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Spacecraft in Low Earth Orbit (LEO) typically consider atmospheric drag as a primary
disturbance force. Growing interest in fuel-constrained small satellites, large LEO con-
stellations, and robustness under thruster failure has motivated these drag forces for orbit
control. The dependence of drag forces on a spacecraft’s flow-wise projected area drives cou-
pling between attitude and orbit states. A nonlinear model for attitude-driven drag based
on collections of flat facets is presented and linearized about a reference orbit-attitude con-
figuration, transforming the nonlinear orbit control problem into a linear differential-drag
relative motion problem. The linearized dynamic model is used to provide insight into
the controllability or lack thereof of relative orbit states from attitude alone given selected
“deputy” and “chief” geometries/attitudes. Furthermore, the system’s controllability is
demonstrated under both linearized and nonlinear dynamics using a Linear Quadratic Reg-
ulator (LQR)-derived controller. While sensitive to the selection of state and control tuning
parameters, this control strategy shows good convergence under the key assumptions of
local relative motion and small attitude variation.

Nomenclature

r Vector
rO/H Vector from point O to point H
r Magnitude of vector r
[R] Denotes a matrix, R
r̂ Unit vector
r̃ Skew-symmetric matrix of vector r
Br Vector expressed in B frame
ṙ Inertial time derivative
Bdr
dt Time derivative as seen by B frame

[BN ] Rotation matrix from frame N to frame B
CD Nondimensional drag coefficient
CL Nondimensional lift coefficient
ωB/N Spacecraft angular velocity vector between frames B and N
ρ Local neutral atmospheric density
A Area

Subscript
n Panel normal vector
p Panel position vector
i Panel number
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I. Introduction

Atmospheric forces on spacecraft have long been recognized as an avenue for coupling between attitude
and orbital dynamics.1 Owing to its dependence on atmospheric density, these forces and torques are small
relative to gravity and are typically considered as perturbations in the context of orbital motion. However,
at LEO altitudes, forces from atmospheric interactions can have substantial impacts on spacecraft orbits.2

For spacecraft that lack the volume or mass to mount thrusters (such as cubesats) or those whose thrusters
are disabled but which maintain attitude control through other means, the coupling between attitude and
orbital motion through drag presents one method of recovering mission utility. Additionally, there is rising
interest in large LEO constellations for telecommunication and Earth-imaging. In this context, drag-enabled
attitude-orbit coupling could provide a propellant-free method for formation constitution and maintenance,
thereby extending mission lifetimes and reducing constellation costs.

In concept, this work is similar to an existing body of literature that focuses on ballistic-coefficient
controlled differential-drag formation flight. These techniques focus on the control of one or more spacecraft’s
ballistic coefficient by means of actuated flaps3 or panels, and treat either the ballistic coefficient or the
spacecraft flow-wise projected area as the primary control input.4 The addition of actuated flaps and panels,
while attractive for control purposes, unfortunately adds additional cost and system complexity that is
undesirable for mission managers. Many spacecraft, including cubesats, have geometries whose projected
areas vary with attitude as demonstrated in Figure 1.

Figure 1: A PlanetLabs Dove
spacecraft demonstrating non-
uniform geometry

Horsley et al5 presents one method for incorporating the limitations
of purely geometric-driven differential drag control as part of a two-step
nonlinear planning and control routine. In this work, discrete attitude
configurations are selected to produce positive, negative, and zero rel-
ative accelerations, effectively using the spacecraft attitude to provide
“bang-bang” orbit control. This discrete-attitude-mode approach to dif-
ferential drag flight is used operationally by Planet Labs for constellation
constitution and maintenance on their large-scale Earth-imaging cubesat
constellation.6 This approach does not require complex, on-line modeling
of spacecraft geometries and provides the maximum possible differential
drag for a pair of spacecraft.

However, the “bang-bang” approach used by many discrete-attitude-
mode controllers incurs substantial mission costs, due to both the time needed to conduct a maneuver and the
potentially large attitude maneuvers needed to modulate the spacecraft attitude between configurations. For
cubesats like the Planet Labs Dove, maneuvering between a minimum-drag and maximum-drag configuration
requires a 90◦ slew. As such, spacecraft are not capable of conducting mission operations during orbit
maintenance periods. Dell’Elce and Kerschen7 present a method of single-axis attitude-driven orbit control
for the QB50 constellation using an on-line optimizer and compensator. The computational intensiveness of
this technique requires the use of approximations for online application, but nevertheless provides credibility
to the concept of differential-drag control based on small attitude motions.

This work aims to improve the utility of drag-based orbital maneuvering by providing an alternative to
bang-bang attitude-driven differential drag control. To do so, the coupling between spacecraft geometries and
experienced drag through attitude must be explored directly. The influence of geometry and surface material
properties on spacecraft drag is a subject of intense research due to its importance in both space object
tracking and aeronomy studies. For analytic insight, facet-based models such as those explored by Sutton8

provide reasonable accuracy and analytical insight into the dynamics of the “true” system. An alternative
approach is the use of multi-particle Monte-Carlo (MPMC) or other MC-based methods to develop lookup
tables or fitted analytical functions to approximate the real drag behavior of a given spacecraft. While
potentially more accurate in the presence of concave geometries,9 simple convex geometries are reasonably
well-modeled by analytical expressions.

Coupling between translational and rotational motion has been treated extensively in the context of
robotics, providing a beneficial framework for analyzing problems in astrodynamics. Filipe10 develops a
methodology for conducing coupled rotational-translational control for spacecraft rendezvous using a dual-
quaternion representation of the attitude and orbit. Solar or electric sails, which also experience considerable
attitude-orbit coupling, have served as the objects of study for coupled attitude-orbit control11,12 . A common
issue with these approaches is the lack of additional intuition gained through the use of compact translation-
rotation representations such as dual quaternions. For these reasons, a straightforward linear model of the
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underling relative dynamics is sought.
The paper is organized as follows. First, a nonlinear model of coupled attitude-orbit motion is presented

in Section II.B. Next, this model is linearized about a selected reference orbit experiencing drag forces in
Section II.D. Section II.E describes the linearization of the system’s attitude dependence about a selected
reference attitude producing a linear system. The linear controllability of this system is discussed in Section
III.A. Finally, Section III.B describes the implementation and performance of a linear-quadratic regulator
based on the linearized system on both the linearized and nonlinear dynamics.

II. Problem Statement

II.A. Frame Definitions

Before addressing the system dynamics, it is important to define the reference frames at play within the
problem. First is the planet-centered inertial frame N whose center is the origin, which is written as:

N = {0, n̂1, n̂2, n̂3} (1)

Next is the Hill frame H, which is centered on the spacecraft at a given position rH/N in orbit and consists
of the following unit vectors:

H = {rH/N , ĥr, ĥθ, ĥ3} (2)

where rH/N is the position vector of the spacecraft with respect to the center of the N frame and the unit
vectors are defined as follows:

ĥr =
rH/N

‖rH/N‖
(3)

ĥ3 =
rH/N × ṙH/N
‖rH/N‖‖ṙH/N‖

(4)

ĥθ = ĥ3 × ĥr (5)

The matrix that maps from H to N , [HN ], is expressed by:

[HN ] =

ĥTrĥTθ
ĥT3

 (6)

The angular velocity of H with respect to N is given by the spacecraft’s mean motion n, which forms the

angular velocity vector NωH/N =
[
0 0 ḟ

]T
, where ḟ is the orbit true anomaly rate. For circular orbits,

the true anomaly rate is equal to the mean anomaly rate n.
Finally, the body frame B is defined, which is aligned with the spacecraft’s principal inertia frame and

written as the following:
B = {rH/N , b̂1, b̂2, b̂3} (7)

The angular velocity vector between the body and inertial frames is given generally as:

BωB/N =
[
ω1 ω2 ω3

]T
(8)

II.B. Nonlinear Dynamics

With the system reference frames established, it is possible to sensibly describe the dynamics that underly
this work. A spacecraft experiencing spherical two-body gravity with other perturbation accelerations obeys
the following equations of motion:13

r̈ =
−µ
r3
r + ap (9)

where r is the inertial spacecraft position vector, µ is the planet’s gravitational parameter, and ap is the
inertial perturbing acceleration vector. In this work, the perturbing accelerations are considered to be due
only to attitude-dependent drag. For analyses in LEO, the intended regime, this assumption is reasonable.13
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The drag acting on a given spacecraft is assumed to follow the commonly-used quadratic expression for
drag:13

ap = −1

2
βdP (vTv)v̂ (10)

in which βD represents the spacecraft ballistic coefficient, P is used to represent the local atmospheric density,
v is the flow-relative velocity of the spacecraft, and v̂ is the unit direction of the flow-relative velocity.

Attitude dependence is considered to enter into the system primarily through the dependence of the
ballistic coefficient βD on projected area. Considering a spacecraft consisting of several flat faceted panels
with individual areas Ai, individual drag coefficients CD,i, and individual orientations in the body frame n̂i,
the drag acceleration due to a single panel can be written using this expression suggested by Sutton:8

NaD,i = − 1

2mi
CD,iAi(

Bn̂i · [BN ]Nv̂)P (vTv)Nv̂ (11)

Equation 11 is related to Equation 10 by:

βd,i =
CD,iAi(

Bn̂i · [BN ]Nv̂)

mi
(12)

where mi is the spacecraft mass.
Here, the dependence of CD,i on the plate attitude not considered in this analysis. Sutton8 presents a gas-

surface interaction model to define the dependence of the drag coefficient on flow geometry and plate material
properties. These effects are typically only significant at oblate particle-surface interaction geometries and
for spacecraft with small surface accomodation coefficients; as the expected value for surface accomodation
coefficients has been empirically observed to be near 1, these effects are considered negligible for the purposes
of this work.

II.C. Nonlinear Relative Dynamics

For orbits in LEO, drag forces alone achieve limited controllability with respect to orbits. In general, they
can only be used to reach orbits with equal inclinations (as drag is an in-plane force) and lower energies.
Instead of considering the case of general LEO orbits, the problem scope is restricted to consider only the
relative motion between spacecraft experiencing atmospheric drag forces.

Classic relative motion equations describe the motion of a “deputy” spacecraft as seen by a “chief”
spacecraft. The positions of these two spacecraft are related by the following expression:

rd = rc + ρ (13)

in which ρ is introduced to represent the relative position between the chief and deputy. Taking two
inertial derivatives results in the following relationship between the accelerations:

r̈d = r̈c + ρ̈ (14)

From this, we can solve for the relative acceleration vector and substitute in the chief and deputy accel-
erations given by Equation 9:

ρ̈ = r̈d − r̈c (15)

ρ̈ =
−µ
r3d

rd + aD,d −
−µ
r3c

rc − aD,c (16)

in which aD,c and aD,d are used to represent the drag accelerations of the chief and deputy, respectively.
Substituting in Equation 13 results in:

ρ̈ =
−µ

(rc + ρ)3
(rc + ρ) +

µ

r3c
rc + aD,d − aD,c (17)
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II.D. Linear Relative Dynamics with Drag

The nonlinear dynamics expressed in Equation 17 provide little a-priori analytical insight into the behavior
of relative spacecraft motion under drag. To this end, Silva14 provides one set of analytical expressions
for relative motion under the assumption of atmospheric drag, small relative positions and velocities, and
circular chief orbits, effectively constituting a “Hill-Clohessy-Whitshire plus drag” formulation for differential

drag motion. Rotated into the aforementioned Hill frame and taking ρ =
[
x y z

]T
, these equations are:

ẍ = 2ẏn+ 3n2x− 1

2
βdPdnrcẋ (18)

ÿ = −2ẋn− n2r2c
1

2
(βCPC − βdPd)− βdPdnrcẏ (19)

z̈ = −zn2 − 1

2
(βdPdrcn)ż (20)

We note several changes relative to the classical HCW equations:

1. A secular drift term now exists in the y direction, proportional to the difference in ballistic coefficient
between the chief and deputy

2. Relative-velocity-proportional drag terms now exist in every axis, including the z axis.

3. Chief-driven drag terms exist only in the y-(velocity) axis.

For static relative equilibria to exist, both the first and second order derivatives must be zero. Setting
the second order derivatives equal to zero yields the following expressions:

1

2
βdPdrcẋ = 2ẏ + 3nx (21)

n2r2c
1

2
(βCPC − βdPd) + βdPdnrcẏ = −2ẋn (22)

1

2
(βdPdrcn)ż = −zn2 (23)

Immediately, it is apparent that a secular drift term exists in the y direction due to the differential drag force
acting between the deputy and chief, without a dependence on the relative velocity. Additionally zeroing
the first-order derivatives yields:

0 = 3nx (24)

n2r2c
1

2
(βCPC − βdPd) = 0 (25)

0 = −zn2 (26)

which suggests that the system origin is a static equilibrium when the differential drag term n2r2c
1
2 (βCPC −

βdPd) is zeroed.
As such, in addition to the classic HCW conditions for static equilibria, it is additionally necessary to

ensure that the deputy and chief values of the ballistic coefficient and local neutral density match. This is
an important consideration for control purposes, as it defines a condition for unforced equilibrium in the
attitude-driven system.

For the case in which PC and PD match—i.e., when the position of the chief and deputy are close—it
is necessary for the ballistic coefficients of the chief and deputy to match to avoid secular drift in the y
direction.
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II.E. Attitude Dependence

Linear equations of motion including assumed control forces enable the application of convenient and intuitive
linear controls tools; as such it is desirable to re-write the attitude-dependent drag expression given by
Equation 11 in terms of variations from a nominal attitude. To do so, an additional “Target” frame T
is defined with a corresponding attitude matrix [TB]. To improve the linearization’s validity, Modified
Rodriguez Parameters (MRPs) are selected as the attitude parametrization for this linearization:

Ap = Ai(n̂
T [TB(σp)][BN(σr)]

Nv̂) (27)

Without loss of generality, the inertial velocity direction is also rotated into the chief Hill reference frame.
Under the assumption of circular orbits, the inertial direction of the velocity vector in the chief reference
frame is simply parallel to the ĥθ unit vector. Under these assumptions, the facet projected area becomes:

Ap = Ai(n̂
T [TB(σp)][BH(σr)]

Hv̂) (28)

Assuming that σp is small such that second order terms can be neglected, [TB(σp)] is written as:

Ap = Ai(n̂
T [BN(σr)]v̂ − 4n̂T [σ̃p][BN(σr)]v̂) (29)

This expression contains two primary components: a constant term driven by the selected reference MRP,
and a linearized rotational component based on the perturbing MRP.

II.F. State-Space Representation

The existence of linear approximations for both the system dynamics and the assumed control input lend
themselves to the use of linear controllability tools. These tools provide an intuitive framework to examine
the properties of this coupled, pseudo-linear system. This class of analysis requires a system of the following
form:

ẋ = [A]x+ [B]u (30)

Unfortunately, the second-order relative equations of motion given in Equations 18-20 contain secular
drift terms proportional to the deputy-chief differential drag (βCPC − βDPD). Under the assumption of
similar deputy and chief geometries, this term can be reasonably assumed to go to zero, as βC = βD for
identical reference geometries and attitudes, and PD = PC as ρ goes to 0. This assumption is reasonable for
formation-keeping in a constellation, or in the case of a fictitious “reference” chief.

To form the control effects matrix B, the partials of Equations 21-23 are taken with respect to the small
control attitude σp. Noting that only the deputy ballistic coefficient is dependent on σp, partials are taken
as follows:

δβd
δσp

= −4
CD,d
m

Ain̂
T δ

δσp
([σ̃p][BN(σr)]v̂) (31)

Here, the properties of the cross product matrix are exploited to make the derivative more obvious. For
arbitrary vectors a and b and for an arbitrary matrix [Z], the following properties hold:

[ã]b = −[b̃]a (32)

δ

δx
[Z]x = [Z] (33)

To simplify the notation, the intermediate vector q̂ = [[BN(σr)]v̂ is introduced. Applying these properties
to the derivatives in Equation 31 yields:

δβd
δσp

= 4
CD,d
m

Ain̂
T ([˜̂q]) (34)

By inspection, this derivative forms a 1 × 3 row vector. This is as expected for the rows of [B]. Applying
this definition to the linear equations of motion assuming nominal known initial conditions results in the
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following partials:

δẍ

δσp
= −1

2
Pdnrcẋ0

δβd
δσp

(35)

δÿ

δσp
= (

1

2
n2r2cPd − Pdnrcẏ0)

δβd
δσp

(36)

δz̈

δσp
= −1

2
(Pdrcn)ż0

δβd
δσp

(37)

An unfortunate consequence of this linearizion is that the relative acceleration partials are dependent
upon the selection of initial or selected reference relative velocities. From these equations, the B matrix is
written as:

[B] =


03×3

− 1
2Pdnrcẋ0

δβd

δσp

( 1
2n

2r2cPd − Pdnrcẏ0) δβd

δσp

− 1
2 (Pdrcn)ż0

δβd

δσp

 , u =

σp,1σp,2

σp,3

 (38)

III. Controllability Analysis and Controller Implementation

III.A. Controllability Analysis

Equations 18-20 and Equation 35-37 define a linear set of equations of motion for a deputy-chief pair with
the deputy attitude as an input. While these equations of motion are general with regards to deputy and
chief geometry, a restricted case dealing with identical deputy/chief geometries is used to demonstrate the
controllability properties of this system. This can be considered to represent multiple use cases. One example
is maneuvering to a predefined reference orbit and attitude during formation constitution (i.e., rendezvous
with a fictional chief). For rendezvous with a fictitious chief, it is desirable for the fictional chief orbit to
have identical drag parameters to the real deputy. Alternatively, one could consider a rendezvous between
identical spacecraft performing on-orbit assembly. In any of these cases, the system aim is to drive both the
relative position and relative velocity states to zero.

The linearized equations derived in Section II.F enables the use of straightforward linear analysis tools
to demonstrate controllability. A classic approach to understanding controllability for linear systems uses
the controllability matrix, [O], which is formed as:15

[O] =
[
[B] [A][B] [A]2[B] ... [A]n−1[B]

]
(39)

where n is the number of system states, which for this system is six. The column and null spaces of [O] form
bases for the controllable and non-controllable subspaces for the system, respectively.

Due to the symbolic complexity of these expressions, a numerical example is provided to demonstrate the
controllability properties of the linearized system. A reference system consisting of a single flat plate with
dimensions, drag coefficient, and mass based upon those of a 3U cubesat with a three-meter by three-meter
drag sail were used to numerically evaluate A and B for the purposes of forming O. The specific values used
for these properties are listed in Table 1. Orbital elements for both the chief and deputy are given in Table
3. The matrix rank and QR factorization were computed using Numpy’s linalg library.16

Table 1: : Spacecraft geometric parameters used for numerical controllability analysis.

Parameter Chief Value Deputy Value

Pi 2.7346*10−14 kg
m3 2.7346*10−14 kg

m3

Ai 9 m2 9 m2

mi 3 kg 3 kg

n̂i

[
0 1 0

]T [
0 1 0

]T
Cd,i 2.2 2.2

σr

[
0 0 0.1989

]T [
0 0 0.1989

]T
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Three cases are examined: one in which the reference attitude is zero, representing a facet face-on into the
flow; one in which the reference attitude is 0.5, representing a facet edge-on into the flow; and one in which
the reference attitude is equivalent to a 45◦ rotation about the HCW ĥ3 axis, representing an intermediate
drag configuration.

This analysis reveals multiple phenomenon relating to the system’s controllability. First, the selected
reference attitude can restore or prevent controllability. This is sensible when considering the nature of the
small-attitude assumption as it relates to the area projection term. This dependence is more explicit when
considering the area projection in terms of a single principle attitude angle θ, in which case the projection
can be rewritten as:

n̂T v̂ = cos(θ) (40)

Linearizing the cosine term about a reference angle θr and considering a small perturbation angle, θp, yields:

n̂T v̂ = cos(θr + θp) (41)

If θr = 0, corresponding to the face-on case, the effect of the perturbation angle drops out, explaining the
loss of linear controllability. However, the edge-on case also presents an issue. For a physical plate, rotation
in either direction represents an increase in the projected area. If the chief is assumed to be uncooperative,
this means that the effective control input can never produce a negative acceleration, and as such a linear
model cannot effectively approximate its behavior. This is illustrated in Figure 2, which demonstrates the
variation of a single-plate deputy drag coefficient with attitude for reference attitude configurations facing
into the flow, banked into the flow, and edge-on into the flow, and respectively. It is only in the banked case
that control authority is provided about the described equilibrium condition in which the deputy and chief
ballistic coefficients are equal.
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(a) Face-On Case
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(b) Banked Case
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(c) Edge-On Case

Figure 2: Deputy (Blue) and Chief (Orange) ballistic coefficients using reference numbers from Table 1.
Results shown for face-on, banked, and edge-on reference attitudes.

This analysis provides a framework to understand admissible conditions and geometries for differential
drag control inside and outside the linear regime. Differential drag formation flight requires that the deputy-
chief pair be able to achieve both positive and negative relative accelerations from drag. In the attitude-only
non-cooperative rendezvous case considered here, this requires that the deputy geometry and attitude allow
it to both increase and decrease its drag profile relative to the chief.

Using the intermediate case angle as the reference angle, this analysis reveals that the in-plane states
and velocities are controllable from attitude-driven drag alone. This aligns with our a-priori understanding
of differential drag control and first-order relative motion. It is well-understood that the in-plane relative
states are coupled, leading to the classic no-drift condition for linearized Cartesian relative motion and the
widely-described “2 by 1 ellipse.” Drag as a force is defined in opposition to a spacecraft’s velocity direction,
which is aligned with the ĥθ axis for circular Chief orbits. From this, it is reasonable to conclude that
in-plane states are controllable from relative velocity control alone. These results provide confidence in our
model and approach, as they agree with results found in the literature for this class of control.3
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III.B. Linear Control Implementation

Per the previous section, a subspace of the linearized system has been demonstrated to be linearly control-
lable. To this end, a straightforward linear control law based on LQR was developed and implemented for
the sample linear system based on Table 1. Results are provided for two selected control objective weights
— one which emphasized fast state performance (Case B), and one which emphasized economical use of the
control input (Case A). Both the state gains [Q] and the control gains [R] are selected to be diagonal with
elements of the magnitude stated in Table 2. The latter can be analogously considered as minimizing the
variance from the desired reference attitude. For demonstration purposes, the control objective is to drive
the deputy spacecraft to the chief position and velocity.

Table 2: : Selected control gains for Case A and Case B.

Control Design Variable Case A Values Case B Values

Q 1 0.1

R 1e4 1e7

dt 5s 5s
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Figure 3: HCW x and y state evolution under linear dynamics with LQR-derived controller.
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ẏ
(m

/
s)

(b) Case B

Figure 4: Deputy relative position and velocity state trajectories in the chief Hill frame under attitude-driven
control

With respect to the linearized system, both controls are found to be stabilizing, resulting in the state
trajectories found in Figures 3 and 4. The commanded attitude MRPs are displayed in Figure 5. Notably,
the commanded attitudes in the fast-state case vary far outside the domain in which MRP switching would
typically be utilized (σ2 = 1), suggesting that the system violates the small angle assumption critical to
the linearization. Additionally, it is noted that the fast-state case displays substantial oscillation even after
notionally reaching the reference states, though it is apparent from Figure 3a that its behavior is convergent
towards the origin.
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Figure 5: Flow-relative attitude MRP component generated by the LQR-derived controller using linear
dynamics under different control weights. Because the panel is rotated about one axis, only one MRP
component is used for control.

To provide further validation of this approach, the linear controller was implemented on a system following
the full nonlinear equations of motion found in Equation 16 under the same initial conditions and parameters
used to generate the linearized system (i.e, those found in Tables 1-3). The selected scenario represents a
slot-hoping maneuver, in which a spacecraft maneuvers to a selected reference location and attitude ahead
of its current position on orbit. A small inclination difference is included to demonstrate the control’s lack of
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influence on out-of-plane motion as expected. The results of these simulations under both control strategies
can be found in Figures 6-7. Attitude trajectories for these cases are shown in Figure 8.

Table 3: : Orbital elements for both the deputy and chief spacecraft.

Orbital Element Chief Value Deputy Value

a 250km + rE 250km + rE

i 45◦ 45.01◦

e 0 0

Ω 20.0◦ 20.0◦

ω 30.0◦ 30.0 ◦

M0 20.0◦ 19.99◦
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Figure 6: HCW x and y state evolution under the LQR-derived controller on the assumed nonlinear system
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ẋ
(m

/s
)

0.000

0.025

ẏ
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Figure 7: Deputy relative position and velocity state trajectories in the chief Hill frame under attitude-driven
control

Notably, the LQR controller derived for the linear system provides similar performance for the nonlinear
system using Case A’s control gains. This both validates the linearizations used to derive the LQR controller
and demonstrates the applicability of the linearized system to the “real” problem at hand. However, the
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results of Case B, which display state divergence from the reference, demonstrate limitations of the lineariza-
tion approach. In Case B, the relatively large elements of [B] cause the controller to request large attitudes
outside the linear regime, a behavior shown in the linear system through Figure 5b.
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Figure 8: Flow-relative attitude MRP component generated by the LQR-derived controller. Requested
MRPs are transformed to the unit set.

These results demonstrate the need for “stiff” control gains in the linearized attitude-driven case. Nonlin-
earities present in the assumed input – the spacecraft’s attitude – are the dominant driver of non-convergence
for the controlled system.

IV. Conclusions and Future Work

Approaching drag-based orbital maneuvering as a two-step orbit formation and differential-drag ren-
dezvous problem offers one answer to the problem of drag-based maneuvering in LEO, as it allows the
transformation of a highly nonlinear orbit control problem into a simple linear differential-drag rendezvous
problem. While considering single-plate deputy and chief geometries, the identification of admissible condi-
tions for linear controllability and equilibrium can be readily extended to spacecraft consisting of many facets.
This facet-driven controllability analysis allows multiple attitude configurations to be stitched together to
provide a description of controllability in any given attitude configuration. This approach additionally al-
lows the analysis of differential-drag rendezvous for spacecraft with different geometries, as would be used
for non-cooperative rendezvous.

The validity of this linear controllability analysis is further demonstrated by the numerical simulations
of Section III.B, which show the convergence of a linear control scheme for both the linearized and “true”
nonlinear systems. These simulations also reveal a practical issue with the linearization of nonlinear attitude-
geometry dynamics into a linear control input. This is manifested in the controller design through the
weighting of state-convergence performance versus control economy, i.e. the relative sizes of [Q] and [R].
Selection of large values of [R] drives the controller to stay within the constraints of the attitude linearization.
In practice, this could be accomplished by bounding the control input or using a “saturating” control law as
opposed to the simple LQR-based controller used here.

Several potential opportunities for future work arise from this analysis. Firstly, the models of atmospheric
drag could be extended to include attitude-based lift and drag coefficients discussed by Sutton et al. This
would not only improve the fidelity of the linearization, but also allow it to be extended to differential-lift
rendezvous, reducing the restriction of atmospheric maneuvering to in-plane positions.

Additionally, the described linear control routine is limited to situations fulfilling the admissible condi-
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tions described in Section III.A, limiting its utility for general scenarios. Nonlinear stability and control
approaches, such as Lyapunov-based techniques, have been used successfully in other differential-drag stud-
ies17,3 and present a promising avenue for working around the nonlinearities inherent to attitude dynamics.
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3Pérez, D. and Bevilacqua, R., “Differential drag spacecraft rendezvous using an Adaptive Lyapunov Control strategy,”
Advances in the Astronautical Sciences, Vol. 145, 2012, pp. 973–991.

4Kumar, B. S., Ng, A., Yoshihara, K., and De Ruiter, A., “Differential drag as a means of spacecraft formation control,”
IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, No. 2, 2011, pp. 1125–1135.

5Horsley, M., Nikolaev, S., and Pertica, A., “Small Satellite Rendezvous Using Differential Lift and Drag,” Journal of
Guidance, Control, and Dynamics, Vol. 36, No. 2, 2013, pp. 445–453.

6Foster, C., Hallam, H., and Mason, J., “Orbit determination and differential-drag control of Planet Labs cubesat con-
stellations,” Advances in the Astronautical Sciences, Vol. 156, 2016, pp. 645–657.

7Dellelce, L. and Kerschen, G., “Optimal propellantless rendez-vous using differential drag,” Acta Astronautica, Vol. 109,
2015, pp. 112–123.

8Sutton, E., “Effects of Solar Disturbances on the Thermosphere Densities and Winds from CHAMP and GRACE Satellite
Accelerometer Data,” 2008, pp. 149.

9Pilinski, M. D., “Dynamic Gas-Surface Interaction Modeling for Satellite Aerodynamic Computations,” 2011.
10Filipe, N. and Tsiotras, P., “Adaptive position and attitude tracking controller for satellite proximity operations using

dual quaternions,” Advances in the Astronautical Sciences, Vol. 150, 2014, pp. 2313–2332.
11Huo, M., Zhao, J., Xie, S., and Qi, N., “Coupled attitude-orbit dynamics and control for an electric sail in a heliocentric

transfer mission,” PLoS ONE , Vol. 10, No. 5, 2015, pp. 1–14.
12Mu, J., Gong, S., and Li, J., “Coupled Control of Reflectivity Modulated Solar Sail for GeoSail Formation Flying,”

Journal of Guidance, Control, and Dynamics, Vol. 38, No. 4, 2015, pp. 740–751.
13Vallado, D. A., Fundamentals of Astrodynamcs and Applications, Space Technology Library, 4th ed., 2013.
14Silva, E. D., “A Formulation of the Clohessy-Wiltshire Equations to Include Dynamic Atmospheric Drag,” AIAA/AAS

Astrodynamics Specialist Conference, , No. August, 2008.
15Brogan, W. L., Modern Control Theory, Prentice-Hall Inc, Englewood Cliffs, New Jersey, 3rd ed., 1991.
16Jones, E., Oliphant, T., Peterson, P., et al., “SciPy: Open source scientific tools for Python,” 2001–, [Online; accessed

12/1/2017].
17Ben-Yaacov, O. and Gurfil, P., “Long-Term Cluster Flight of Multiple Satellites Using Differential Drag,” Journal of

Guidance, Control, and Dynamics, Vol. 36, No. 6, 2013, pp. 1731–1740.

13 of 13

American Institute of Aeronautics and Astronautics


	Introduction
	Problem Statement
	Frame Definitions
	Nonlinear Dynamics
	Nonlinear Relative Dynamics
	Linear Relative Dynamics with Drag
	Attitude Dependence
	State-Space Representation

	Controllability Analysis and Controller Implementation
	Controllability Analysis
	Linear Control Implementation

	Conclusions and Future Work
	Acknowledgements

