein will examine both of these strategies in the context of a spacecraft
operations deep reinforcement learning pipeline, and compare their performance against a
naive implementation of deep learning for the spacecraft tasking problem. This work will
include three following components. First, the high-level attitude mode guidance problem
is specified considering relevant problem dynamics and spacecraft-side limitations. Next, a
deep learning agent incorporating both shielded learning and statistical verification is pre-

2

sented and analyzed for performance and computational efficiency on a baseline problem,
demonstrating a proof-of-concept for using learning agents to conduct high-level control.
Special consideration is given to the selection of hyperparameters, such as network size and
activation function, for this baseline analysis. Finally, the learning agent is tested against
parametric variations in disturbance dynamics to validate the approach.

PROBLEM STATEMENT

Command and Control Framework

Traditional spacecraft operations planning and execution is a complex, multi-step pro-
cess with many stakeholders which relies heavily on expert knowledge. For reference,
a generic version of this paradigm is presented here. First, mission stakeholders specify
mission objectives and a reference mission trajectory. Given this trajectory and a set of
desired tasks, a set of activities or operational modes are defined and scheduled as space-
craft resources (power, fuel, compute time) and mission resources (observation, maneuver,
or communication windows) permit. Finally, these plans are converted into an action se-
quence, up-linked to a spacecraft, and executed by on-board software. Simultaneously,
teams of human operators typically monitor mission execution and spacecraft health pa-
rameters and intervene when parameters fall outside of a defined specification, either di-
rectly by changing the current action sequence or indirectly by initiating a re-planning
sequence. While this process or processes like it have been used successfully for decades,
it relies heavily on human expertise to create priorities, construct action sequences, and
verify spacecraft behavior. In the search for future autonomy approaches, it is desirable

Shielded Reactive
Learning Agent

Learning Agent

Medium-Fidelity
Simulator

Trained Learning
Agent

Trained
Learning

Agent

High-
Fidelity

Simulator

Statistical Verifier

Shield Specification

Mission Objective
Specification

Performance
Results

Parameter
Samples

Agent
Training

Closed-Loop
Verification

Safety
Bounds

Performance
Statistics

Closed-Loop Simulator

Figure 1: End-to-End training pipeline for autonomous operations agents.

to both replicate existing capabilities in the realm of rule-based and optimization-oriented
autonomy while improving their extensibility, robustness to un-modeled dynamics, and
computational burden. To provide a feasible scope, this work specifically considers the
mission-level decision-making problem wherein sub-plans (“modes”) have already been
identified, either by some other planning routine or by designers pre-flight. In this context,
a decision-making agent must account not only for mission objectives, but also the con-

3

straints imposed by spacecraft hardware, orbital and attitude mechanics, and uncertainty
regarding known or unknown environmental parameters.

A common framework for representing and addressing such problems are Partially-
Observable Markov Decision Processes, which compactly represent the problems facing
a software agent acting in an evolving environment according to some higher-level ob-
jective.3 The mathematics of such processes, and challenges associated with them, are
reviewed briefly here.

A model of several time-steps of a classical POMDP is presented in Fig. 2, and discussed
further here. As in traditional Markov Decision Processes (MDPs), the state in a POMDP
is updated by a transition function F , and at any given time can be computed as a function
of the previous state and the most recent action taken by the considered agent(s):

sk = F (sk−1, ak−1) (1)

This state sk is observed by the agent according to some observation function H:

ok = H(sk) (2)

Given an observation ok of the state, the agent then selects an action ak to influence the
future state according to some policy π:

ak = π(ok) (3)

While these transition functions represent physical or software-defined process dynamics,
the objective of an agent is ultimately motivated by a reward function R:

rk = R(sk−1, ak−1, sk) (4)

Taken together, these components form a tupleM = (S,A,O, F,H,R.)
The objective of a software agent within a POMDP is to select a policy π that maximizes

its realized reward. While the general POMDP case places no restrictions on the nature of
any of the transition functions or states, the consideration of infinite-dimensional, contin-
uous state and action spaces can be extremely computationally intensive. For this reason,
many applied autonomy approaches that leverage POMDPs perform some degree of dis-
cretization to their state or action space. Additionally, it is noted that POMDPs attempt
to describe holistic, system-level problems within a unified framework that is theoretically
related to but practically divorced from traditional estimation and control approaches. For
these reasons, POMDP-based approaches to autonomy are most frequently studied in cases
where traditional estimation and controls approaches are not readily tractable, including
human-assisted machine decision-making15 or multi-vehicle coordination problems.18

A representative space orbit operations scenario is presented and defined as a partially-
observable Markov decision process (POMDP) to be solved using Proximal Policy Opti-
mization (PPO) For a spacecraft, the general high-level autonomy POMDP can be stated
as follows. Given the constraints of orbital dynamics, on-board hardware, and pre-defined
software behaviors, select the sequence of behaviors that best satisfies mission objectives.
This approach is described in greater detail in.14

4

Figure 2: Sequential Partially Observable Markov Decision process framework for repre-
senting decision problems.

Deep Reinforcement Learning

Astrodynamics and spacecraft-planning problems are typically considered in the con-
text of continuous estimation and control, as many of the processes facing such systems
are infinite-dimensional with well-understood, reasonably accurate models. Unfortunately,
the high-level relationships between spacecraft actions and the satisfaction of mission ob-
jectives is less analytically tractable, and frequently mixes discrete reward states (such as
whether a geological feature has been imaged) with continuous ones (such as the man-
agement of spacecraft power states). Reinforcement Learning (RL) techniques represent
one class of algorithms for addressing decision processes which lack analytically tractable
models; however, traditional RL techniques require discrete state and action spaces. Prior
work13 has shown that accurate discrete state spaces for spacecraft decision problems can
be extremely large and therefore infeasible to explore. To address these shortcomings,
Deep Reinforcement Learning (DRL) techniques use deep neural networks as function ap-
proximators in place of tables and can therefore learn on continuous state or action spaces
without discretization.

Reinforcement Learning techniques are intended to solve general Markov Decision Pro-
cesses (MDPs), which are simplified forms of POMDPs without the issue of observation
functions. The goal of reinforcement learning is to find an optimal policy π∗ that maxi-
mizes the expected future reward of the agent. The optimal policy, π∗, is the policy with
the largest expected sum or rewards or value function. The cumulative value, V , of a given
state is provided by the discounted sum of the rewards from the current infinitely into the
future and is given below:

V (s0, s1, s2, ...) =
∞∑
t=0

γtrt 0 ≤ γ < 1 (5)

where γ is the reward discount factor. This term weights the importance of future rewards
relative to the current reward. Given this framework, the optimal policy is that which

5

maximizes the expected discounted future reward.

π∗ = arg max
π

E

[
∞∑
t=0

γtrt

]
(6)

This leads to another expression for the cumulative value function referred to as Bellman’s
Equation:

V (s) = R(s) + γmax
a

∑
s′

p(s′|s, a)V (s′) (7)

where p(s′|s, a) is the probability of the agent being in state, s′, after performing action, a,
in state s.

This work uses Proximal Policy Optimization19 as implemented by the stable-baselines
Python package ∗, an extended variant of Trust-Region Policy Optimization. PPO uses
a loss function that penalizes the learning agent from dramatically changing its network
weights from iteration to iteration using advantage estimation and a clipping function:

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)] (8)

where θ represents the policy parameters, Êt represents the learned expectation over timesteps,
rt is the ratio of the probability under the new and old policies, Ât is the estimated advan-
tage at t, and ε is a hyperparameter representing the clipping range. The advantage func-
tion is defined as the difference between the state-action value function Qπ(s, a) and the
state value function V π(s). This approach has been shown to produce faster, more reli-
able convergence than other results, and represents the state-of-the-art in model-free deep
reinforcement learning.

Agent Implementation Frameworks

A major assumption in our formulation of the spacecraft control problem as a (PO)MDP
shown in Eqn. 11 is the discretization of time, which–when combined with the mechanics
of learning as described in Section –results in decision-making agents that can only react
to current observations, as shown in Fig. 3. Rather than utilizing a specific plan or strategy,
all relevant planning and strategy information is encoded in the deep network utilized by
the agent. In practice, evaluating neural networks is nearly constant-time and can be readily
hardware-accelerated, making this implementation attractive for future on-board use where
system information is readily available and humans are already out of the loop.

Physical
Environment

Trained
Learning

Agent
Action 1Sensors

Current
Observation

Figure 3: Sequential decision-making agent architecture.

At the same time, many existing systems assume that discrete sets of actions will be
periodically up-linked from the ground and lack the on-board processing power to evaluate
∗https://github.com/hill-a/stable-baselines

6

a neural network. For these systems, an architecture which uses a ground-side simulator
to propagate forward existing observations and actions is proposed as shown in Fig. 4.
The incorporation of a simulator allows for the agent to make “future” decisions based
on current knowledge and plan ahead. This architecture is also attractive for near-term
implementation, as it allows human operators to verify and validate action sequences in
advance of execution.

Physical
Environment

Trained Learning
Agent

Simulator

Action 2
Action k

Decision
Stack

Sensors

Current
Observation

Figure 4: Planning architecture using a sequential decision-making agent.

Examination of the properties and benefits of planning versus reactive agents is left out-
side the scope of this work, which focuses on establishing training and safety properties for
DRL-based sequential decision-making agents for spacecraft command and control.

Safety Guarantees

Safety in the face of uncertain spacecraft performance, environmental parameters, and
operating sequences is a critical requirement for future autonomy architectures. While
some reinforcement learning techniques can bound their performance with respect to a
reward function within an MDP, there are virtually none which can guarantee safety on
their own. In practice, this is dealt with through reward engineering; unsafe action or state
combinations are given large costs or penalties to achieved reward. This approach has
several key disadvantages: many problems for which reinforcement learning is well-suited
have complex environment/reward interactions, which makes manual reward engineering
difficult; when reward engineering is feasible, it does not prevent the agent from taking
unsafe actions in conditions outside the training set presented by its environment; finally,
there is no quantifiable boundary or degree of safety provided through reward engineering.
These shortcomings have motivated the search for alternative approaches to safety that can
be combined with common DRL approaches.

Reactive synthesis is one category of techniques that can provide performance bounds
and guarantees for controllers on specified systems. In general, reactive synthesis algo-
rithms operate on discrete, known, finite systems and attempt to produce behavior on such
systems that satisfies a specification written in a temporal logic language, such as Linear
Temporal Logic (LTL). Also described as “correct-by-construction” approaches, reactive
synthesis algorithms only produce control policies that meet a given specification; if the
specification cannot be met on the current system, no policy will be produced, allowing
for designers to check feasibility before implementation. While powerful for addressing

7

systems with discrete, finite, known dynamics, reactive synthesis approaches scale poorly
with system and specification complexity, which limits their applicability for solving gen-
eral spacecraft planning problems, which are difficult to discretize to sufficient fidelity.13

Shielded learning techniques2 combine common DRL approaches with reactive synthesis-
based shields to combine the power of black-box optimization with formal guarantees of
safety. Shielded learning depends on the construction of a coarse, finite-state safety MDP
from the original MDP the learning agent is intended to solve that is conservative with
respect to the original environment’s dynamics and the safety specification, yet limited
enough that reactive synthesis can be applied to it. Next, a safety specification is created
using Linear Temporal Logic which encapsulates all desired safety conditions and provided
as an input to a reactive synthesis algorithm, such as a two-player game, which produces a
discrete, state-dependent strategy. Finally, this strategy is implemented alongside the learn-
ing agent as shown in Figure 5; in this implementation, the shield accepts observations of
the current system state and the action attempted by the learning agent, and permits the
action only if it aligns with the shield’s strategy. This implementation architecture is ap-
plicable to both training and on-line use of the sequential decision agent, allowing it to
provide safety boundaries during mission execution.

Environment Agent

Shield

Reward

Action

Safe Action

Observation

Figure 5: Post-Posed shielded reinforcement learning framework.

Nominal

Alert 1

A
le

rt 2

Alert
3

Failure

Fa
ilu

re

Observation 1

O
b
se

rv
a
ti

o
n

2

Observation 1

O
b
se

rv
a
ti

o
n
 2

Ope
ra

tio
na

l

Bo
un

da
ry

Ope
ra

tio
na

l

Bo
un

da
ry

Figure 6: Conversion from continuous states to a discrete safety MDP.

An example of this transformation in practice is shown for a system with two safety-
critical dimensions in Fig. 6. Mission designers first identify state combinations that repre-

8

sent mission failure, such as depleting the spacecraft’s battery or allowing reaction wheels
to spin up beyond manufacturer’s specifications. In addition to the hard safety bound-
aries, operators and mission planners typically incorporate additional boundaries to act as
margins of safety against actual failure; these are represented by the dashed lines labeled
“operational boundary,” which are used to define warning states. While in this boundary,
operators would be expected to take immediate action to return the system to safe, nominal
operating conditions. In this view, the system’s behavior can be plotted on a phase-plot,
where individual samples of the system’s true trajectory are represented as curves in the
observation variable space. The continuous, bounded system creates a natural framework
for the construction of a safety MDP, wherein each warning state becomes a discrete state,
including products of warning states. It is important that the safety MDP contain all in-
formation necessary for the system to operate safely, which may require the inclusion of
states which are not themselves safety risks but which affect the performance of actions
necessary for the safety of the system. This process results in a discrete safety MDP which
exists in parallel with the continuous POMDP.

Verification Strategy

Training AI agents necessarily involves the use of models that may contain parametric
uncertainties. A key concern with deep reinforcement learning approaches is in preventing
over-fitting to certain model behaviors and parameters. To verify that a given AI operations
agent is functional within its specification under plausible conditions, a robust verification
strategy is required. Here, a two-part verification strategy is used: first, the agent is em-
ployed in a higher-fidelity model of the system to check for signs of over-fitting; next, a
statistically informed robustness metric is used to allocate these high-fidelity simulation
runs over the set of plausible parametric uncertainties.

The field of statistical verification theory is especially applicable to complex cyber-
physical systems for which strict analytical guarantees on system performance are not
available. Unlike classical model-checking techniques, which both depend on determin-
istic system models and provide only binary success or failure metrics, statistical verifica-
tion techniques utilize samples of system performance generated by a simulator alongside
a specification to automatically test system performance.

Simulation Framework

Both the training process for DRL-based operations agents and the verification frame-
work require the ability to simulate a space mission to high fidelity. DRL techniques in
particular can struggle when transferring from simulated to real experiences due to the
simulation gap, as DRL agents can over-fit on specific attributes of low-fidelity simulators
which do not generalize to the real world. In the same vein, verification techniques require
the existence of high-fidelity, trusted simulation capability which adequately captures the
behavior of the real system. For spacecraft, this requires the ability to simulate not only tra-
ditional astrodynamics components (orbital and attitude dynamics), but also the behavior
of flight software components.

9

The Basilisk astrodynamics simulation package represents an ideal toolset for both of
these applications. Specifically, Basilisk provides:

1. High Fidelity Astrodynamics: The Basilisk dynamics engine can simulate fully-
coupled multi-body dynamics in tandem with GPU-accelerated orbital dynamics,1

allowing for the simulation of second- and third-order effects like attitude/orbit cou-
pling, fuel slosh, and flexing panels.

2. Flight Software Simulation/Integration: Developed as a tool to aid flight software
development by providing a flight-like environment for testing, Basilisk provides
first-class support for the integration of flight software components.

3. Computational Performance: Compute-heavy code is written in C/C++ and is
highly performant as a result; even with tasks like image generation in the loop,
BSK-based simulations are thousands of times faster than real-time, allowing for
rapid generation of samples for both DRL and verification algorithms.

4. Integration with common ML/RL frameworks: Basilisk is written with SWIG and
provides a Python API for setting up, executing, and analyzing simulations, which
allows it to be integrated with other common ML/RL packages (Tensorflow, Keras,
gym, scikit-learn).

To facilitate the integration of Basilisk with other machine learning tools, a library of
OpenAI gym environments which utilize Basilisk for spacecraft simulation has been cre-
ated and opened to the public. This library supports common DRL frameworks with Python
APIs, such as OpenAI’s

PERFORMANCE COMPARISON

To demonstrate the viability and applicability of deep and shielded learning techniques,
this section applies them to a reference problem implemented using the Basilisk deep
learning framework and compares their performance in both training (time to convergence,
performance with respect to the reward function) and execution (qualitative evaluation of
safety).

Reference Mission Operations Problem

For the purposes of this work, a scenario consisting of a single spacecraft conducting
ground observations of Earth is considered. In general, the goal of the operations agent is
to maximize both the time spent pointing at the ground and the accuracy of that ground-
pointing mode; as such, a reward function which diminishes smoothly as the spacecraft
attitude varies away from the ground-pointing reference is selected as

Rs =
1

1 + |σerr|
if a = Science (9)

10

Pointing is accomplished through the use of three reaction wheels with randomized initial
biases; attitude determination is accomplished using a truth-plus-noise simulation of an
ideal attitude estimator. In addition to managing the science pointing mode, the spacecraft
operations agent must also ensure that the system remains power-positive by pointing the
spacecraft’s body-fixed solar panel towards the sun. The spacecraft’s power consumption
is modeled using a simple net power process:

J̇ = Win −Wout (10)

where J is the total energy stored by the spacecraft’s battery, Win is the power produced
by the solar panel which is assumed to follow a cosine law, and Wout is the constant load
power drawn by the spacecraft; for the purposes of this work, the load power is assumed to
be constant.

To further complicate the operations problem, reaction wheel saturation is also modeled.
In LEO, a primary source of disturbance torques for spacecraft occur from interactions with
planetary atmospheres. To this end, the spacecraft geometry is considered as a standard
box-and-wing model with a large offset area representing the solar panel. Left uncorrected,
reaction wheel speeds would increase to counteract the aerodynamic torques until they
saturate, rendering the spacecraft uncontrollable. To desaturate the wheels, a set of RCS
thrusters and a wheel desaturation algorithm are implemented as a third and final flight
mode. This mode sets the attitude reference towards the sun, but periodically pulses the
thrusters to reduce the wheel momentum. Importantly, this mode is constructed using a
pre-existing desaturation algorithm that assumes a small body angular rate when computing
thruster firing sequences; when entered before the attitude control system can stabilize the
system, this mode produces destabilizing behavior. This type of constraint is representative
of one the real-world challenges of incorporating strategies for autonomy around existing
flight software stacks and operations procedures.

P =



s = {r ∈ R3, ṙ ∈ R3, σBN ∈ O3,ωBN ∈ R3,ωRW ∈ R3, J∈ R1}
o = {σBN ∈ O3,ωBN ∈ R3,ωRW ∈ R3, J∈ R1}
a = {Mission,Sun Pointing, Desaturation}
T = {fMission, fSun Pointing, fDesaturation}
R = {Rs,−50 if J = 0 or |ωRW | > 250 rad

s
}

(11)

The abstract MDP described by Equation 11 represents a command and control problem for
a single spacecraft in LEO with hardware constraints and is used as a reference problem.
For training, the initial conditions are drawn from uniform random distributions over a
range of LEO orbits; similarly, the spacecraft’s internal states are randomized to ensure
coverage over this space. A summary of the MDP’s parameters is shown in Table 1.

Additionally, the parameters of the safety MDP are listed in Table 2.

11

Table 1: Initial conditions for the real-valued MDP; U represents a uniform distribution.

Variable Value
req 3396.19 km
a req + 400.0km
e U(0, 0.5)
i U(−90◦, 90◦)
ω U(0◦, 360◦)
Ω U(0◦, 360◦)
ν U(0◦, 360◦)
σBN U(0,1)
ωBN U(0 rad/s,0.1 rad/s)
ωBN U(0,0.1)
ωRW U(−600 RPM, 600 RPM)
Jstored U(5 W-Hr, 10 W-Hr)
tmode 3 minutes
Tmax 540 modes

Table 2: Safety MDP labelling parameters

Observed Variable Operational Limit Safety Limit
|ωBN | 0.05 rad/s N/A
|ωRW | 1,000 RPM 1,500 RPM
Jstored 5 W-Hr 0 W-Hr

12

2

2

21 1

!1

!2

!2

0

0

0 !2

!1

Figure 7: Safety MDP contructed for the LEO attitude mode planning simulator. Ddischarge

represents the depth of discharge and is inversely analogous to J . Modes relating to “tum-
ble” states with large body rates are omitted for clarity.

Shield Construction

To apply the shielded learning technique to space mission operations, a simplified ver-
sion of the mission POMDP is first constructed using a-priori knowledge. Here, alert states
are defined using the operational limits found in Table 2. These limits are applied to trans-
form the continuous-time, continuous-state system described by Equation 11 into a simpli-
fied, discrete MDP in the observed variables, represented graphically in Fig. 7. This MDP
is stated as Pdisc:

P =



s = {ωBN ∈ {nominal, high}, |ωRW | ∈ {nominal, alert, failure}, J∈ {nominal, low, failure}
o = {q ∈ {q0, q1, ...q7, q8}
a = {Mission,Sun Pointing, Desaturation}
T = {fMission, fSun Pointing, fDesaturation}
R = {∅}

(12)
While substantially smaller than the continuous state POMDP, the safety MDP encodes im-
portant information; for example, desaturation events are only feasible when the spacecraft
is not in a tumbling state, and tumbling states themselves do not lead to failure unless the
battery charge or wheel speed are already near the failure criteria. In addition, the various
state combinations that lead to failure are lumped into q8 for brevity; this permits the use
of the simple LTL specification

ϕ = G(¬“fail”) (13)

which is represented using the Büchi automaton shown in Fig. 8, and can be understood in
English as “globally never allow the state to reach the failure state.”

To solve this safety game, the game itself was implemented as a stochastic Markov game
(smg) within the PRISM-games solver. In this case, PRISM-games solves the safety game
using Value Iteration.4 PRISM-games then saves the shield strategy as a .adv file, which
encodes the state-action strategy which maximizes the probability of remaining safe. For

13

Figure 8: The one-state Büchi automaton representing the safety specification for the
system.

this work, the resulting strategy is memoryless and state-based, making it especially ami-
cable to on-line implementation.

To use this adversary strategy, the stable-baselines implementation of PPO2 was
extended to conform to the post-posed shield framework shown in Fig. 5.

Training Results

To provide a comparison between the shielded and unshielded approaches to DRL-based
spacecraft autonomy, three agents of each type were trained on the reference problem with
separate, random seeds with identical network parameters, hyperparameters, and training
durations. The resulting training curves are shown in Figure 9. Notably, convergence be-
havior is broadly similar between each initialization within each agent category, which indi-
cates that the spacecraft problem is well-posed and does not suffer from the same stochastic
convergence that other common DRL environments produce. Clearly, the shielded agents
produce substantially better mean rewards at virtually every point in the training process,
with the final shielded agents achieving more than twice the mean reward of the unshielded
agents. This performance is the result of two benefits of shielding: first, the shielded agents
do not spend as much time exploring regions of the state/action space related to failure, as
the shield activations keep the agent away from these regions; second, the “safety” aspect of
the shield prevents the agent from receiving a reward penalty associated with failure. These
results show that the addition of shielding to learning processes for typical spacecraft de-
cision problems to which safety is a core attribute can dramatically improve performance
even during training.

Performance Results

To verify that the agents are indeed performing in a safe manner, a simulator consisting
of the agent in a closed-loop interaction with the environment was set up and run multiple
times for the best-performing shielded and unshielded agents. The resulting phase-plot
diagrams of the agent’s behavior in the observed battery and wheel speed are demonstrated
in Figure 10. The shielded learning agent is able to immediately recover after breaching
the battery charge warning limit, and remains bounded by the wheel speed limit while
converging to a limit cycle in the upper-right of the nominal section of the phase space.

14

0 2000 4000 6000 8000 10000 12000
Training Duration (Simulated Hours)

100

0

100

200

300

M
ea

n
Re

wa
rd

Shielded Agent
Unshielded Agent (rfail = 50)
Unshielded Agent (rfail = 100)
Unshielded Agent (rfail = 250)

Figure 9: Comparison of achieved mean reward during training versus quantity of training
time for shielded vs. reward-engineering approaches.

On the other hand, the unshielded agent allows itself to run out of power relatively quickly
over the simulation period and does not recover, indicating that it has converged to a local
minima in the training space.

Sensitivity to Model Errors

The use of simulated training data presents a risk of errors between modeled and real-life
dynamics, which can lead to poor performance. To examine this, the trajectory analysis for
both the shielded and unshielded agents demonstrated in Figure 10 was repeated over a
range of spacecraft masses (which affects the spacecraft’s inertia and therefore the required
frequency of wheel desaturations) and power consumption levels. To provide a common
figure of merit that captures both operational efficiency and safety, the reward function of
Eqn. 9 is used for both agents, with a penalty of -1000 assigned for failure; this ensures that
positive rewards always result in a positive score, while trajectories that fail always result
in a negative score. The resulting reward plots are shown in Fig. 11. While some initial
conditions always result in failure, these results show that the shielded agent performs
relatively well across a range of environmental parameters, while the unshielded agent
works well only in conditions that minimize the need to perform desaturation actions (i.e.,
when the spacecraft mass is large.)

15

0 50 100 150 200 250
Wheel Speed (Rad/s)

0

10

20

Ba
tte

ry
 C

ha
rg

e (
W

-H
r)

Safety Limits
Warning Limits

0

200

400

Ti
m

e (
m

in
)

(a) Phase plot of the system observations for a
run of the shielded agent.

0 50 100 150 200 250
Wheel Speed (Rad/s)

0

10

20

Ba
tte

ry
 C

ha
rg

e (
W

-H
r)

Safety Limits
Warning Limits

0

50

100

150

Ti
m

e (
m

in
)

(b) Unshielded Agent; note that the agent fails by
depleting the spacecraft’s battery.

Figure 10: Observation phase plots for the shielded and unshielded agents.

16

Power Consumption (W)
17.515.012.510.0 7.5 5.0 2.5Mass (kg) 225250275300325350375400425

Total Reward

1000
800
600
400
200
0

(a) Shielded agent sensitivity

Power Consumption (W)
17.515.012.510.0 7.5 5.0 2.5Mass (kg) 225250275300325350375400425

Total Reward

1000
800
600
400
200
0

200

(b) Unshielded agent sensitivity

Figure 11: Reward sensitivity with respect to changing environment parameters.

17

CONCLUSION

A methodology for considering spacecraft command and control problems as sequen-
tial decision problems suitable for the application of modern machine learning tools has
been presented and extended using the Basilisk astrodynamics framework. In addition, the
technique of reactive synthesis and shielded reinforcement learning has been reviewed and
applied to a detailed reference spacecraft command and control problem. In comparison
to naive approaches to reinforcement learning, the shielded learning approach produces
sequential decision agents that both operate safely under prescribed limits and achieves
quantitatively better performance versus the unshielded learning agent.

REFERENCES
[1] John Alcorn, Hanspeter Schaub, Scott Piggott, and Daniel Kubitschek. Simulating Attitude Actuation

Options Using the Basilisk Astrodynamics Software Architecture. 67 th International Astronautical
Congress, 2016.

[2] Mohammed Alshiekh, Roderick Bloem, Ruediger Ehlers, Bettina Könighofer, Scott Niekum, and Ufuk
Topcu. Safe Reinforcement Learning via Shielding. ArXiV, pages 1–23, 2017.

[3] Anthony R Cassandra. A Survey of POMDP Applications. Uncertainty in Artificial Intelligence, pages
472–480, 1997.

[4] Taolue Chen, Vojtěch Forejt, Marta Kwiatkowska, David Parker, and Aistis Simaitis. PRISM-games: A
model checker for stochastic multi-player games. Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7795 LNCS:185–
191, 2013.

[5] Steve Chien and Ari Jonsson. Automated Planning & Scheduling for Space Mission Operations JPL.
(February), 2005.

[6] Steve Chien, Rob Sherwood, Daniel Tran, Rebecca Castano, Benjamin Cichy, Ashley Davies, Gregg
Rabideau, Nghia Tang, Michael Burl, Dan Mandl, Stuart Frye, Jerry Hengemihle, Jeff D Agostino,
Robert Bote, Bruce Trout, Seth Shulman, Stephen Ungar, Jim Van Gaasbeck, Darrell Boyer, Con-
trol Systems, Michael Griffin, and Hsiao-hua Burke Mit. Autonomous Science on the EO-1 Mission.
Proceedings of International Symposium on Artificial Intelligence, Robotics and Automation in Space
(i-SAIRAS), (May), 2003.

[7] Steve A Chien, Daniel Tran, Gregg Rabideau, Steve R Schaffer, Dan Mandl, and Stuart Frye. Timeline-
Based Space Operations Scheduling with External Constraints. Proceedings of the 20th International
Conference on Automated Planning and Scheduling (ICAPS), (Icaps):34–41, 2010.

[8] Teck H. Choo and Joseph P. Skura. SciBox: A software library for rapid development of science
operation simulation, planning, and command tools. Johns Hopkins APL Technical Digest (Applied
Physics Laboratory), 25(2):154–161, 2004.

[9] Alicia D Cianciolo, Robert W Maddock, Jill L Prince, Angela Bowes, Richard W Powell, Joseph P
White, Robert Tolson, O Shaughnessy, and David Carrelli. Autonomous aerobraking development
software : Phase 2 summary. pages 1–16, 2018.

[10] Cyrus Foster, Henry Hallam, and James Mason. Orbit determination and differential-drag control of
Planet Labs cubesat constellations. Advances in the Astronautical Sciences, 156:645–657, 2016.

[11] C. R. Frost. Challenges and Opportunities for Autonomous Systems in Space. National Academy of
Engineering’s U.S. Frontiers of Engineering Symposium, 2010.

[12] Brian Gaudet, Roberto Furfaro, Markov Decision Process, Reinforcement Learning, Linear Quadratic
Regulator, Tucson Arizona, and Tucson Arizona. Robust Spacecraft Hovering Near Small Bodies in.
test, (August):1–20, 2012.

[13] Andrew Harris and Hanspeter Schaub. Towards Reinforcement Learning Techniques for Spacecraft
Autonomy. 42nd Annual AAS Guidance, Navigation and Control Conference, (AAS 18-078):1–10,
2018.

[14] Andrew Harris, Thibaud Teil, and Hanspeter Schaub. Spacecraft Decision-Making Autonomy Using
Deep Reinforcement Learning. 29th AAS/AIAA Space Flight Mechanics Meeting, Hawaii, (AAS 19-
447):1–19, 2019.

18

[15] Kyle D Julian and Mykel J Kochenderfer. Autonomous Distributed Wildfire Surveillance using Deep
Reinforcement Learning. (January):1–16, 2018.

[16] Daniel G. Kubitschek. Impactor Spacecraft Encounter Sequence Design for the Deep Impact Mission.
Jet Propulsion, pages 1–14, 2005.

[17] Ilaria Bloise Roberto Furfaro. Deep Learning for Autonomous Lunar Landing. Proceedings of the 2018
AAS/AIAA Astrodynamics Specialist Conference, Snowbird UT, 2018.

[18] Eric Sample, Nisar Ahmed, and Mark Campbell. An Experimental Evaluation of Bayesian Soft Human
Sensor Fusion in Robotic Systems. (August):1–19, 2012.

[19] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms. Arxiv, pages 1–12, 2017.

[20] Oriol Vinyals. Deep Learning in neural networks: An overview. Neural Networks, 61:85–117, 2015.

19

	Introduction
	Problem Statement
	Command and Control Framework
	Deep Reinforcement Learning
	Agent Implementation Frameworks
	Safety Guarantees
	Verification Strategy
	Simulation Framework

	Performance Comparison
	Reference Mission Operations Problem
	Shield Construction
	Training Results
	Performance Results
	Sensitivity to Model Errors

	Conclusion

