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SPACECRAFT DECISION-MAKING AUTONOMY USING DEEP
REINFORCEMENT LEARNING

Andrew Harris,∗Thibaud Teil,†Hanspeter Schaub‡

The high cost of space mission operations has motivated several space
agencies to prioritize the development of autonomous spacecraft control
techniques. “Learning” agents present one manner in which autonomous
spacecraft can adapt to changing hardware capabilities, environmental pa-
rameters, or mission objectives while minimizing dependence on ground
intervention. This work considers the frameworks and tools of deep rein-
forcement learning to address high-level mission planning and decision-
making problems for autonomous spacecraft, under the assumption that
sub-problems have been addressed through design. Two representative
problems reflecting challenges of autonomous orbit insertion and science
operations planning, respectively, are presented as Partially-Observable
Markov Decision Processes (POMDP) and addressed with Deep Rein-
forcement Learners to demonstrate the benefits, pitfalls, considerations in-
herent to this approach. Sensitivity to initial conditions and learning strat-
egy are discussed and analyzed. Results from selected problems demon-
strate the use of reinforcement learning to improve or fine-tune prior poli-
cies within a mode-oriented paradigm while maintaining robustness to un-
certain environmental parameters.

INTRODUCTION

Spacecraft autonomy has long been regarded as a “holy grail” of spacecraft guidance,
navigation, and control research.1 Decades of development have yielded few fully au-
tonomous spacecraft; instead, mission planners and operators increasingly rely on auto-
mated planning tools to inform and support high-level decision making, in part due to the
ability of human operators to act under environmental uncertainty, changing or competing
mission objectives, and hardware failure. Advances in the field of artificial intelligence and
machine learning techniques present one avenue in which these problems can be addressed
without bringing humans into the loop. This work aims to extend the state-of-the-art in
spacecraft autonomy by applying contemporary machine learning techniques to the high-
level mission planning problem.
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At present, examples of spacecraft autonomy typically fall into two categories: rule-
based autonomy and optimization-based autonomy. Rule-based autonomy treats a space-
craft as a state machine consisting of a set of mode behaviors and defined transitions be-
tween modes. Pioneered by missions like Deep Impact,2 and currently used by missions
such as the PlanetLabs constellation,3 spacecraft using rule-based autonomy transition be-
tween operational and health-keeping modes (charging, momentum-exchange device desat-
uration) autonomously without ground contact. Typically, the design of these autonomous
mode sequences is pre-defined or based on pre-launch criteria. Rule-based approaches are
attractive from an implementation perspective, as they require little computing power and
can be tested to validate their rigid transition criteria. Nevertheless, these rigid rule-sets are
“brittle” to changes in mission parameters, such as hardware failures or new science ob-
jectives. They also require accurate understanding of the mission environment in order to
prepare for unwanted behavior. Additionally, rule-based approaches do not readily support
the integration of multiple competing mission objectives, and require that those trades be
made on the ground with humans in the loop before mission sequences are uploaded.

In contrast to rule-based approaches are a class of tools that use models of spacecraft
behavior and hardware to generate mission plans on the ground while considering mis-
sion objectives, which this work broadly describes as “optimization-based” autonomy.
Within this class of algorithms, the spacecraft and its mission are viewed in the framework
of constrained optimization, with the spacecraft’s hardware and trajectory acting as con-
straints and metrics of mission return—images taken, communication link uptime, or other
criteria—are the values being optimized. In contrast to rule-based autonomy, optimization-
based autonomy typically requires large amounts of computing power that precludes their
use on-board. This method also requires realistic models, and well developed testing
environments. Examples of this work include the Applied Physics Laboratory’s SciBox
software library (used to generate MESSENGER mode sequences) and the ASPEN mis-
sion planning suite developed by the Jet Propulsion Laboratory and applied to the Earth
Observing-1 mission.4

As both rule- and optimization-based autonomy techniques become more mature, the
search for “next-generation” spacecraft autonomy approaches has begun. As with contem-
porary approaches, emerging techniques in autonomy should reduce mission development
and operational cost while improving mission returns. New techniques should also improve
upon autonomy runtime, ability to deal with uncertainty, ability to learn from past experi-
ences, and the ability to make mission-level decisions. The need for adaptability strongly
suggests the use of machine learning (ML) techniques as a core of autonomous decision
software.

Recent advances in machine learning may hold the key to these next-generation ap-
proaches for spacecraft autonomy and on-board decision-making, as they by definition
allow agents to improve their behaviors as they gain experience. Contemporary reinforce-
ment learning approaches, for example, do not require knowledge of system models and
scale relatively well to large problems with multiple constraints or non-convex reward func-
tions.5 This work aims to explore the applications and frameworks necessary to apply deep
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reinforcement learning to the spacecraft decision-making problem.

A small collection of other works in the application of machine learning techniques to
spacecraft problems exists in the recent literature, mostly focusing on the application of
learning approaches to control problems in uncertain environments. Several works such as
References 6 and 7 have considered reinforcement learning in the context of autonomous
aerobraking planners, with mixed results. Others explore machine learning techniques
for asteroid proximity operations8 or autonomous lunar landing.9 Importantly, these ap-
proaches have focused on low-level control with reinforcement learning, an area that has
been traditionally been covered by conventional estimation and control techniques with
great success. In contrast, this work explicitly examines applications of reinforcement
learning to high-level spacecraft planning and decision-making problems that have tradi-
tionally been the domain of rigid expert policies or optimization-focused strategies.

This work explores an approach to fit spacecraft autonomy into the Partially-Observable
Markov Decision Process (POMDP) framework and its general solution through model-
free “Deep-Q” reinforcement learning. First, background on POMDPs and RL are pre-
sented and their relevance to the spacecraft autonomy problem are outlined. Next, several
demonstration problems representative of applications for spacecraft autonomy are pre-
sented within this framework, and solved using Deep-Q reinforcement learning. A brief
overview of verification strategies for this approach are provided. Finally, these results are
discussed and future work within the field outlined.

PROBLEM STATEMENT

In the search for future autonomy approaches, it is desirable to both replicate existing ca-
pabilities in the realm of rule-based and optimization-oriented autonomy while improving
their extensibility, robustness to unmodeled dynamics, and computational burden. To pro-
vide a feasible scope, this work specifically considers the mission-level decision-making
problem wherein sub-plans (“modes”) have already been identified, either by some other
planning routine or by designers pre-flight. In this context, a decision-making agent must
account not only for mission objectives, but also the constraints imposed by spacecraft
hardware, orbital and attitude mechanics, and uncertainty regarding known or unknown
environmental parameters.

A common framework for representing and “solving” such problems are POMDPs com-
pactly represent the processes facing a software agent acting in an evolving environment
according to some higher-level objective.10 The mathematics of such processes, and chal-
lenges associated with them, are reviewed briefly here.

A model of several time-steps of a classical POMDP is presented in Figure 1, and dis-
cussed further here. As in traditional Markov Decision Processes, the state in a POMDP is
updated by a transition function F , and at any given time can be computed as a function of
the previous state and the most recent action taken by the considered agent(s):

sk = F (sk−1, ak−1) (1)
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Figure 1. Partially Observable Markov Decision process framework for considering
decision problems.

This state sk is observed by the agent according to some observation function H:

ok = H(sk) (2)

Given an observation ok of the state, the agent then selects an action ak to influence the
future state according to some policy π:

ak = π(ok) (3)

While these transition functions represent physical or software-defined process dynamics,
the objective of an agent is ultimately motivated by a reward function R:

rk = R(sk−1, ak−1, sk) (4)

The objective of a software agent within a POMDP is to select a policy π that maximizes
its realized reward.

While the general POMDP case places no restrictions on the nature of any of the tran-
sition functions or states, the consideration of infinite-dimensional, continuous state and
action spaces can be extremely computationally intensive. For this reason, many applied
autonomy approaches that leverage POMDPs perform some degree of discretization to
their state or action space. Additionally, it is noted that POMDPs attempt to describe holis-
tic, system-level problems within a unified framework that is theoretically related to but
practically divorced from traditional estimation and control approaches. For these rea-
sons, POMDP-based approaches to autonomy are most frequently studied in cases where
traditional estimation and controls approaches are not readily tractable, including human-
assisted machine decision-making11 or multi-vehicle coordination problems.12

For a spacecraft, the general high-level autonomy POMDP can be stated as follows.
Given the constraints of orbital dynamics, on-board hardware, and pre-defined software
behaviors, select the sequence of behaviors that best satisfies mission objectives.

Mode-Based Planning

A long-standing problem in the application of reinforcement learning is the manner in
which prior knowledge about a given system can be applied.5 For space applications, many
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“low-level” control and estimation problems are well-solved by traditional techniques;
rather than training a learner to re-implement orbital mechanics, it is preferable to leverage
existing domain knowledge and shift the application of autonomy algorithms to high-level
mission planning. In effect, this approach breaks the spacecraft command problem into a
set of sub-problems that are assumed to be addressed using traditional approaches, allowing
the autonomous agent to focus on the proper scheduling and sequencing of these software
“modes” to meet mission objectives.

Mission sequences are discretized in time and dynamics by the application of spacecraft
operational “modes,” which describe discrete classes of spacecraft states. Modes occur for
finite durations reflecting the needs of the behavior compartmentalized by said mode; for
example, a “control” mode would be designated to run for the settling time of the control
system before handing off command of the spacecraft systems back to the planning agent.

This approach has a number of benefits. First, the specific behaviors of individual modes
can be abstracted away and solved using prior knowledge and traditional techniques, al-
lowing for existing knowledge about spacecraft control or mission needs to be applied.
At the same time, this approach reduces the action space for a planner from an infinite-
dimensional space of control inputs to a set of discrete modes, thereby reducing computa-
tional burden. Finally, this action realization does not preclude the use of continuous state,
observation, or reward spaces.

Reinforcement Learning Solutions

Astrodynamics and spacecraft-planning problems are typically considered in the con-
text of continuous estimation and control, as many of the processes facing such systems
are infinite-dimensional with well-understood, reasonably accurate models. Unfortunately,
the high-level relationships between spacecraft actions and the satisfaction of mission ob-
jectives is less analytically tractable, and frequently mixes discrete reward states (such as
whether a geological feature has been imaged) with continuous ones (such as the manage-
ment of spacecraft power states). Reinforcement Learning techniques—a subtype of ma-
chine learning which focuses on deriving solutions to POMDPs from prior experiences—
are not restricted to addressing problems with continuous models, or indeed with any mod-
els at all.

Traditionally considered in the context of discretized systems (“tabular” RL), recent ad-
vancements in the training of large Artificial Neural Networks (ANNs) has led to the de-
velopment of so-called “Deep” RL techniques.13 In comparison to traditional tabular rein-
forcement learning, Deep RL can directly consider infinite-dimensional input and output
spaces without the need for discretization, and without losing the ability to address systems
consisting of both discrete and continuous states and actions. A suite of representative
Deep Learners has been implemented in Python for use with OpenAI’s gym14 environ-
ment, which provides a standard interface for reinforcement learning problems. A portion
of this work exploresthe performance of different model-free Deep Reinforcement learners
with respect to end performance, computational cost, and data efficiency.

Reinforcement learning offers a variety of approaches to solving general Markov De-
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cision Processes (MDPs), which are simplified forms of POMDPs without the issue of
observation functions. The goal of reinforcement learning is to find an optimal policy π∗

that maximizes the expected future reward of the agent.

The optimal policy, π∗, is the policy with the largest expected sum or rewards or value
function. The cumulative value function is discounted sum of the rewards from the current
time onward and is given below

V (s0, s1, s2, ...) =
∞∑
t=0

γtrt 0 ≤ γ < 1 (5)

where γ is the reward discount factor. This term weights the importance of future rewards
relative to the current reward. Given this framework, the optimal policy is that which
maximizes the expected discounted future reward.

π∗ = arg max
π

E

[
∞∑
t=0

γtrt

]
(6)

This leads to another expression for the cumulative value function referred to as Bellman’s
Equation:

V (s) = R(s) + γmax
a

∑
s′

p(s′|s, a)V (s′) (7)

where p(s′|s, a) is the probability of the agent being in state, s′, after performing action, a,
in state s.

Deep Q-Learning

Deep Q-Learning (DQN) performs Q-Learning updates, but the action-value function,
Q, is learned using a fully connected neural network. The neural network consists of an
input layer with a neuron for each agent state in s. The output layer contains a neuron
for each possible action, a. This implementation produces a Q value for each possible
action given agent’s current state. The loss function for the Q-Learning neural network
(Q-network) is

Lk(θk) =
(
r + γmax

a′
Q(s′, a′; θk)−Q(s, a; θk)

)2 (8)

where θk are the Q-network parameters at iteration k, and Q(s′, a′; θk) represents the Q-
function evaluated for s′ and a′ with the parameter set θk. RMS error is used as the loss
function for back-propagation. Instead of updating a table with new values of Q, the DQN
algorithm performs back-propagation on the Q-network with a new target value.

Recent research has produced a number of tweaks and incremental improvements to
DQN implementation that improves its convergence properties and stability. The DQN al-
gorithm used to demonstrate our results includes the following architectures and improve-
ments:
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1. Epsilon Annealing: The explore-exploit trade-off inherent to reinforcement learning
is dealt with here by using an epsilon-greedy strategy, wherein actions are selected
according to the agent’s understanding of maximum value with probability 1− ε and
randomly otherwise. Here, ε is reduced linearly from 1 for a portion of the training
period to drive convergence.5

2. Target Network: DQN reward progress is often unstable during training. The agent
may look like it has converged, but in another few episodes, will appear to have
forgotten all of its training. Target networks help to prevent this phenomenon by
decoupling the feedback in Bellman’s equation in Eq. (9). The target values for the
Q network update now use a frozen Q network that is update periodically (every C
steps in algorithm 1). This change increases network convergence stability during
training.15 This change results in a loss function that is updated using the target
network’s parameters, θ̂k:

Lk(θk) =
(
r + γmax

a′
Q(s′, a′; θ̂k)−Q(s, a; θk)

)2 (9)

3. SARSA (State-Action-Reward-State-Action): This is an adjustment to the loss func-
tion such that the value function does not always select the next maximum-value
action, but instead uses the experienced action transitions to update the reward func-
tion to prevent “burn-in” behaviors from bad random seeds.5 After this change, the
loss function is written as

Lk(θk) =
(
r + γQ(s′, a′; θ̂k)−Q(s, a; θk)

)2 (10)

4. Eligibility Trace: Sample sparsity is an issue for space systems; additionally, multi-
step behaviors may be missed by a simple one-step Bellman update. To this end,
additional future state-action pairs are sampled using an eligibility trace method-
ology, which adds additional discounted state-action pairs sampled along the same
trajectory to the current update. This n-step backup adjusts the loss function further
to

Lk(θk) =
(
(r +

n∑
i=1

γiQ(si, ai; θ̂k) +−Q(s, a; θk)
)2 (11)

5. Replay Memory: Recency bias is an issue when rewards are sparse or when optimal
behavior is unlikely to come out of random action sequences. To account for this, the
DQN algorithm used in this paper (algorithm 1) utilizes a replay memory. A finite
backlog of agent experiences are ‘remembered’ after each environment step. The
replay memory is sampled at each step to train to the Q network. Replay memory en-
ables the agent to train on successful experiences multiple times and helps to prevent
‘catastrophic forgetting’.15
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Figure 2. Q Network Structure for Station Keeping and Mars Orbit Insertion.

This algorithm is deeply sensitive to random seed, hyperparameters (i.e., parameters that
inform and guide the parameter learning, such as the learning rate or number of neurons),
and the reward function.16 It is often difficult to predict whether or not the algorithm
will converge to a reasonable policy. As a result, there are numerous modifications to the
traditional DQN algorithm to increase the stability of learning and to ensure convergence
for a variety of parameters.

REPRESENTATIVE SCENARIOS

While Deep-Q Networks and Partially-Observable Markov Decision processes are gen-
eral enough to be applied to virtually any problem, implementation-specific details can be
sufficient to prevent learner convergence or harm performance. For this reason, a pair of
scenarios reflecting challenges faced by an autonomous spacecraft attempting an interplan-
etary mission are presented here as POMDPs. Both scenarios share common dynamics
models and several common actions, and can therefore be taken to represent the same
spacecraft at different points in its mission life-cycle.

The “true” non-linear dynamics resulting from gravity interactions are taken to follow
the two-body equations of motion in the presence of perturbing accelerations:

r̈ =
−µ
r3

r + ap (12)

At the same time, a pre-defined reference trajectory obeying two-body dynamics without
perturbing accelerations is used to define the desired mission:

r̈∗ =
−µ
r∗3

r∗ (13)

The ignorant propagator in Equation (13) is also used to propagate forward the spacecraft’s
current orbital state estimate, x̂. The resulting state and estimate errors are defined as

es = x− x∗, eest = x− x̂ (14)
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Figure 3. Visual depiction of the Mars Orbit Insertion scenario.

Likewise, the spacecraft-internal control error is defined as:

ec = x̂− x∗ (15)

It is assumed that a team of guidance and controls engineers has devised a pair of mutually-
exclusive software states that cause the spacecraft’s estimation and control errors to decay
exponentially. A necessary task for both of the presented scenarios therefore includes the
management of estimate and control error while accomplishing other mission objectives.
Under the mode-based planning paradigm, the planner considers the state and error dynam-
ics over discrete time-steps that are scenario specific.

These models, alongside a family of deep reinforcement learning agents, is implemented
in Python using the OpenAI gym framework14 to represent the spacecraft-mode POMDP
interface in a standardized manner. The deep learning agents are created using Keras ∗

using Tensorflow17 back-end.

Orbit Insertion

The first environment simulates insertion into orbit about a planet, as is represented vi-
sually by Figure 3. This is an example of an interplanetary mission in which a spacecraft
is flying towards Mars, and needs to conduct an impulsive maneuver at the correct time to
enter orbit about Mars under uncertain knowledge of its state. This type of decision is cru-
cial to the success of many interplanetary missions, and therefore represents an important
challenge for proposed autonomy systems. This is also an example of a timely maneuver
in which any unexpected behavior could be lethal to the mission as ground teams could

∗https://keras.io
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Table 1. Initial Conditions Dispersons for Orbit Insertion

Parameter Dispersion
Semi-major axis of true trajectory N (-2000, 100)

Eccentricity of true trajectory N (2, 0.01)
True anomaly of true trajectory N (-1.5, 0.01)

Semi-major axis of estimated trajectory N (-2000, 100)
Eccentricity of estimated trajectory N (2, 0.01)

True anomaly of estimated trajectory N (-1.5, 0.01)

not react in time. All simulations are run with an unmodeled acceleration of Mars’ second
gravitational spherical harmonic J2 for true propagation.

Under the mode-control paradigm, the spacecraft considers an additional mode, “thrust,”
which applies an impulsive ∆V computed with it’s estimated states at a specific time and
reflects a major maneuver to adjust its trajectory. The challenge of the orbit insertion sce-
nario is therefore to ensure that this thrust is applied at the correct time to ensure orbit
insertion, while at the same time maintaining accurate position estimates and controlling
towards a defined reference trajectory. Furthermore, the knowledge of the true spacecraft
states are paramount to the spacecraft thrusting correctly.

Figure 4. Reference Trajectory changed by thrust maneuver

Figure 4 pictures the reference trajectory. The initial orbit is a hyperbolic fly-by with
a semi-major axis of a = −2, 000km, eccentricity of e = 2, and initial true anomaly of
ν = −1.5 rad. The goal orbit has a semi-major axis of a = 2, 000km, eccentricity of
e = 0.01, inclination of 0rad, true anomaly of ν = 0.01 rad. This scenario therefore brings
a spacecraft from a hyperbolic fly-by orbit into a captured circular orbit around it’s target
planet (Mars). Each mode has a length of 2 minutes with a time step of 5 seconds.

Table 1 shows the dispersions on the initial conditions that are used for training in the
section on MOI results.
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Science Station Keeping

After orbit insertion, spacecraft typically transfer to a “mission” orbit and begin conduct-
ing operations. However, while in this orbit, un-modeled perturbations will steady force the
spacecraft away from its desired orbit, thereby degrading or preventing mission operations
from taking place.

This environment approximates this behavior with the Estimation and Control modes de-
scribed above with the addition of a reward-producing “science” mode that reflects mission-
oriented behaviors. Within the presented framework, activating the Science mode causes
the spacecraft to achieve a reward proportional to its distance from the target orbit. To
represent attitude or instrument constraints, it is assumed that the spacecraft state estimate
and the true spacecraft state drift away from the reference in this mode.

Ten individual modes are considered, approximating one orbit’s worth of behavior.

SCENARIO RESULTS

Science Station Keeping

The science station-keeping problem is attractive for the aforementioned framework and
serves as a representative example for a simple mode-scheduling problem. Initially, a sim-
ple Deep-Q network was implemented to control the system. The network inputs were
taken to be the reference position and velocity, the estimated position and velocity, and
the estimated position and velocity covariances to represent the spacecraft’s knowledge of
uncertainty. Combined, this represented an 18-state observation vector at the end of each
mode. Reward was provided in a sparse manner based on the actions taken:

rsci =
rbase

(1 + eTc ec)
(16)

which ensures that the reward in science mode is always greater than or equal to zero, but
still drops off as the orbit error increases. Reward in other modes is zero, reflecting their
lack of contribution to the mission objective. Additionally, by ensuring that the reward is
always positive, this process simplifies troubleshooting the training of the Q-approximating
neural network and avoids large swings in the value of Q depending on whether or not
science is performed.

In the hope of improving performance, an “expert-designed” prior policy is used to ini-
tialize the neural network before engaging in random exploration/exploitation. Unfortu-
nately, this “naive” approach to deep-Q learning frequently yielded non-convergent results,
as shown by the reward versus training episode plot in Figure ??.

To remedy this, the neural network inputs are simplified. Rather than including all 18
desired, estimated, and covariance states, the learner is provided with the 2-norm of the
estimated control error and the 2-norm of the diagonals of the covariance matrix.

O = {δx = ||x̂− x∗||, C = ||diag(C)||} (17)
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This has two effects: first, it simplifies the observation from eighteen states to two, which
reduces the number of parameters the network needs to train on; second, it directly relates
the input parameters to the designated control modes, aiding linear separability (which is
thought to improve RL performance).16 Under this modification, performance of the learner
dramatically improved in terms of both training time and received reward. Under the final
hyperparameters listed in Table 2, as well as the addition of deep eligibility traces to the
learner, the positive results of Figure 5 are generated. As shown in Figure 5, the converged
learner improves upon the expert prior policy by a factor of 1.5×, and successfully learns
to estimate and control before entering a science mode.
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Figure 5. Converged station keeping results

Orbit Insertion

A second Deep-Q learning agent is implemented to address the orbit insertion scenario.
Orbit insertion introduces new challenges to overcome in order to robustly train agents for
autonomous decision-making. These challenges revolve around the binary success criteria
of the thrust maneuver. The ability to thrust is an action of equal weight to estimation or
control modes. This encourages the agent in training to use it promptly, and very frequently
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Table 2. Hyperparameters used in training the final StationKeep iteration.

Parameter Value/Type
Number of Hidden Layers 1

Hidden Layer Depth 64
Hidden Layer Activation ReLU
Output Layer Activation Linear

Science Reward Multiplier 1
Learning Rate 0.01

Number of Training Episodes 10,000
Annealing Segment Length 3,000

fall into a local minimum that consists in thrusting immediately and attempting to minimize
further errors with the control mode.

These challenges are overcome by implementing an eligibility trace and by forcing the
thrust maneuver to occur in a 5-step window, centered around the expected thrust time
(8th step given the initial conditions). This gives the RL agent the ability to optimize
the thrust time, but doesn’t require it to learn known astrodynamics facts: that the thrust-
time is optimal at periapse of the hyperbolic orbit. By including knowledge of the dynamic
models, the Deep-Q learning paradigm can be augmented to accommodate for an otherwise
difficult task to optimize around. Furthermore, the reward function is smoothed around the
optimal thrust time to help the optimization process to navigate the reward surface without
discontinuities. The reward function in this scenario is less sparse than previously. A term
is added for the state error (estimated state with respect to the reference), another term is
added for control cost, and a positive reward is added for thrust timing:

r(e, c,∆V) = wee
T
c ec︸ ︷︷ ︸

state error

+
control cost︷︸︸︷
wcc + wt∆V︸ ︷︷ ︸

thrust reward

(18)

Where e is the state error, c is the control authority used and ∆V is the norm of the thrust
impulse. we, wc, and wt are the weights corresponding to the state error, the control cost,
and the thrust respectively. The values of these weights are a key component to the success
of the agents learning. If the weight on the state error is large relative to the other costs, a
poorly timed thrust could make that penalty abruptly skyrocket. However, if it is too small
(or not accounted for) the spacecraft will not continue controlling orbit position after the
thrust. Furthermore, it is difficult for the agent to learn to be on the correct trajectory in
order to thrust at the right time and position.

Weights that allow for successful training are listed in Table 3, where tthrust is the time at
which the thrust action is taken by the agent, while tref is the time at which the reference
changes orbits. This form for wt allows for the aforementioned smoother, more continu-
ous decay in the reward for thrusting off target. The scale of 100 is for the reward to be
commensurate with the state errors penalties.
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Table 3. Weights in the Orbit Insertion Reward Function

Weight Value
we -0.1
wc -0.05
wt

100
1+|tthrust−tref|

(a) Smoothed reward during deterministic train-
ing

(b) Smoothed reward during dispersed training

Figure 6. MOI Reward as a function of episode in training

In order to further help with these challenges, a rational agent is also run for 100 episodes
of the training. This rational agent alternates between estimation and control, and thrusts
at the 8th step which is exactly when the reference changes. As in the stationkeeping envi-
ronment, this helps the agent in the initial exploration phase by guaranteeing the discovery
of the global minimum. Hyperperameters used in the Orbit Insertion scenario are listed
in Table 2. The network inputs are the spacecraft state error with respect to the reference
trajectory, the norm of the estimator covariance of these states, and the time to expected
thrust. The first two components of the network inputs are identical to the functioning
station-keeping environments. The time to expected thrust transmits the knowledge of the
simulation time relative to the expected thrust maneuver to the network.

The agent is trained in the MOI environment with deterministic initial conditions and
random initial conditions. Figure 6(a) shows the results of the RL algorithms reward as a
function of episode of training in the deterministic case. The rational agent appears to be
optimal—with cumulative rewards of 331—and the trained agent is able to replicate the
correct maneuver. Figure 6(b) shows the same reward plot with dispersed initial conditions
for the training. In the random case, the rational agent performs far less well with cumu-
lative rewards averaging around -800. The trained agent outperforms the rational agent in
the end of it’s training with usually positive rewards sometimes reaching 300.

The orbit insertion environment posed challenges usually tied to the discrete nature of
the thrust command. Yet with some knowledge of the model and by preventing clearly
undesirable actions, a RL agent is able to optimize the necessary actions within 10,000
runs. Figure 7 shows the state and estimation errors and thrust maneuver for one of the
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Figure 7. Mode Sequence for dispersed Orbit Insertion

dispersed runs. As could be expected, the agent first estimates to know its state error, then
controls to the reference before thrusting at the correct step (8th step). Then it continues to
alternate between estimation and control after the thrust in order to minimize reward losses.
The thrust line shows the value of the thrust vector that is applied during the maneuver. The
three trajectories are pictured in Figure 8.

AGENT VALIDATION AND GENERALIZATION

On-board applications of autonomy for spacecraft require not only a high level of per-
formance, but also the ability to be rigorously validated. Additionally, overfitting of deep
reinforcement learning agents frequently prevents DRL agents from applying their knowl-
edge successfully when environment parameters change, thereby undercutting one of the
primary advantages of reinforcement learning as a basis for autonomy. While rigorous
proofs of performance are not yet available for deep reinforcement learning, the mode-
based framework allows for the use of tools from hybrid systems to validate trained deep
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Figure 8. Three trajectories during insertion maneuver

reinforcement learning agents. The described mode-based framework directly falls into the
category of continuous-time switched-mode systems (CSMS), which is stated formally as
a system whose dynamics obey:

ẋ = fi(x(t)) ∀ x(t) ∈ Xi (19)

where Xi represents the state space of the switched system and i represents one of the sys-
tem’s switched dynamics. Branicky18 describes the necessary conditions for such a system
to be stable in the sense of Lyapunov using the theory of multiple Lypaunov functions. One
notion of stability that arises from this definition is the convergence of a switched system to
a limit set or limit cycle. Figure 5(c) shows that the trained agent appears to produce cyclic
behavior in the observed parameters. This suggests that the system’s multiple candidate
Lyapunov functions can be taken directly from the environment’s observation function:

V1 = δx (20)
V2 = ||diag(C)|| (21)

To evaluate the trained agent’s convergence properties, these functions are observed over
a lengthened simulation run and plotted against each-other in the style of a phase-plane.
Clearly, the agent is able to guide the mode-switching process not only to maximize the
achieved reward, but also to stabilize the system towards a limit cycle while doing so.

With this testing approach established, the sensitivity of the trained agent to changes in
the environment. Three cases are evaluated, as listed in Table 4; these cases are intended to
showcase the effects of changing environmental disturbance magnitudes, worsening sensor
performance, and the combination of these two attributes relative to the training environ-
ment. The results of this test are shown in Figure 9.

None of the tested cases produced divergent behavior even with large changes to the
environment’s parameters. While the shape of the limit cycle in the phase plane appears to
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Table 4. Environmental parameters used to validate the Science Stationkeeping environment.

Value Nominal High J2 High Sensor Error Combination
J2 J2 100 J2 J2 100 J2
λ 0.01 0.01 1 1

10−2 100 102 104

S/C Reference Error

10−3

10−2

10−1

100

101

102

103

S
/C

R
ef

er
en

ce
C

ov
ar

ia
n

ce

0

200

400

600

800

1000

T
im

e
(m

o
d

es
)

(a) Nominal

10−1 101 103

S/C Reference Error

10−3

10−2

10−1

100

101

102

103

S
/C

R
ef

er
en

ce
C

ov
ar

ia
n

ce
0

200

400

600

800

1000

T
im

e
(m

o
d

es
)

(b) High J2
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(c) High estimation noise
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(d) Combination

Figure 9. Phase plots demonstrating stationkeeping convergence. Dots represent
mode transitions (red=control, blue=estimation, green=science) while joining line
color represents time.
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be environment-specific, convergence is clearly achieved to this cycle without modification
to the agent itself. Notably, due to the reward structure of the environment, many of the
high-noise cases do not result in large rewards; however, this can be interpreted as the
agent attempting to jockey for a position in which rewards might be available. As these
behaviors occurred without retraining on a different timescale, they are taken to represent
generalization with respect to the environment’s parameters.

CONCLUSION

This work has successfully reformulated the general spacecraft decision problem into the
POMDP framework, setting the stage for future studies in this area through an open-source
library using OpenAI’s gym framework. The use of reinforcement learning techniques has
been adapted to the spacecraft state machine paradigm: combining Deep-Q learning with
POMDP to produce policies that are comparable to “expert” priors.

Various reward structures, hyperparameters, and environment parameters have been con-
sidered throughout the experimentation. It appears that failure to obtain positive results in
applying Deep-Q reinforcement learning to the spacecraft control problem is the result of
insufficient sampling of the problem space. This issue is exacerbated by the large compu-
tational requirements for the environments, which slows the training problem considerably
compared to simpler environments.

Additionally, the mode-based paradigm for designing future decisionmaking algorithms
directly lends itself to verification by way of hybrid systems theory. This work presents
one optic by which that theory could be used to define “successful” or “stable” autonomous
decision agents.

Future work includes the investigation of model-based reinforcement learning techniques
to decrease sample requirements and leverage existing knowledge about the space environ-
ment. Additionally, higher-speed models built using the Basilisk astrodynamics frame-
work† will be investigated to speed training time. Furthermore, in order to further improve
the orbit insertion performance, it could be judicious to work back up from a functional
station keeping environment. By adding the thrust command with high delta-V, and by
restricting the authority of the control action, the learner will need to use this action to
minimize costs. Adding this and progressively adding complexity the scenario could yield
more consistent results.

REFERENCES

[1] C. R. Frost, “Challenges and Opportunities for Autonomous Systems in Space,” National Academy of
Engineering’s U.S. Frontiers of Engineering Symposium, 2010.

[2] D. G. Kubitschek, “Impactor Spacecraft Encounter Sequence Design for the Deep Impact Mission,” Jet
Propulsion, 2005, pp. 1–14.

[3] C. Foster, H. Hallam, and J. Mason, “Orbit determination and differential-drag control of Planet Labs
cubesat constellations,” Advances in the Astronautical Sciences, Vol. 156, 2016, pp. 645–657.

†http://hanspeterschaub.info/bskMain.html

18

http://hanspeterschaub.info/bskMain.html


[4] S. A. Chien, D. Tran, G. Rabideau, S. R. Schaffer, D. Mandl, and S. Frye, “Timeline-Based Space
Operations Scheduling with External Constraints,” Proceedings of the 20th International Conference
on Automated Planning and Scheduling (ICAPS), No. Icaps, 2010, pp. 34–41.

[5] R. S. Sutton and A. G. Barto, “Reinforcement learning,” Learning, Vol. 3, No. 9, 2012, p. 322,
10.1109/MED.2013.6608833.

[6] A. Harris, “Towards Reinforcement Learning Techniques For Spacecraft Autonomy,” AAS Guidance,
Navigation and Control Meeting, 2018, pp. 1–10.

[7] A. D. Cianciolo, R. W. Maddock, J. L. Prince, A. Bowes, R. W. Powell, J. P. White, R. Tolson,
O. Shaughnessy, and D. Carrelli, “Autonomous Aerobraking Development Software : Phase 2 Sum-
mary,” 2013 AAS/AIAA Astrodynamics Specialist Conference, 2018, pp. 1–16.

[8] B. Gaudet and R. Furfaro, “Robust Spacecraft Hovering Near Small Bodies in Environments with Un-
known Dynamics Using Reinforcement Learning,” 2012 AIAA/AAS Astrodynamics Specialist Confer-
ence, No. August, 2012, pp. 1–20, 10.2514/6.2012-5072.

[9] I. B. Roberto Furfaro, “Deep Learning for Autonomous Lunar Landing,” Proceedings of the 2018
AAS/AIAA Astrodynamics Specialist Conference, Snowbird UT, 2018.

[10] A. R. Cassandra, “A Survey of POMDP Applications,” Uncertainty in Artificial Intelligence, 1997,
pp. 472–480.

[11] K. D. Julian and M. J. Kochenderfer, “Autonomous Distributed Wildfire Surveillance using Deep Rein-
forcement Learning,” No. January, 2018, pp. 1–16, 10.2514/6.2018-1589.

[12] E. Sample, N. Ahmed, and M. Campbell, “An Experimental Evaluation of Bayesian Soft Human Sensor
Fusion in Robotic Systems,” No. August, 2012, pp. 1–19, 10.2514/6.2012-4542.

[13] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, Vol. 521, No. 7553, 2015, pp. 436–444,
10.1038/nature14539.

[14] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba, “OpenAI
Gym,” 2016, pp. 1–4, 10.1021/am3026129.

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep reinforcement learning,” Na-
ture, Vol. 518, No. 7540, 2015, p. 529.

[16] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, “Deep Reinforcement Learn-
ing that Matters,” 2017.

[17] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
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