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Abstract.

This paper deals with the formulation and solution
of the initial condition determination and fuel-optimal
control problem in regard to formation flying of
satellites.  Unlike the relative station-keeping problem
for satellites in the same plane, formation flying entails
the creation of proper out-of-plane relative motion such
that the satellites in the formation satisfy some mission
requirements.  Two methods for determining initial
conditions of a satellite (Deputy), given the initial
conditions of the chief satellite, for formation flying
without thrust for a long period, are presented.  The first
method matches the mean J2-induced angular drift
rates of the two satellites, and the second method is
based on imposing periodic boundary conditions on the
relative position and velocity in a rotating coordinate
system.  A fuel-optimal impulsive thrusting scheme is
developed to establish a formation. A fuel-optimal, low-
thrust, variable Isp propulsion scheme is presented for
orbit maintenance.

Introduction

Under ideal Two-Body assumptions, a satellite
(Deputy) can be kept at a constant distance from
another satellite (Chief) in a circular orbit, without the
use of thrust, by choosing the right phasing and the
inclination of the relative orbit.  This type of a relative
orbit has been proposed for the LISA1 mission.  Other
proposed formation flying missions are ST32, ORION3,
Auroral Lites4 , and  Techsat-2123.  Hill’s equations5

have been used to study relative motion of rendezvous
mechanics.  The key to establishing a formation using
Hill’s equations is to choose initial conditions that
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generate periodic solutions.  Recently, Bond6 developed
an alternate set of equations which does not have the
stability (secular drift) problem associated with Hill’s
equations.  The shape of the projection of the relative
orbit perpendicular to the radial (zenith-nadir) direction
is of interest for the purpose of optical interferometry.
Kong et al.7 have studied various types of free and
forced orbits, using Hill’s equations, suitable for space
based interferometes.  Melton8 presents a state
transition matrix for relative motion between satellites
in elliptic orbits in terms of a power series in
eccentricity.

The attractive solutions to Hill’s equations under
ideal conditions get disturbed when perturbations due to
the Earth’s oblateness or aerodynamic drag are included
in the model. The fuel consumption required for
maintaining a formation to fight these perturbations will
be prohibitive for more than a very short period of time.
The primary perturbation of interest is due to J2 , which
causes, among others, three important effects: Nodal
regression, and drifts in perigee and the mean anomaly.
These effects, using orbit-averaged quantities, are given
below9:
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where ΩΩΩΩ , is the longitude of the ascending node, ωωωω , is
the argument of perigee, M , is the mean anomaly, e ,
is the eccentricity, i , is the inclination,

)1( 2eap −= , 3/ an µµµµ==== , and a , is the semi-
major axis.

If these effects are not controlled, the satellite
formation will break down.  Differential drag is not a
major concern if the two satellites have similar
aerodynamic characteristics. Kechichian10 has
developed a method for studying relative motion in the
presence of oblateness and drag using a dragging and
precessing reference frame.  The formulation presented
in this work is based on osculating elements rather than
the mean elements.

Out-of-plane motion can be created using a node
difference or an inclination difference between the
satellites.  It is much easier to deal with the node
difference than the inclination difference because the
latter gives rise to differential drift rates in

M,  and ,ωωωωΩΩΩΩ .

Schaub and Alfriend11 developed an analytical
solution to the initial condition problem by enforcing to
first order, equal mean nodal rates and equal mean

M�� ++++ωωωω . Unfortunately, the three equations, Eq. (1-3)
cannot be satisfied simultaneously by two satellites with
different mean a e i, ,  and .  The mean elements are
converted to corresponding osculating elements using a
first order approximation taken from Brouwer12.

In this paper, the two conditions of Ref. 11 are
enforced numerically to determine the initial conditions
of the deputy, given the initial conditions of the chief.
An alternate constraint set is also developed in terms of
the differences in energy and the polar component of
the angular momentum, between the two satellites. A
second technique is presented for the determination of
initial conditions, using numerical integration of the
differential equations subject to periodic boundary
conditions on the relative position and velocity, as seen
in a rotating coordinate system. This technique
produces relative orbits with much smaller drift rates
than the previous method but it is not convenient for use
in the control problem.

Subsequently, the first technique for determining
the initial conditions is utilized to develop a multi-
impulse, minimum-fuel control scheme to establish the
formation.  A low-thrust, variable Isp, minimum-fuel
control scheme is also developed for periodically
correcting small errors in the formation due to other
perturbations.  This method of control can be
implemented using plasma or ion propulsion.

Equations of Relative Motion
The equation of motion of a satellite under the

influence of gravitational and thrust effects is given
below:

ur ++++φφφφ−−−−==== r�� (4)

where, r , is the position vector, φφφφ, is the gravitational

potential and rφφφφ is its gradient.  The thrust acceleration
is denoted by u .  The gravitational potential and its
gradient5 , including the contribution of J2, are shown
below:
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The expressions for the energy and the angular
momentum are also useful.

φφφφ+= vvTE
2
1

(7)

vrH ×= (8)

It is well known that for the above model, the energy
and the polar component of the angular momentum are
conserved in the absence of thrust and drag.

Herein, variables with subscript 0 are used to
denote the conditions of the chief.  Any variable
connected with the deputy is denoted by a subscript 1.
The inertial relative displacement and velocity are
defined as follows:

δ r r r1 0Z J (9)

δ v v v1 0Z J (10)

The relative motion between two satellites in
general elliptic orbits is best visualized in a rotating
frame constructed with the following coordinates:
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δ δ  z
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The relative velocities in this rotating coordinate system
are given by the following:
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We refer to relative motion along
δ δ δ    and  x y z, , , respectively, as radial, along-
track, and out-of-plane.

Establishment of Approximate
Periodic Motion Using Analytical

Solutions
Schaub and Alfriend11 have presented analytical

results to establish orbital parameters of the deputy for a
J2  invariant relative orbit.  It can be shown that for
such orbits, the difference in the energies between the
deputy and chief, to first order in J2  is
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and the difference in the polar component of the angular
momentum is

iiHH zz δδδδδδδδ 0tan
4
5

0
−= (18)

where, the inclination difference between the two
satellites is given by:

01 iii −−−−====δδδδ (19)

 Since zHδδδδ  and Eδδδδ are known to be constants of
motion in the absence of other perturbations, and can

also be calculated using position and velocity
information, they provide a means of checking
transformations between mean and osculating orbit
elements.  The initial condition problem can be stated as
follows:

Determine the position and velocity vectors of the
deputy, given the position and velocity vectors of the
chief, to satisfy the following constraints:

10 ΩΩΩΩΩΩΩΩ �� = (20)

  1100 MM ���� +=+ ωωωωωωωω (21)

Since iδδδδ  is specified, there are six unknown parameters
to be selected with three constraints.  Hence additional
constraints can be imposed to get a unique solution.
The constraints of Eq. (17-18) are equivalent to those of
Eqs. (20-21).  The process of converting the mean
elements to the respective osculating elements is treated
in Ref. 11.  The conversion of the osculating elements
to position and velocity can be found in any textbook on
Astrodynamics, such as the one by Battin13.  The
nonlinear constraint satisfaction problem is solved using
the nonlinear programming code NPOPT which is a
part of the SNOPT package14.  Two examples are
treated in this section:

Example-1:

r0 0( ) =
5883.7397
2274.2509
2524.0672

 km
L

N
MMM

O

Q
PPP

v0 0( ) =
-3.9273
4.5469
5.0533

 km / sec
L

N
MMM

O

Q
PPP

The mean elements for the chief, calculated using
Brouwer’s theory are:

a = 7152.9917 km,  e =.0499,   i = 0.8377,      
 = -4E - 7,  = 0.5237,  M = -1.0037E - 004Ω ω
Besides the constraints given by Eqs. (20-21), three
additional constraints are imposed as given below:

δ δ δω δi MZ Z Z Z J. , . , . , .002 005 01 01t  and 

The solution for the initial position and velocity vector
offsets, expressed in the inertial frame are
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    -1.320  - 0.1061 - 0.511] km
   (0) =  [-0.108E - 2 0.377E - 3  0.115E - 2] km / sec
  

δ
δ
r
v
( ) [0 Z

Figure 1 shows the relative orbit and Fig.2 shows the
relative displacement.  These figures represent data for
a period of 3 days.

Fig. 1.  Relative Orbits for Example-1

Fig. 2. Relative Displacement for Example-1

Example-2:

r0 0( ) = 7300 0 0 km
v0 0 0 0 6 8( ) .=  km/s

This is an example of a near-polar orbit.  Mean
elements are:

0a =  8876.786 km, 0e = 0.1781, and

0i =1.49589.  The geometric constraints are specified as

δ δ δω δi a MZ Z Z Z
Jtan ( / ), , ,1

01 0 0 0t  and 
The specification of the inclination difference as shown
above, produces the maximum out-of-plane motion at
the peak latitudes, in the amount of 1 km.  The out-of-
plane displacement at the equator is zero.

Fig. 3.  Relative Orbits for Example-2

Fig. 4.  Nature of the out-of-plane displacement for

Example-2

The first and the last relative orbits are shown in
Fig. 3 over a period of 10 days.  Note that the axes are
not drawn to the same scale, in order to exaggerate the
out-of-plane motion.  The relationship between  zδδδδ ,
the out-of-plane displacement and z , the polar
component of the chief’s inertial displacement are
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plotted in Fig. 4. This figure shows that indeed, the
maximum out-of-plane displacement of 1 km is
achieved at the extreme latitudes.

Establishment of Periodic Motion by
Numerical Integration

In this section the procedure to obtain periodic or
near-periodic relative motion between the chief and the
deputy is described.  Given the initial conditions of the
chief, initial conditions of the deputy are sought such
that the relative velocity and the relative position
vectors satisfy periodicity conditions at an unknown
time (approximately the nodal period of the chief’s
orbit).  Hence seven parameters have to be determined.

  The six constraints on the relative positions and
velocities are of the type given by Eqs. (22-23)

δ δ  y y t f( ) ( )0 = (22)

δ δ  �( ) �( )x x t f0 = (23)

where tf is an undetermined parameter.   In order to
compare the solutions to the same problem using the the
current and the previous method, Example-2 is selected
for testing.  Notice that in Fig. 4, there is a linear
relationship between  zδδδδ  and z .  This requires two
constraints as shown below:

tan sin(  ) - ( )  δ δi z i z0 0 0Z (24)
tan � sin �(  ) - ( )  δ δi z i z0 0 0Z (25)

These constraints can be specified at the initial or final
times.  Since there is one too many constraints, the
radial position periodic constraint is dropped.  This
gives rise to a problem with seven unknowns and seven
constraints.  The initial guess for the solution is
obtained from the solution to the same problem using
the method described in the previous section.

The relative orbits for Example-2 for a period of 10
days are shown in Fig. 5.  Only the first and the last
orbits are shown in the figure for the sake of clarity.
Figure 6, shows the plot of  the out-of-plane
displacement versus the polar component of the
displacement of the chief.  It is interesting to note that
the relative orbits of Fig. 5 are larger compared to those
of Fig. 3 but the drift is much less.  However, Fig. 6
shows that there is a slight differential nodal precession.
This is due to the way the constraints are specified.  In
the first method, equal nodal rates are enforced.  Nodal
precession is about the inertial z-axis.  In the second
method, the constraints are in terms of the rotating

frame, in which Figs. 1, 3, and 5 are plotted.   Although
the integration method is more accurate, it is
inconvenient for computing optimal controls.

Fig. 5.  Relative Orbits for Example-2 obtained using the
integration method

Fig. 6.  Nature of the out-of-plane dispalcement for
Example-2
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Fuel-Optimal Multi-Impulse
Control

In this section, the first method of determining
initial conditions, discussed above, is used to define a
terminal constraint set for the multi-impulse fuel-
optimal control problem.  Prussing and Chiu15 have
utilized primer vector theory for computing optimal
multi-impulse rendezvous maneuvers.    Kumar and
Seywald16 treat the problem of fuel-optimal station-
keeping based on Hill’s equations.   Smith17 has studied
the problem of satellite constellation maintenance in a
multi-impulse setting using genetic algorithms.  Schaub
et al.18 present a feedback control scheme using the
mean elements as well as the cartesian position and
velocity vectors.  Ulybyshev19 uses the LQR approach
for controlling the drifts in period and nodes.  A
nonlinear, adaptive, tracking controller is proposed by
Queiroz et al20.   In this paper, we use the mean element
formulation and Gauss’ variational equations13.  These
equations are quite convenient for the problem at hand
due to the fact that during coasts, the mean
a e i, ,  and remain constant and the mean

M,  and ,ωωωωΩΩΩΩ vary linearly.  Gauss’s equations for the
variations in the mean elements are written below:

� ( ) ( )e A e B e u= + (26)

where, e = [ ]a e i M T     Ω ω  and the control

u = [ ]u u ur
T   Hθ .  The control vector is defined using

components along the radial, tangential, and orbit
normal directions.  Other quantities are as defined
below:

A e( )
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The above matrix is obtained by using the average drift rates
for the elements.  The B e( )  matrix is written in the same
form as given in Ref. 13, with the assumption that mean
orbit elements will be used to valuate it.  This may not
be precise but proves useful.

B e( )

sin
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cos
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sin

cos ( ) sin sin cos
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 ,  and 

H pZ µ  is the scalar angular momentum.  The true

anomaly, f , is related to the mean anomaly through
the following equations:

M E e E= − sin (27)

tan tanf e
e

E
2

1
1 2

= +
−

  (28)

In order to establish a formation, the mean elements
a e i, ,  and  need satisfy Eqs. (19-21) and the mean

M,  and ,ωωωωΩΩΩΩ  have to meet some specifications.
Assuming that the control is impulsive, the elements
undergo jump discontinuities at the impulse application
times. During the coasting phases, they can be
integrated analytically.  The true anomaly and the other
time-varying quantities in the B e( )  matrix can be
calculated using the equations presented above.  The
impulse application times and the delta-v
magnitude/directions become the free parameters. Since
the fuel consumed is directly proportional to delata-v,
the net delta-v is to be minimized. Once the
optimization process is over, the terminal position and
velocity states of the deputy can be obtained by
transformation from the mean elements. The maximum
number of impulses is unknown apriori, but is not more
than six since there are six elements to be changed in
general.  Allowing for initial and final coasts and six
impulses, the total number of parameters is 25.  In some
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instances, a computed impulse magnitude may be too
small and can be eliminated.

Example:

The mean elements of the chief are selected as

e0 = [ ]7555km .05 48  0 10  120
      

0 0 0

The corresponding orbital elements of the deputy
are ,

e1 Z[
]

7555km .05057 48.054  
          -0.01  9.9981  119.9774

0

The desired orbit element differences at the time of
orbit establishment are

δ δ δω δi M= = = =. ,006 00   
      

0Ω

The differences in the other orbit elements to
satisfy the two rate constraints can be determined from
Eq. (20-21)as

δ δa km e= − =. , .00193 0005767  
      
The deputy is initially disturbed from the desired

state by introducing large errors in a i, ,and Ω :

a a a m
i i i

M M

1 0

1 0
0

1 0
0

1 0

100
05

01

= + −

= + +

= + −
=

δ
δ

δ
ω ω

.
.

, ,
Ω Ω Ω
e  = e  =
      

1 0 1 0

A six-impulse solution to the orbit establishment
problem is given below in Table 1:

Table1

Impulse Magnitudes

# Radial Tangential Normal Total
(km/sec)

1 0.51D-4 0.40D-4 0.278D-2 2.78D-3
2 -0.57D-7 0.442D-7 0.758D-6 7.62D-7
3 0.153D-6 -0.125D-4 -0.26D-4 2.92D-5
4 -0.11D-7 0.918D-8 -0.74D-8 1.65D-8

5 0.55D-4 -0.184D-4 0.338D-2 3.38D-3
6 -0.42D-6 -0.51D-5 -0.98D-5 1.11D-5

The total delta-v required is 6.204 m/sec, which is
primarily due to impulses 1 and 5.  Both of them are
predominantly in the normal direction.  They occur
when θθθθ  is close to ππππ.  The B e( ) matrix shows that
this is a time when inclination change is best performed.

The impulse times and the final time are

sec 1.19602d4
sec]51047.8 , 7169.23  6014.13,       
,  3863.48  , 813.467   [640.49,

=

=

f

i

t

t

The variation of the semi-major axis is shown in Fig. 7.
The first impulse overcorrects for the error and the
subsequent impulses bring the semi-major axis back to
the desired value.

Fig. 7.  Changes in the Semi-major axis
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Fig. 8.  Changes in the inclination
Figure 8 shows that the changes in the inclination

come in two installments.  As mentioned before, the
delta-v expenditure is primarily due to these inclination
changes.   Figure 8 shows the resulting relative orbits
over a period of 3 days after the maneuver is completed.

Fig. 9.  Relative Orbits after the maneuver

Orbit Maintenance Using
Power-Limited, Electric Propulsion

Electric propulsion using ion or plasma thrusters is
being considered for formation flying. Power- limited,
low-thrust propulsion has already been demonstrated by
the DS-1 mission.  The Techsat-2123 program has a
proposed mission plan, involving swarms of
microsatellites, each with an estimated mass of 77 kg
and a power rating of 1 kw.  The thruster rating for each
satellite is of the order of 0.1 N.  The specific impulse,
Isp, can vary between 1200-2500 sec.  It is assumed
here that each satellite has one thruster that can be
gimbaled to produce thrust in a desired direction.

There exist many works in this area.  Kechichian21

has presented an excellent treatment of orbit transfer
using low-thrust propulsion.  Coverstone-Carroll and
Prussing22 consider the problem of cooperative power-
limited rendezvous between two satellites in
neighboring circular orbits using Hill’s framework.  In
this study both the satellites are given the freedom to
maneuver and cooperate to achieve better performance
than that of an active/passive pair.

Since the available thrust is severely limited for the
Techsat 21 program, the Isp bounds must be

considered.  The formulation presented here is similar
to that given in Ref. 21.  Only the deputy is assumed to
be active.

The equations of motion including the thrust terms
are given below:

vr ====� (29)

uv
mg

P
r

εεεε++++φφφφ−−−−==== 2
� (30)

uuT

g
Pm
2

2εεεε−−−−====� (31)

where P , is the maximum power available, εεεε , is the
efficiency factor, g , is the acceleration due to gravity
at sea level, m , is the mass of the satellite, and u  is
the control vector defined as follows:

2
1

Isp
T ====uu

The controls are constrained through the relationship
given below:

2
min

22
max

111
IspIspIsp

≤≤ (32)

The optimal control problem is posed as:

Minimize: )( ftmJ −= (33)

subject to Eqs. (29-31) and the terminal constraints
0)),(( ====ΨΨΨΨ ff tte , where, )( fte , is the mean orbit

element specification for the deputy.  The constraint set
is of dimension six and is full rank.  It is the same used
in method-1 for the determination of initial conditions.
The final time, ft , is free.  The variational

Hamiltonian is written as follows:

mm ��� λλλλ++++++++λλλλ++++λλλλ==== vr Vre (34)

The costate equations are

rr ∂∂∂∂
∂∂∂∂−−−−====λλλλ
e

(35)

vv ∂∂∂∂
∂∂∂∂−−−−====λλλλ
e

(36)

The controls are related to the costates as shown
below24:
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Unconstrained Solution:

mm
g

λλλλ
λλλλ==== vu

2
(37)

The convexity condition is

04
22

2
>>>>λλλλεεεε−−−−====

∂∂∂∂
∂∂∂∂

m
g

PH
u

(38)

Hence the solution as obtained above is optimal if
0<mλλλλ  and the Isp constraint is not violated.  For a

minimum-fuel problem, mλλλλ is negative if the final time
is sufficiently long.  However for the problem at hand,
this may not be the case.  The optimal control when the
constraints are active are given below:

Constrained Solutions

For 0>mλλλλ , the optimal solution requires minimum
Isp.   This solution is

vv

vu
λλλλλλλλ

λλλλ−−−−====
T

spI
min

(39)

For 0<mλλλλ , there are two possibilities.  If the

unconstrained solution is such that 
maxspsp II > then

the controls are given by

vv

vu
λλλλλλλλ

λλλλ−−−−====
T

spI
max

(40)

If the unconstrained solution is such that

minspsp II < then the controls are the same as in Eq.

(39).

The transversality condition on the mass costate is

1)( −−−−====λλλλ fm t (41)

Since the transformation between the position and
velocity vectors and the mean elements is quite
complex, the free-final time, terminally constrained,

optimal control problem is solved by a direct approach
using the nonlinear programming code NPOPT.  The
transversality conditions on the other costates and the
Hamiltonian are not utilized.  There are seven unknown
initial costates and the final time, to be determined.  The
nonlinear programming problem is posed with the
performance index given by Eq.  (33).  The
performance index and the terminal constraints are
evaluated by integrating Eqs. (29-31 and 35-36).  The
controls are evaluated using Eqs. (37), (39), or (40),
which ever is applicable.  The terminal constraints are
given by Eqs. (19-21), three specifications on

M,  and ,ωωωωΩΩΩΩ , and Eq. (41).  The partial derivatives
are computed using finite differences by the code.

As an example, the initial conditions of the chief
are chosen as those of Example-1 on page-3.  The
desired mean orbit element differences are:

δ δ δω δi M= = = = −. , . , . , .00057 01 01 01Ω  and 

The initial conditions of the deputy are disturbed from
the desired, by perturbing its position by 100 m along
each inertial axis and the inertial velocity by 0.1 m/sec
along each axis.  To correct for the initial errors, the
minimum Isp of 1200 sec is required.  The final time is
399.3 sec and the mass of fuel required is 0.0029 kg.
The control accelerations required along the three
inertial directions are those shown in Fig. 10.

Fig. 10. Controls along the inertial axes

The maximum control acceleration required is of the

order of 2m/sec 0011.0 .  This translates to a peak
thrust magnitude of  .085 N at beginning of life of the
satellite.
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Conclusions
In this paper the formulation and solution of the

initial condition determination and fuel-optimal control
problem in regard to formation flying of satellites was
presented.  The emphasis was on creation of the out-of-
plane relative motion using both inclination and node
differences.  Two methods for determining initial
conditions were presented. The first method matches the
mean J2-induced angular drift rates of the two
satellites, and the second method is based on imposing
periodic boundary conditions on the relative position
and velocity in a rotating coordinate system.  Even
though the second method is more accurate, the first
method can readily be used for control.  A method to
determine multi-impulse fuel-optimal impulsive
maneuvers to establish formations was presented.  A
fuel-optimal, low-thrust, variable Isp propulsion scheme
was presented for orbit maintenance.
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