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Increasingly complex space missions have motivated the development of autonomous com-

mand and control approaches which must handle high-dimensional, continuous observation

and action spaces with hard-to-analyze behavior. Deep reinforcement learning (DRL) tech-

niques are a rising area of research for dealing with such problems, but lack performance

and safety guarantees which reduce their applicability for spacecraft operations. This work

identifies promising strategies from the DRL literature for providing safety and performance

guarantees using correct-by-construction shield synthesis, and techniques for identifying the

robustness and stability of trained agents in a computationally expedient manner. Additionally,

open-source spacecraft simulation tools derived from the AVS Basilisk astrodynamics simula-

tion package are presented and discussed. Shielded learning agents are presented against a

naive DRL agent approach for the command and control of a LEO ground observation mission

and compared on the basis of performance, computational efficiency, and safety.

I. Introduction
Autonomous operation of spacecraft has emerged as a major priority among space agencies and private companies

alike. Decades of development have yielded few missions that approach the goal of full autonomy. While support

tools for operators become increasingly sophisticated, next-generation autonomy for space mission operations will

require the introduction of artificial intelligence to further supplant or replace the role of human operators. Advances in

artificial intelligence have demonstrated the capability for human-level reasoning on complex tasks; however, systematic

constraints within the space domain limit their immediate applicability. Unlike terrestrial applications, which can benefit

from on-the-ground debugging, spacecraft operational autonomy approaches must meet high bars of verification and

validation to prevent mission failure.

This work focuses on three criteria to enable the verification and validation of future spacecraft autonomy approaches:

providing safety guarantees for deep-learning based management agents, simulating spacecraft operations to high

fidelity in a computationally efficient way, and automatically validating the performance of trained management agents.
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These foci directly extend the applicability of prior work in the use of Deep Reinforcement Learning (DRL) to create

autonomous, self-improving management agents to operate spacecraft without human input. Additionally, these tools

should not impact the performance of the learning agent to preserve the advantages of learning-based approaches for

creating decision-making agents.

As outlined in prior work [1, 2], machine learning techniques such as Deep Reinforcement Learning have the

potential to improve upon current state-of-the-art approaches to operational autonomy by combining the best attributes

of optimization- and rule-driven autonomy. At present, operators typically rely on either pre-defined transition criteria

that must be carefully set by experts ( [3, 4]) or utilize computationally intense planning and scheduling algorithms

that depend on high-fidelity models and analysis conducted by experts [5–8]. In contrast, autonomy approaches based

around learning agents are able to deal directly with high or infinite dimensional input/output spaces and non-linear and

non-smooth problem dynamics [9] so long as a simulator can be constructed. Additionally, DRL-based decision agents

encode their knowledge in deep neural networks, which can be rapidly evaluated in constant time once trained.

These benefits have led to a large and growing body of work on the use of machine learning “agents” for planning

and scheduling. Multiple works ([10, 11]) have investigated the use of reinforcement learning to address UAV-based

sensor tasking and health management problems. Related areas, such as sensor tasking for space situational awareness,

have also been addressed using deep reinforcement learning [12, 13]. Finally, the recent success of the OpenAI Five at

winning games which require high levels of strategy and planning [14] from self-play alone suggests that reinforcement

learning techniques can tackle extremely complex, dynamic, continuous state and action spaces and still replicate or

exceed human-level performance.

A small collection of other works in the application of machine learning techniques to spacecraft problems exists

in the recent literature, mostly focusing on the application of learning approaches to control problems in uncertain

environments. Several works [1, 15] consider reinforcement learning in the context of autonomous aerobraking

controllers, with mixed results. Others explore machine learning techniques for asteroid proximity operations [16] or

autonomous lunar landing[17]. Importantly, these approaches have focused on low-level control with reinforcement

learning, an area that has been traditionally been addressed by conventional estimation and control techniques which can

offer boundaries or guarantees on performance. In contrast, this work explicitly examines applications of reinforcement

learning to high-level spacecraft planning and decision-making problems.

The existing reinforcement learning literature is primarily concerned with sample efficiency, which drives compu-

tational costs and therefore implementation difficulty. Safety and robustness of these ML-driven systems is a rising

concern. While many real systems share common constraints on the learning process [18], unique features of the space

mission life-cycle create additional factors and constraints that motivate this work. Unlike many other reinforcement

learning domains, fairly accurate a-priori models of system behavior are well known for space systems [2], or are at least

bounded by mission requirements. At the same time, statuses that would cause a mission to fail, such as a low-power
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condition, must be avoided at all costs during agent execution and are desirable to avoid in training for similar reasons.

This work is arranged as follows. First, the spacecraft command and control problem is reformulated as a

Partially-Observable Markov Decision Problem (POMDP) amicable to deep reinforcement learning techniques; given

this problem formulation, the concept of a one-step sequential decision agent is introduced alongside plausible concepts

of implementation. Next, a simulation framework for spacecraft-driven POMDPs is presented for the benefit of current

and future research in this area. Next, the theory of shield synthesis is reviewed and applied to the spacecraft control

problem to provide safety guarantees during learning and deployment. The efficacy of this strategy versus a naive

learning agent is presented through simulations on the aforementioned simulation framework.

II. Problem Statement

A. Command and Control Framework

Traditional spacecraft operations planning and execution is a complex, multi-step process with many stakeholders

which relies heavily on expert knowledge. For reference, a generic version of this paradigm is presented here. First,

mission stakeholders specify mission objectives and a reference mission trajectory. Given this trajectory and a set of

desired tasks, a set of activities or operational modes are defined and scheduled as spacecraft resources (power, fuel,

compute time) and mission resources (observation/maneuver/communication windows) permit. Finally, these plans

are converted into an action sequence, up-linked to a spacecraft, and executed by on-board software. Simultaneously,

teams of human operators typically monitor mission execution and spacecraft health parameters and intervene when

parameters fall outside of a defined specification, either directly by changing the current action sequence or indirectly by

initiating a re-planning sequence. While this process or processes like it have been used successfully for decades, it

relies heavily on human expertise to create priorities, construct action sequences, and verify spacecraft behavior. In the
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Fig. 1 End-to-End training pipeline for autonomous operations agents.

search for future autonomy approaches, it is desirable to both replicate existing capabilities in the realm of rule-based

and optimization-oriented autonomy while improving their extensibility, robustness to un-modeled dynamics, and
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computational burden. To provide a feasible scope, this work specifically considers the mission-level decision-making

problem wherein sub-plans (“modes”) have already been identified, either by some other planning routine or by

designers pre-flight. In this context, a decision-making agent must account not only for mission objectives, but also

the constraints imposed by spacecraft hardware, orbital and attitude mechanics, and uncertainty regarding known or

unknown environmental parameters.

A common framework for representing and addressing such problems are Partially-Observable Markov Decision

Processes, which compactly represent the problems facing a software agent acting in an evolving environment according

to some higher-level objective[19]. The mathematics of such processes, and challenges associated with them, are

reviewed briefly here.

A model of several time-steps of a classical POMDP is presented in Fig. 2, and discussed further here. As in

traditional Markov Decision Processes (MDPs), the state in a POMDP is updated by a transition function F, and at

any given time can be computed as a function of the previous state and the most recent action taken by the considered

agent(s):

sk = F(sk−1, ak−1) (1)

This state sk is observed by the agent according to some observation function H:

ok = H(sk) (2)

Given an observation ok of the state, the agent then selects an action ak to influence the future state according to some

policy π:

ak = π(ok) (3)

While these transition functions represent physical or software-defined process dynamics, the objective of an agent is

ultimately motivated by a reward function R:

rk = R(sk−1, ak−1, sk) (4)

Taken together, these components form a tupleM = (S,A,O, F,H,R .)

The objective of a software agent within a POMDP is to select a policy π that maximizes its realized reward. While

the general POMDP case places no restrictions on the nature of any of the transition functions or states, the consideration

of infinite-dimensional, continuous state and action spaces can be extremely computationally intensive. For this reason,

many applied autonomy approaches that leverage POMDPs perform some degree of discretization to their state or

action space. Additionally, it is noted that POMDPs attempt to describe holistic, system-level problems within a unified
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Fig. 2 Sequential PartiallyObservableMarkovDecisionprocess framework for representing decisionproblems.

framework that is theoretically related to but practically divorced from traditional estimation and control approaches.

For these reasons, POMDP-based approaches to autonomy are most frequently studied in cases where traditional

estimation and controls approaches are not readily tractable, including human-assisted machine decision-making [11] or

multi-vehicle coordination problems [20].

A representative space orbit operations scenario is presented and defined as a partially-observable Markov decision

process (POMDP) to be solved using Proximal Policy Optimization (PPO) For a spacecraft, the general high-level

autonomy POMDP can be stated as follows. Given the constraints of orbital dynamics, on-board hardware, and

pre-defined software behaviors, select the sequence of behaviors that best satisfies mission objectives. This approach is

described in greater detail in [2].

B. Deep Reinforcement Learning

Astrodynamics and spacecraft-planning problems are typically considered in the context of continuous estimation

and control, as many of the processes facing such systems are infinite-dimensional with well-understood, reasonably

accurate models. Unfortunately, the high-level relationships between spacecraft actions and the satisfaction of mission

objectives is less analytically tractable, and frequently mixes discrete reward states (such as whether a geological feature

has been imaged) with continuous ones (such as the management of spacecraft power states). Reinforcement Learning

(RL) techniques represent one class of algorithms for addressing decision processes which lack analytically tractable

models; however, traditional RL techniques require discrete state and action spaces. Prior work [1] has shown that

accurate discrete state spaces for spacecraft decision problems can be extremely large and therefore infeasible to explore.

To address these shortcomings, Deep Reinforcement Learning (DRL) techniques use deep neural networks as function

approximators in place of tables and can therefore learn on continuous state or action spaces without discretization.

Reinforcement Learning techniques are intended to solve general Markov Decision Processes (MDPs), which are

simplified forms of POMDPs without the issue of observation functions. The goal of reinforcement learning is to find

an optimal policy π∗ that maximizes the expected future reward of the agent. The optimal policy, π∗, is the policy with
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the largest expected sum or rewards or value function. The cumulative value, V , of a given state is provided by the

discounted sum of the rewards from the current infinitely into the future and is given below:

V(s0, s1, s2, ...) =

∞∑
t=0

γtrt 0 ≤ γ < 1 (5)

where γ is the reward discount factor. This term weights the importance of future rewards relative to the current reward.

Given this framework, the optimal policy is that which maximizes the expected discounted future reward.

π∗ = arg max
π

E

[
∞∑
t=0

γtrt

]
(6)

This leads to another expression for the cumulative value function referred to as Bellman’s Equation:

V(s) = R(s) + γmax
a

∑
s′

p(s′ |s, a)V(s′) (7)

where p(s′ |s, a) is the probability of the agent being in state, s′, after performing action, a, in state s.

This work uses Proximal Policy Optimization [21] as implemented by the stable-baselines Python package

[22], an extended variant of Trust-Region Policy Optimization. PPO uses a loss function that penalizes the learning

agent from dramatically changing its network weights from iteration to iteration using advantage estimation and a

clipping function:

LCLIP(θ) = Êt [min(rt (θ)Ât, clip(rt (θ), 1 − ε, 1 + ε)Ât )] (8)

where θ represents the policy parameters, Êt represents the learned expectation over timesteps, rt is the ratio of the

probability under the new and old policies, Ât is the estimated advantage at t, and ε is a hyperparameter representing the

clipping range. The advantage function is defined as the difference between the state-action value function Qπ(s, a) and

the state value function Vπ(s). This approach has been shown to produce faster, more reliable convergence than other

results, and represents the state-of-the-art in model-free deep reinforcement learning.

C. Agent Implementation Frameworks

A major assumption in our formulation of the spacecraft control problem as a (PO)MDP shown in Eqn. 11 is the

discretization of time, which–when combined with the mechanics of learning as described in Section II.B–results in

decision-making agents that can only react to current observations, as shown in Fig. 3. Rather than utilizing a specific

plan or strategy, all relevant planning and strategy information is encoded in the deep network utilized by the agent.

In practice, evaluating neural networks is nearly constant-time and can be readily hardware-accelerated, making this

implementation attractive for future on-board use where system information is readily available and humans are already
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out of the loop.
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Fig. 3 Sequential decision-making agent architecture.

At the same time, many existing systems assume that discrete sets of actions will be periodically up-linked from the

ground and lack the on-board processing power to evaluate a neural network. For these systems, an architecture which

uses a ground-side simulator to propagate forward existing observations and actions is proposed as shown in Fig. 4. The

incorporation of a simulator allows for the agent to make “future” decisions based on current knowledge and plan ahead.

This architecture is also attractive for near-term implementation, as it allows human operators to verify and validate

action sequences in advance of execution.
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Fig. 4 Planning architecture using a sequential decision-making agent.

Examination of the properties and benefits of planning versus reactive agents is left outside the scope of this work,

which focuses on establishing training and safety properties for DRL-based sequential decision-making agents for

spacecraft command and control.

D. Safety Guarantees

Safety in the face of uncertain spacecraft performance, environmental parameters, and operating sequences is a

critical requirement for future autonomy architectures. While some reinforcement learning techniques can bound their

performance with respect to a reward function within an MDP, there are virtually none which can guarantee safety on

their own. In practice, this is dealt with through reward engineering; unsafe action or state combinations are given

large costs or penalties to achieved reward. This approach has several key disadvantages: many problems for which

reinforcement learning is well-suited have complex environment/reward interactions, which makes manual reward

engineering difficult; when reward engineering is feasible, it does not prevent the agent from taking unsafe actions in

conditions outside the training set presented by its environment; finally, there is no quantifiable boundary or degree of

safety provided through reward engineering. These shortcomings have motivated the search for alternative approaches

to safety that can be combined with common DRL approaches.

Reactive synthesis is one category of techniques that can provide performance bounds and guarantees for controllers
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on specified systems. In general, reactive synthesis algorithms operate on discrete, known, finite systems and attempt to

produce behavior on such systems that satisfies a specification written in a temporal logic language, such as Linear

Temporal Logic (LTL). Also described as “correct-by-construction” approaches, reactive synthesis algorithms only

produce control policies that meet a given specification; if the specification cannot be met on the current system,

no policy will be produced, allowing for designers to check feasibility before implementation. While powerful for

addressing systems with discrete, finite, known dynamics, reactive synthesis approaches scale poorly with system and

specification complexity, which limits their applicability for solving general spacecraft planning problems, which are

difficult to discretize to sufficient fidelity[1].

Shielded learning techniques [23] combine common DRL approaches with reactive synthesis-based shields to

combine the power of black-box optimization with formal guarantees of safety. Shielded learning depends on the

construction of a coarse, finite-state safety MDP from the original MDP the learning agent is intended to solve that

is conservative with respect to the original environment’s dynamics and the safety specification, yet limited enough

that reactive synthesis can be applied to it. Next, a safety specification is created using Linear Temporal Logic which

encapsulates all desired safety conditions and provided as an input to a reactive synthesis algorithm, such as a two-player

game, which produces a discrete, state-dependent strategy. Finally, this strategy is implemented alongside the learning

agent as shown in Figure 5; in this implementation, the shield accepts observations of the current system state and

the action attempted by the learning agent, and permits the action only if it aligns with the shield’s strategy. This

implementation architecture is applicable to both training and on-line use of the sequential decision agent, allowing it to

provide safety boundaries during mission execution.

Environment Agent

Shield

Reward

Action

Safe Action

Observation

Fig. 5 Post-Posed shielded reinforcement learning framework.

An example of this transformation in practice is shown for a system with two safety-critical dimensions in Fig. 6.

Mission designers first identify state combinations that represent mission failure, such as depleting the spacecraft’s

battery or allowing reaction wheels to spin up beyond manufacturer’s specifications. In addition to the hard safety

boundaries, operators and mission planners typically incorporate additional boundaries to act as margins of safety

against actual failure; these are represented by the dashed lines labeled “operational boundary,” which are used to define

“warning states.” While in this boundary, operators typically take immediate action to return the system to safe, nominal
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Fig. 6 Conversion from continuous states to a discrete safety MDP.

operating conditions. In this view, the system’s behavior can be plotted on a phase-plot, where individual samples of the

system’s true trajectory are represented as curves in the observation variable space. The continuous, bounded system

creates a natural framework for the construction of a safety MDP, wherein each warning state becomes a discrete state,

including products of warning states. It is important that the safety MDP contain all information necessary for the

system to operate safely, which may require the inclusion of states which are not themselves safety risks but which affect

the performance of actions necessary for the safety of the system. This process results in a discrete “safety” MDP which

exists in parallel with the continuous POMDP.

E. Verification Strategy

Training AI agents necessarily involves the use of models that may contain parametric uncertainties. A key concern

with deep reinforcement learning approaches is in preventing over-fitting to certain model behaviors and parameters.

To verify that a given AI operations agent is functional within its specification under plausible conditions, a robust

verification strategy is required. Here, a two-part verification strategy is used: first, the agent is employed in a

higher-fidelity model of the system to check for signs of over-fitting; next, a statistically informed robustness metric is

used to allocate these high-fidelity simulation runs over the set of plausible parametric uncertainties.

The field of statistical verification theory is especially applicable to complex cyber-physical systems for which strict

analytical guarantees on system performance are not available. Unlike classical model-checking techniques, which

both depend on deterministic system models and provide only binary success or failure metrics, statistical verification

techniques utilize samples of system performance generated by a simulator alongside a specification to automatically

test system performance.
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F. Simulation Framework

Both the training process for DRL-based operations agents and the verification framework require the ability to

simulate a space mission to high fidelity. DRL techniques in particular can struggle when transferring from simulated to

real experiences due to the “simulation gap,” as DRL agents can over-fit on specific attributes of low-fidelity simulators

which do not generalize to the real world. In the same vein, verification techniques require the existence of high-fidelity,

trusted simulation capability which adequately captures the behavior of the real system. For spacecraft, this requires the

ability to simulate not only traditional astrodynamics components (orbital and attitude dynamics), but also the behavior

of flight software components.

The Basilisk astrodynamics simulation package represents an ideal toolset for both of these applications. Specifically,

Basilisk provides:

1) High Fidelity Astrodynamics: The Basilisk dynamics engine can simulate fully-coupled multi-body dynamics

in tandem with GPU-accelerated orbital dynamics [24], allowing for the simulation of second- and third-order

effects like attitude/orbit coupling, fuel slosh, and flexing panels.

2) Flight Software Simulation/Integration: Developed as a tool to aid flight software development by providing

a flight-like environment for testing, Basilisk provides first-class support for the integration of flight software

components.

3) Computational Performance: Compute-heavy code is written in C/C++ and is highly performant as a result;

even with tasks like image generation in the loop, BSK-based simulations are thousands of times faster than

real-time, allowing for rapid generation of samples for both DRL and verification algorithms.

4) Integration with common ML/RL frameworks: Basilisk is written with SWIG and provides a Python API

for setting up, executing, and analyzing simulations, which allows it to be integrated with other common ML/RL

packages (Tensorflow, Keras, gym, scikit-learn).

To facilitate the integration of Basilisk with other machine learning tools, a library of OpenAI gym environments

which utilize Basilisk for spacecraft simulation has been created and opened to the public. This library supports common

DRL frameworks such as OpenAI’s baselines and the stable-baselines fork.

III. Performance Comparison
To demonstrate the viability and applicability of deep and shielded learning techniques, this section applies them to

a reference problem implemented using the Basilisk deep learning framework and compares their performance in both

training (time to convergence, performance with respect to the reward function) and execution (qualitative evaluation of

safety).
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A. Reference Mission Operations Problem

For the purposes of this work, a scenario consisting of a single spacecraft conducting ground observations of Earth

is considered. In general, the goal of the operations agent is to maximize both the time spent pointing at the ground and

the accuracy of that ground-pointing mode; as such, a reward function which diminishes smoothly as the spacecraft

attitude varies away from the ground-pointing reference is selected as

Rs =
1

1 + |σerr |
if a = Science (9)

Pointing is accomplished through the use of three reaction wheels with randomized initial biases; attitude determination

is accomplished using a truth-plus-noise simulation of an ideal attitude estimator. In addition to managing the science

pointing mode, the spacecraft operations agent must also ensure that the system remains power-positive by pointing the

spacecraft’s body-fixed solar panel towards the sun. The spacecraft’s power consumption is modeled using a simple net

power process:

ÛJ = Win −Wout (10)

where J is the total energy stored by the spacecraft’s battery, Win is the power produced by the solar panel which is

assumed to follow a cosine law, and Wout is the constant load power drawn by the spacecraft; for the purposes of this

work, the load power is assumed to be constant.

To further complicate the operations problem, reaction wheel saturation is also modeled. In LEO, a primary source

of disturbance torques for spacecraft occur from interactions with planetary atmospheres. To this end, the spacecraft

geometry is considered as a standard “box-and-wing” model with a large offset area representing the solar panel.

Left uncorrected, reaction wheel speeds would increase to counteract the aerodynamic torques until they saturate,

rendering the spacecraft uncontrollable. To desaturate the wheels, a set of RCS thrusters and a wheel desaturation

algorithm are implemented as a third and final flight mode. This mode sets the attitude reference towards the sun,

but periodically pulses the thrusters to reduce the wheel momentum. Importantly, this mode is constructed using a

pre-existing desaturation algorithm that assumes a small body angular rate when computing thruster firing sequences;

when entered before the attitude control system can stabilize the system, this mode produces destabilizing behavior. This

type of constraint is representative of one the real-world challenges of incorporating strategies for autonomy around

existing flight software stacks and operations procedures.
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Table 1 Initial conditions for the real-valued MDP;U represents a uniform distribution.

Variable Value
req 3396.19 km
a req + 400.0km
e U(0, 0.5)
i U(−90◦, 90◦)
ω U(0◦, 360◦)
Ω U(0◦, 360◦)
ν U(0◦, 360◦)

σBN U(0, 1)
ωBN U(0 rad/s, 0.1 rad/s)
ωBN U(0, 0.1)
ωRW U(−600 RPM, 600 RPM)

Jstored U(5 W-Hr, 10 W-Hr)
tmode 3 minutes
Tmax 540 modes

Table 2 Safety MDP labelling parameters

Observed Variable Operational Limit Safety Limit
|ωBN | 0.05 rad/s N/A
|ωRW | 1,000 RPM 1,500 RPM
Jstored 5 W-Hr 0 W-Hr

P =



s = {r ∈ R3, Ûr ∈ R3, σBN ∈ O
3,ωBN ∈ R

3,ωRW ∈ R
3, J∈ R1}

o = {σBN ∈ O
3,ωBN ∈ R

3,ωRW ∈ R
3, J∈ R1}

a = {Mission, Sun Pointing, Desaturation}

T = { fMission, fSun Pointing, fDesaturation}

R = {Rs,−50 if J = 0 or |ωRW | > 250 rad
s }

(11)

The abstract MDP described by Equation 11 represents a command and control problem for a single spacecraft in LEO

with hardware constraints and is used as a reference problem. For training, the initial conditions are drawn from uniform

random distributions over a range of LEO orbits; similarly, the spacecraft’s internal states are randomized to ensure

coverage over this space. A summary of the MDP’s parameters is shown in Table 1.

Additionally, the parameters of the safety MDP are listed in Table 2.
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Fig. 7 Safety MDP contructed for the LEO attitude mode planning simulator. Ddischarge represents the depth
of discharge and is inversely analogous to J. Modes relating to “tumble” states with large body rates are omitted
for clarity.

B. Shield Construction

To apply the shielded learning technique to space mission operations, a simplified version of the mission POMDP is

first constructed using a-priori knowledge. Here, “alert” states are defined using the operational limits found in Table 2.

These limits are applied to transform the continuous-time, continuous-state system described by Equation 11 into a

simplified, discrete MDP in the observed variables, represented graphically in Fig. 7. This MDP is stated as Pdisc:

P =



s = {ωBN ∈ {nominal, high}, |ωRW | ∈ {nominal, alert, f ailure}, J∈ {nominal, low, f ailure}

o = {q ∈ {q0, q1, ...q7, q8}

a = {Mission, Sun Pointing, Desaturation}

T = { fMission, fSun Pointing, fDesaturation}

R = {∅}

(12)

While substantially smaller than the continuous state POMDP, the safety MDP encodes important information; for

example, desaturation events are only feasible when the spacecraft is not in a tumbling state, and tumbling states

themselves do not lead to failure unless the battery charge or wheel speed are already near the failure criteria. In addition,

the various state combinations that lead to failure are lumped into q8 for brevity; this permits the use of the simple LTL

specification

ϕ = G(¬“fail”) (13)

which is represented using the Büchi automaton shown in Fig. 8, and can be understood in English as “globally never

allow the state to reach the failure state.”

To solve this safety game, the game itself was implemented as a stochastic Markov game (smg) within the PRISM-
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Fig. 8 The one-state Büchi automaton representing the safety specification for the system.

games solver. In this case, PRISM-games solves the safety game using Value Iteration [25]. PRISM-games then saves

the shield strategy as a .adv file, which encodes the state-action strategy which maximizes the probability of remaining

safe. For this work, the resulting strategy is memoryless and state-based, making it especially amicable to on-line

implementation.

To use this adversary strategy, the stable-baselines[22] implementation of PPO2 was extended to conform to

the post-posed shield framework shown in Fig. 5.

C. Training Results

To provide a comparison between the shielded and unshielded approaches to DRL-based spacecraft autonomy,

three agents of each type were trained on the reference problem with separate, random seeds with identical network

parameters, hyperparameters, and training durations. The resulting training curves are shown in Figure 9. Notably,

convergence behavior is broadly similar between each initialization within each agent category, which indicates that the

spacecraft problem is well-posed and does not suffer from the same stochastic convergence that other common DRL

environments produce. Clearly, the shielded agents produce substantially better mean rewards at virtually every point

in the training process, with the final shielded agents achieving more than twice the mean reward of the unshielded

agents. This performance is the result of two benefits of shielding: first, the shielded agents do not spend as much time

exploring regions of the state/action space related to failure, as the shield activations keep the agent away from these

regions; second, the “safety” aspect of the shield prevents the agent from receiving a reward penalty associated with

failure. These results show that the addition of shielding to learning processes for typical spacecraft decision problems

to which safety is a core attribute can dramatically improve performance even during training.

D. Performance Results

To verify that the agents are indeed performing in a safe manner, a “simulator” consisting of the agent in a

closed-loop interaction with the environment was set up and run multiple times for the best-performing shielded and

unshielded agents. The resulting phase-plot diagrams of the agent’s behavior in the observed battery and wheel speed

are demonstrated in Figure 10. The shielded learning agent is able to immediately recover after breaching the battery

14



0 2000 4000 6000 8000 10000 12000
Training Duration (Simulated Hours)

0

100

200

M
ea

n 
Re

wa
rd

Shielded Agent
Unshielded Agent
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charge warning limit, and remains bounded by the wheel speed limit while converging to a limit cycle in the upper-right

of the nominal section of the phase space. On the other hand, the unshielded agent allows itself to run out of power

relatively quickly over the simulation period and does not recover, indicating that it has converged to a local minima in

the training space.
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(a) Phase plot of the system observations for a run of the
shielded agent.
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(b) Unshielded Agent; note that the agent fails by depleting the
spacecraft’s battery.

Fig. 10 Observation phase plots for the shielded and unshielded agents.
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IV. Conclusion
A methodology for considering spacecraft command and control problems as sequential decision problems suitable

for the application of modern machine learning tools has been presented and extended using the Basilisk astrodynamics

framework. In addition, the technique of reactive synthesis and shielded reinforcement learning has been reviewed

and applied to a detailed reference spacecraft command and control problem. In comparison to naive approaches to

reinforcement learning, the shielded learning approach produces sequential decision agents that both operate safely

under prescribed limits and achieves quantitatively better performance versus the unshielded learning agent.
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