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Abstract—Spacecraft are subject to dynamic uncertainties that can-
not be adequately represented by static random parameters, includ-
ing fluctuations in atmospheric density, solar flux variability, and
thrust noise. These effects are more naturally modeled as stochastic
processes governed by stochastic differential equations (SDEs), but
mainstream aerospace and robotics simulation frameworks typically
realize uncertainty through discrete-time noise injection while re-
lying on deterministic Ordinary Differential Equation solvers. This
paper introduces a modular, model-based framework for SDE-driven
uncertainty modeling that allows users to assign continuous-time
stochastic dynamics to arbitrary simulation parameters with minimal
changes to existing simulation graphs. The reference implementa-
tion is provided in the open-source Basilisk astrodynamics toolKkit,
which is extended to support stochastic states driven by additive
and multiplicative noise, explicit management of drift and diffusion
contributions, and numerical integrators for It6-type SDEs. Repre-
sentative processes, including Ornstein-Uhlenbeck and higher-order
Gauss-Markov models, are reviewed along with practical parameter
interpretations and estimation considerations relevant to flight data.
Design options for integrating SDE propagation into model-based
toolkits are analyzed in terms of computational efficiency, usability,
and flexibility, and the chosen implementation strategy in Basilisk is
described. A de-orbit case study with stochastic atmospheric density
demonstrates the operational impact of continuous-time process
modeling: the assumed correlation time fundamentally changes the
predicted dispersion in orbital lifetime, while treating density uncer-
tainty as a constant random bias can substantially mischaracterize
re-entry uncertainty. By embedding SDE-based stochastic process
propagation into a widely used astrodynamics framework, this work
increases simulation fidelity and provides a reusable capability for
mission design, operations analysis, and autonomy validation under
time-varying uncertainties.
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1. INTRODUCTION

Accurate modeling of spacecraft dynamics is essential for
mission planning, guidance and navigation algorithm design,
autonomy validation, and space traffic management. Errors
in dynamical models directly impact predictions of orbital
evolution, proximity operations, and end-of-life disposal, all
of which carry operational and safety implications. A critical
challenge in this context is the treatment of uncertainty.
While many uncertainties, such as initial state errors, sensor
biases, or constant model parameters, can be represented as
static random variables or deterministically varying param-
eters, others evolve dynamically and cannot be adequately
captured by static models.

Several sources of uncertainty in astrodynamics exhibit in-
trinsically stochastic, time-varying behavior. Atmospheric
density fluctuations in low Earth orbit [1, 2], variations in
solar flux [3, 4], and thrust noise from propulsion systems
[5,6] are notable examples. Unlike static uncertainties, these
effects evolve randomly over time, influencing spacecraft
motion in ways that cannot be captured by fixed parameter
offsets. Modeling such phenomena as stochastic processes,
described through Stochastic Differential Equations (SDEs),
provides a more realistic description of their behavior and
enables more accurate prediction of their long-term impact
on spacecraft dynamics.

Despite the prevalence of such stochastic effects, current
simulation tools do not natively support the continuous-time
integration of SDEs. Widely used platforms in robotics
and aerospace offer only partial mechanisms for uncertainty
modeling, for example perturbing sensor or actuator signals
with random variables, injecting disturbances through plug-
ins, or sampling random values at fixed intervals and holding
them constant between integrator steps. Frameworks such as
Gazebo [7], MuJoCo [8], Isaac Sim [9], JPL DARTS [10],
Chrono [11], and Modelica [12] [13] allow noise injection,
and Drake [14] provides structured random input ports, but all
rely on deterministic Ordinary Differential Equation (ODE)
solvers underneath. Similarly, spaceflight simulators such
as GMAT [15], STK [16], FreeFlyer [17], NASA 42 [18],
and Basilisk [19] support configurable noise models but lack
stochastic integrators. As a result, noise is sampled at sensor
or controller update rates and then treated as a constant value
within each integration stage rather than being modeled as a
diffusion term that evolves continuously in time.

In all of these tools, stochastic effects are therefore realized
only through sampled perturbations or stateful processes eval-
uated at discrete update intervals. The underlying state prop-
agation relies on deterministic ODE or Differential Algebraic
Equation solvers that treat such inputs as constant within each
integration step. None of the platforms listed include sup-
port for continuous-time diffusion models, numerical SDE



solvers, or stochastic state propagation of the form

dX = f(t, X)dt + Y gi(t, X)dW; (1)

i=1

This paper addresses this gap by presenting a modular ap-
proach for incorporating stochastic uncertainties into model-
based astrodynamics simulation frameworks through SDEs.
The method allows users to assign stochastic dynamics to
arbitrary parameters in a simulation, supports both additive
and multiplicative noise structures, and interfaces clearly
with SDE numerical integrators. The approach is designed
to integrate with model-based architectures [20], enabling
deterministic states to be replaced with stochastic counter-
parts without altering the surrounding framework. While
the reference implementation is provided in the open-source
Basilisk toolkit [19], the principles are general and can be
applied in other model-based simulation environments.

To ground the approach, the paper provides a brief re-
view of stochastic process modeling, including the Ornstein-
Uhlenbeck and higher-order Gauss-Markov processes, which
are frequently used in aerospace applications [21,22]. Prac-
tical aspects such as parameter selection, interpretation, and
estimation from data are also discussed [23]. The framework
is then demonstrated through a case study of a spacecraft
in low Earth orbit subject to uncertainty in atmospheric
density. Results from Monte Carlo analysis are compared
between two treatments: a static random-density model and
a stochastic Ornstein-Uhlenbeck process. The comparison
highlights the differences in uncertainty growth, underscoring
the importance of modeling time-dependent stochastic effects
for accurate prediction of orbital behavior.

This paper makes three contributions. First, it formulates a
general, model-based interface for representing time-varying
uncertainties as stochastic states governed by stochastic dif-
ferential equations, allowing continuous-time uncertainty to
be attached to arbitrary simulation parameters using addi-
tive or multiplicative noise structures. Second, it analyzes
alternative architectural strategies for integrating drift and
diffusion evaluations into model-based dynamics toolkits
and documents the implementation selected for the Basilisk
framework, which balances computational efficiency with
user workflow simplicity. Third, it demonstrates the practical
impact of continuous-time stochastic uncertainty modeling
through a de-orbit case study in which atmospheric density is
modeled as an Ornstein-Uhlenbeck process; the results show
that the assumed correlation time fundamentally alters pre-
dicted orbital lifetime dispersion, and that treating uncertainty
as a constant random bias can significantly mischaracterize
re-entry uncertainty.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the formulation of stochastic differential
equations. Section 3 discusses stochastic processes relevant
to astrodynamics, with emphasis on the Ornstein-Uhlenbeck
and Gauss-Markov families. Section 4 examines sources
of stochastic uncertainty in spacecraft dynamics, including
atmospheric variability, solar flux, thruster performance, and
unmodeled perturbations. Section 5 presents the implemen-
tation of SDE-based propagation within the Basilisk toolkit
and compares alternative approaches. Section 6 demonstrates
the framework through a de-orbit case study with stochastic
atmospheric density. Conclusions are provided in Section 7.

2. STOCHASTIC DIFFERENTIAL EQUATIONS
From Deterministic to Stochastic Dynamics

The evolution of a deterministic dynamical system is gov-
erned by an ODE:

de = f(t,z)dt (2)

where f(t,x) specifies the rate of change of the state vector
T at time ¢.

When stochastic forces drive the dynamics, the system is in-
stead described by a Stochastic Differential Equation (SDE):

dX = f(t, X)dt + Y _ gi(t, X)dW; 3)
i=1
where W; are independent Wiener processes (Brownian mo-

tions). Here, f is the drift term, while each g; is a diffusion
term that modulates the effect of stochastic perturbations.

The solution to an ODE is a deterministic trajectory x(t),
while the solution to an SDE is a stochastic process X ()
that represents an ensemble of possible trajectories. Conse-
quently, analysis of stochastic systems often focuses on sta-
tistical moments (e.g., mean, variance) or on their probability
density function (pdf) at a given time.

Discretization: Euler and Euler-Maruyama

A useful approximation for ODEs is the Euler method, which
for a small timestep At gives:

Az = f(t,x)At “4)

The stochastic analogue is the Euler-Maruyama scheme:
AX = f(t, X)At+ g(t, X) AW AW ~ N(0,At) (5)

where AW is a normally distributed increment with variance
proportional to At. Thus, over a small timestep, the change in

X has mean f(t, X)At and standard deviation g(t, X )v/AL.
The Euler-Maruyama scheme is the simplest practical tool
for simulating SDEs numerically; higher-order integrators are
also available [24-26].

Random ODEs and Their Equivalence to SDEs

An alternative formulation found in the literature is the Ran-
dom Ordinary Differential Equation (RODE), where stochas-
ticity enters through auxiliary processes:

dX = fo(t, X,Y)dt (©6)
with Y governed by an SDE:

dY = fy (t,Y)dt + > gv,i(t, Y)dW; (7)
i=1

Although RODEs may appear more general, they can always
be recast as SDEs by augmenting the state vector:

d[Y} [ff}(tXY]dt—i—Z{ ’Zty}dWi @®)

For this reason, and because SDEs are more widely studied
in the literature, this paper expresses stochastic dynamics in
the SDE framework.



Example: Stochastic Spring-Damper System

As an example, consider a spring-damper system subject to a
stochastic forcing term:

d?z dz

— +c— +kx=Fy(t 9
where F(t) is a stochastic force described by an SDE. A
first-order SDE representation of this system is:

€T v n 0
dlv| = %(fcvfk:chFm) dt+z 0 dw;
F, fr. () i—1 L9F, (")

This illustrates how physical systems with stochastic pertur-
bations can be consistently modeled within the SDE frame-
work.

3. RELEVANT STOCHASTIC PROCESSES
Forces as White Noise

A first idea for modeling stochastic perturbations is to include
a noise term acting directly on acceleration. Returning to the
spring-damper system:

T v 0
with constant diffusion o.

Recovering the effective perturbation force (from Equa-
tion 10) gives

1
— F,dt = odW, (12)
m

which implies F), is proportional to the time derivative of a
Wiener process. This corresponds to a white-noise signal
with infinite variance, zero correlation time, and infinite
bandwidth. Physically, such a force would exhibit instanta-
neous fluctuations, which is not realistic.

Introducing the Force as a State

To avoid this, the force can be modeled as an additional state.
Simplifying Equation 10 for constant diffusion o

T v 0
d|lv| = i(—cv—k‘x—l—Fw) dt+ |0 dW (13)
F, 0 o

The perturbation is now a force state, but its variance grows
unbounded with time since it is a pure Brownian motion. This
means that, as time progresses, the perturbation force might
reach larger and larger values. In many cases, however, one
instead wants a bounded process with a stationary distribu-
tion, such that the perturbation magnitude does not continue
growing indefinitely.

The Ornstein-Uhlenbeck Process

A simple bounded alternative is the Ornstein-Uhlenbeck
(OU) process:

de = —0(z — p)dt + ocdW (14)

For ¢ = 0, this reduces to an exponential decay towards p
with rate §. With o > 0, the drift term pulls the process

towards p, while the diffusion perturbs it away. Unlike
Brownian motion, the OU process has a stationary variance.

Figure 1 highlights the differences between the perturba-
tion force models considered so far. Brownian motion has
variance that grows without bound, while the OU process
converges to a stationary distribution.

The OU process can be re-parameterized in terms of correla-
tion time 7 and stationary standard deviation og:

1 2
dx = 7;(:17 — p)dt + \/:UstdW (15)

Assuming x(tp) = 0, the mean, standard deviation, and
autocorrelation of such processes are

Elz(t)] = p(1 —e7"/7) (16)
Std[z(t)] = oyV/1 — e=2t/7 (17)
p(At) = e~ 1AU/T (18)

Figure 2 illustrates the effect of the correlation time 7 on the
rate of variation of a perturbation force. Small 7 produces
rapid fluctuations, while large 7 yields slower changes. The
inset plots reveal the self-similarity of these processes: the
segment of the 7 = 0.1 s trajectory over ¢ € [0, 1] s resembles
the 7 = 1 s trajectory over [0,10] s. Similarly, the inset of
the 7 = 1 s resembles the 7 = 10 s trajectory over the full
duration.

Time-Varying OU Processes

In many applications, the mean or variance evolves with time.
For example, atmospheric density along an elliptical orbit
varies predictably with altitude. One can generalize the OU
process with time-varying parameters:

1 2
dz = —%(x — p(t))dt + 4 | %Ust(t)dW (19)

Alternatively, a normalized OU process x(t) with mean zero
and unit variance can be scaled:

z(t) = p(t) + ou(t)s(t) (20)

1 2
dk = ———krdt + 4 | —

7(t) 7(t) aw @h

As Figure 3 illustrates, the first formulation retains inertia,
so parameter changes are absorbed gradually. The scaled
formulation adapts instantly. The appropriate choice depends
on application context.

Higher-Order Gauss-Markov Processes

White noise and OU processes are zeroth- and first-order
Gauss-Markov processes. Higher orders allow more flexible
autocorrelation structures. In particular, the underdamped
second-order Gauss-Markov (SOGM) process introduces 0s-
cillatory correlations, useful in astrodynamics where pertur-
bations may align with orbital periods [22].
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A first-order SDE representation of SOGM is

v 0
d [ﬁ;] = {_ngn@ (e — u)] dt + M aw (22)

n

Rewriting with a correlation time 7 = ((w,)~!, damped
oscillation frequency wg = wy+/1 — (2, and stationary stan-
dard deviation o = 0/[2(Cw3)/?] gives

T2

d 1| _ 0
2| | =Fwe = (3 +wi)(m

B ﬂ)] dt + M dvz/z )

1/1
o= 200y - (—2 n w3> 4
T T

The parameters p and oy play similar roles as in the OU
process. Figure 4 shows how 7 and wy shape the dynamics.
The correlation time 7 controls how quickly memory of past
values decays: smaller 7 produces faster variations, while
larger 7 yields slower evolution. The frequency parameter
wq sets the oscillation rate. Oscillations are pronounced
when 7 is large, but for small 7 the rapid loss of correlation
suppresses visible oscillatory behavior.

OU and SOGM processes have clear limiting cases: 7 — 0
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yields white noise, 7 — oo yields a constant random value,
and wy = 0 reduces the SOGM to a critically damped OU-
like process.

Parameter Estimation

In practice, one often fits a stochastic process to discrete data.
This requires choosing a model family and estimating param-
eters. Maximum likelihood estimation (MLE) is common,
posed as [23]

6 = arg mein 0(0) (25)

with log-likelihood

Z log p(x

where x(ty,) are observations and p(+) are transition densities.

tk+1 ‘X(tk) 0) (26)

For the OU process with = 0, the transition density is
closed form, yielding explicit MLE formulas [23]:

Zk oﬂU(tk) (tk+1)]
0 log (27
e~ Sy w(t)?
1 2W0hL
ML = <1 _ e—zeMLAt>
T-1 9
X (2(trt1) — e ™D (1)) (28)

B

=0

Parameter estimation methods for linear and generic SDEs
are reviewed in References 23,27, 28.

4. STOCHASTIC UNCERTAINTIES IN
ASTRODYNAMICS

This section reviews sources of uncertainty in perturbation
forces acting on spacecraft and how they may be represented
stochastically.

Atmospheric Behavior

In low planetary orbits, atmospheric drag is often the dom-
inant perturbation. For re-entry trajectories, atmospheric
forces strongly govern dynamics. These forces depend on
local density and wind, so uncertainties in either translate
into uncertainties in drag. Because thermospheric behavior
is influenced by complex dynamics and external drivers such
as solar and geomagnetic activity, empirical models cannot
fully capture its variability [1,2].

Accelerometer data from satellites has been widely used to
estimate local density and winds experienced by spacecraft
[2]. These studies reveal chaotic short-term variability that
models such as HWMO07 and NRLMSISE-00 fail to repro-
duce. Figure 5, for example, shows density and wind esti-
mates from GRACE-B over a three-hour interval compared
with model predictions. The measurements exhibit both
higher variability and significant deviations from the model.

Longer-term studies using density estimates derived from
Two-Line Element (TLE) data show similar discrepancies.
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Figure 6 presents local density for CHAMP from both the
NRLMSISE-00 model and TLE-based estimates, along with
the residual time series. The residuals highlight the stochastic
nature of model errors.

Such data enables stochastic modeling of atmospheric density
and wind by fitting processes to residuals between models and
measurements. However, this approach assumes knowledge
of model inputs such as solar flux (F10.7) and geomagnetic
indices (AP), which are themselves uncertain. Figure 7 shows
their historical variability. While long-term trends exist,
short-term behavior is highly irregular. For instance, solar
flares and geomagnetic storms can cause abrupt 30-100%
density increases on timescales of minutes to hours, while di-
urnal, multi-day, and solar cycle variations introduce changes
ranging from tens of percent to an order of magnitude [1].

Given these uncertainties, one may either fit stochastic pro-
cesses directly to density/wind data, or model F10.7 and AP
as stochastic inputs to atmospheric models.

Solar Flux

Solar radiation pressure significantly perturbs satellites and
interplanetary spacecraft, particularly those with large reflec-
tive surfaces such as antennas or solar sails. Its magnitude
depends on the Total Solar Irradiance (TSI), which varies due
to solar physics [3]. While solar activity follows an 11-year
cycle, short-term variability remains unpredictable [4].

Figure 8 shows TSI data and fitted Ornstein-Uhlenbeck pro-
cesses. Estimated parameters are 7 = 4.004 days and oy =
0.097 W/m? for the 2-year window, and 7 = 0.375 days and
oy = 0.035 W/m? for the 90-day window. Outliers corre-
sponding to strong solar events were excluded. Stochastic
modeling of TSI using OU processes thus provides a tractable
way to approximate short-term variability.

Thruster Performance

Rocket engine performance depends on complex physical
processes that affect thrust and propellant consumption. For
electric propulsion, thrust noise is an important concern in
high-precision applications. Sources of this noise include
electromagnetic interference, vibrations, and environmental
interactions, which generate small-amplitude, high-frequency
fluctuations [5]. Figure 9 shows experimental Hall thruster
thrust data with clear stochastic features. Similar behavior
has been reported for colloid thrusters in flight [6].

Monopropellant thrusters also exhibit stochastic thrust varia-
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tions due to transient effects in feed pressure, valve timing,
flow resistance, and catalyst behavior. Choi and Bach [31]
observed oscillations in a high-test peroxide thruster under
pulsed operation, linked to surges in the propellant feed
system.

Prescribed Motion

In astrodynamics, it is common to prescribe either transla-
tional or rotational motion depending on the focus of the
analysis. When translational dynamics are of interest, attitude
control is often assumed to be perfect, and the spacecraft is
modeled as following a commanded orientation profile while
its orbital trajectory is propagated. Conversely, when attitude
dynamics are the primary concern, the orbital path may be
prescribed and only the rotational equations of motion are
integrated. In some studies, both the position and attitude
of the spacecraft body are prescribed in order to isolate
the behavior of a subsystem, such as a robotic manipulator
or an antenna deployment mechanism, without the added
complexity of propagating the full rigid-body dynamics.

The classical assumption underlying prescribed motion is
that the spacecraft follows the commanded trajectory exactly,
with no error in position or orientation. In practice, this as-
sumption is rarely valid. Uncertainties in actuation, sensing,
and environmental forcing introduce deviations between the
commanded and realized states. For example, solar sails are
notoriously difficult to control because of their large, flexible
structures and their sensitivity to environmental perturba-
tions. Reference 32 documents this challenge, reporting sig-
nificant and fluctuating discrepancies between commanded
and actual control angles during the LightSail 2 technology
demonstration mission.

When the fidelity of prescribed motion affects system-level
behavior, a stochastic framework provides a more realistic
description. Random processes, such as Ornstein-Uhlenbeck
models, can be used to represent variability in commanded
profiles, allowing analyses to account for imperfect control
performance without the need to propagate full coupled
position-attitude dynamics [33].

Unknown Unknowns

Stochastic processes are also useful for modeling pertur-
bations that are unmodeled or only partially understood.
In orbit determination, Myers and Tapley [21] introduced
Gauss-Markov processes to represent unknown accelerations.
Leonard et al. [22] applied second-order Gauss-Markov mod-
els to capture the effect of unmodeled higher-order gravity
harmonics. For many bodies, particularly small bodies,
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gravity fields remain poorly characterized. In such cases,
stochastic processes can be used to represent the uncertain
gravity environment itself, enabling missions and guidance,
navigation, and control (GNC) schemes to be designed with
robustness against these unknowns.

Other examples include stochastic modeling of solar radiation
pressure for objects with unknown attitude states [34], space-
craft outgassing [35], dust or particle impacts in cometary
or cryovolcanic environments [36,37], and structural effects
such as vibrations, slosh, magnetic torques, thruster leakage,
or gas impingement [38—40].

5. IMPLEMENTATION IN DYNAMICS
TOOLKITS

Most dynamics simulation toolkits, including those used in
astrodynamics, do not natively support states whose evolution
is governed by SDEs. This section introduces a strategy for
extending such tools to handle stochastic dynamics. The
approach builds on the model-based simulation framework
proposed in Reference 20, which is briefly reviewed here.

Model-Based Paradigm for ODEs

The fundamental task of a dynamics simulator is to evaluate
the system’s governing equations of motion:

de = f(t,x)dt (29

where the state vector  depends on the system being simu-
lated. For a point-mass spacecraft, * may contain only po-
sition and velocity. For a rigid-body, it additionally includes
attitude and angular velocity. More complex spacecraft (e.g.,
with articulated panels, robotic manipulators, or fuel tanks)
require further states such as joint angles, actuator dynamics,
or propellant mass.

The main role of the simulation toolkit is to evaluate f (¢, x)
efficiently and accurately. In addition to performance, usabil-
ity is crucial: the framework should be easy to understand,
extend, and reuse. To this end, Reference 20 proposed a
model-based architecture, implemented in the Basilisk astro-
dynamics toolkit [19], similar in philosophy to MATLAB’s
Simulink [41] or JPL’s DARTS [10].

In this paradigm, the computation of f is decomposed into
self-contained models that exchange data through standard-
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ized messages. For instance, a “guidance model” outputs a
desired joint angle; a “PID model” takes this reference and
the current angle to output a voltage; a “DC motor model”
converts the voltage into torque; and a “multibody dynamics
model” converts torque into joint acceleration. Each model
computes only its local contribution, while the simulator
collects all contributions to form dx /dt.

In addition to physical states (position, attitude, joint angles,
etc.), models may introduce auxiliary states. For example, an
analog PID controller requires an integral-error continuous
state. The framework in Reference 20 allows models to
declare such auxiliary states, receive their values as inputs,
and return their derivatives for integration.

Figure 10 illustrates this approach for

d m = Hﬂjgﬂ dt (30)

where f; and f, are the time derivatives of the states x and y
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Figure 10: Model-based paradigm for ODE simulation. Each
model (black square) exchanges inputs (blue) and outputs
(orange) via messages. Connections to omitted models are

[Tl

indicated by “..

respectively.

Model A declares and updates x, model B similarly handles
y, and both can exchange data. At each integrator step, the
toolkit supplies the current state values, calls each model to
compute the derivatives, and assembles dx/d¢ for numerical
integration.

Extending to SDEs

The above framework addresses deterministic states. Ex-
tending it to SDEs requires handling both drift and diffusion
terms:

dX = f(t, X)dt + ) gi(t, X )dW;. 31)

Thus, models must not only declare their drift contributions
but also specify how each state is influenced by one or more
noise sources (diffusion contributions). By default, noise
sources are independent; e.g., an IMU bias and a perturbing
force would evolve under separate Wiener processes. How-
ever, for generality, the framework must allow multiple states
to share a noise source.
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Table 1: Implementation approaches. Rows: drift/diffusion

list structure. Columns: model reuse strategy. “-” indicates
infeasible combinations.
Figure 11 illustrates a simulation of
T Ja 0 0
diy| = |fy|dt+ |gya|dWVi+| O [dWVe. (32)
z fz gz,l gz,2

Here, y and z share noise source W, while only z is also
driven by Wo.

For some stochastic integrators (e.g., Euler-Maruyama), it
suffices to compute drift and diffusion simultaneously. For
others, drift and diffusion may need to be evaluated at dif-
ferent states or times [24-26]. Evaluating both together
can waste computation, especially if computing the drift is
expensive and only diffusion is required.

Implementation Options
Three strategies can be used to manage drift and diffusion

evaluations:

() Maintain independent model lists for drift and for each
noise source.
(I) Use one list for drift and a single list for all diffusions.
(III)  Use a single list for both drift and diffusion.

Option I is the most computationally efficient; Option III the
least.

Another design choice concerns whether models are reused:

(a) Separate models per list.

(b) Shared models, with different functions for drift and
diffusions.

(c) Shared models, with one function reused for all lists.

Options (a) and (b) are more efficient than (c).

Table 1 summarizes all combinations. Figures 12a-12g illus-

trate them.

Implementation Approaches

The seven approaches summarized in Table 1 and illustrated
in Figure 12 represent different ways of organizing drift and
diffusion evaluations in a model-based simulation framework.
Each balances three competing factors: computational effi-
ciency, usability for the end user, and flexibility in simulation
design.

Approach 1 (Figure 12a) is the most computationally efficient
and flexible. It maintains independent model lists for the drift
term and for each diffusion source, with separate models in
each list. This means that only the models required for a
given calculation are executed, avoiding redundant work. It
also allows drift and diffusion functions for the same state
to be placed in entirely different models, giving maximum
freedom in simulation design. The cost is usability: users
must configure and maintain many different models and
connectivity graphs, and states are no longer tied to a single
model. This makes setup more complex and error-prone.

Approach 2 (Figure 12b) reduces this burden by reusing the
same model instances across drift and diffusion lists. Each
model defines multiple functions, such as one for the drift
term and separate ones for each noise source, that are called
depending on context. This keeps states tied to a single model
while still allowing independent drift and diffusion evalua-
tions, and it preserves much of the efficiency of Approach 1.
The trade-off is a small reduction in flexibility, since all drift
and diffusion functions for a state must now share the same
connectivity.

Approach 3 (Figure 12c¢) simplifies things further by having
each model implement only a single function, reused across
both drift and diffusion lists. When invoked, the function
must compute all drift and diffusion contributions together,
even if only one of them is required. This increases usability,
since model implementation is simpler, but at the cost of
wasted computation. If a drift calculation is expensive but
only a diffusion update is needed, unnecessary work will still
be performed. This makes Approach 3 less efficient than
Approaches 1 and 2, but simulations are easier to set up and
maintain.

Approaches 4, 5, and 6 (Figures 12d-12f) follow the same
logic as Approaches 1, 2, and 3, but group all diffusion terms
into a single model list. This reduces the number of lists users
must manage, improving usability by simplifying simulation
setup. The downside is that the entire diffusion list is executed
whenever any diffusion contribution is required, which intro-
duces some redundant computation. Among these, Approach
4 is the most efficient but least user-friendly, Approach 5
balances efficiency with usability by allowing shared models
with separate functions, and Approach 6 maximizes simplic-
ity by requiring only one function per model, at the expense
of some additional computation.

Finally, Approach 7 (Figure 12g) represents the baseline
strategy originally introduced in Figure 11. Here, drift and
diffusion values are computed together in a single list, with
one function per model. This is the simplest option concep-
tually, requiring minimal changes to existing frameworks and
offering the easiest setup for users. However, it is also the
least efficient, since expensive drift calculations are repeated
whenever diffusion values are needed, and vice versa. For
simulations that include costly models such as high-fidelity
gravity fields or multibody dynamics, this inefficiency can
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Figure 12: Model-based simulation implementations for stochastic dynamics. Dashed rectangles denote model lists, which

may run independently.

quickly become prohibitive.

In practice, the optimal choice depends on the goals of the
simulation framework and the expected level of expertise of
its users. Approaches 1 and 2 offer maximum efficiency and
flexibility but impose significant complexity on the user. Ap-
proaches 3 and 6 provide a good compromise, retaining much
of the efficiency while simplifying the workflow. Approach
7, while easiest to reason about, can be very inefficient.
For Basilisk, Approach 6 was selected as the most balanced
solution: it keeps states tied to a single model, requires
only one additional model list beyond the drift, and avoids
unnecessary drift evaluations when only diffusion values
are needed, providing substantial performance gains without
sacrificing usability.
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The architectural choices described above are independent of
the stochastic calculus interpretation adopted by the numer-
ical integrator. In particular, the framework supports both
Itd and Stratonovich formulations of stochastic differential
equations, with the distinction enforced at the integration
stage rather than in the model wiring or state definitions. Drift
and diffusion contributions are exposed explicitly by models,
allowing integrators to evaluate these terms at the appropriate
states and times required by the chosen interpretation. In
Basilisk, the current implementation focuses on It6 SDEs and
includes support for the Euler-Maruyama method as well as
two second-order weak stochastic Runge—Kutta integrators
presented by Tang and Xiao for weak integration of Itd SDEs
[26].



6. SIMULATION RESULTS

This section presents an example astrodynamics problem
with stochastic dynamics. The chosen scenario is an un-
controlled atmospheric re-entry, representative of a piece of
space debris or a satellite at the end of its operational life.
The primary source of uncertainty is atmospheric density,
modeled as a stochastic process.

A simplified dynamical model is used, since the goal is not to
provide a precise de-orbit prediction but to illustrate qualita-
tively how stochastic modeling affects re-entry behavior. The
body is assumed to be subject only to point-mass gravity and
atmospheric drag. Gravity is modeled as

G Mg

Fpay = —
v = I e "

(33)

where r is the position vector, m the spacecraft mass, and
GMg = 3.986 - 10° km3/s? Earth’s standard gravitational
parameter. Drag is modeled with a simple cannonball formu-
lation:

(34

Fdrag = - vrel””rel“

1 p
—mEZ
2B
where 3 = 30 kg/m? is the ballistic coefficient and vy is
the velocity relative to the atmosphere. For simplicity, winds

are neglected and the atmosphere is assumed stationary in the
inertial frame, SO v ~ V.

Atmospheric density p is decomposed into a deterministic
“nominal” p and a stochastic correction «:

p=p(l+kK) (35)
1 2

dk = ——kdt + | — 0, qdW (36)
Tk Tk

K(to) ~ N(0,07 ) (37)

Here, x evolves as an Ornstein-Uhlenbeck process with corre-
lation time 7,; and stationary standard deviation o . Short-
term variations in density reported in Reference 1 range from
30% to 100%, motivating o, = 0.15 as a representative
choice. Half-life values of 1.8, 18, and 180 minutes have been
reported in Reference 42. Because the OU autocorrelation

is p(At) = e~ 1AU/7 the half-life t1/2 and 7 are related
by t1/2 = 7In2, yielding 7, = 74.9, 748.5, 7485 s. The
limiting case 7, — oo is also considered, which corresponds
to a constant but random k.

The nominal density profile is given by an exponential atmo-
sphere:

(h—ho)/H

p(h) = poe™ (38)

with parameters py = 3.396 - 1076 kg/m3, hy = 90 km, and

H = 5.382 km from Reference 43. Altitude is h = ||r||— Rg
with R, = 6371 km.

Initial conditions correspond to a circular equatorial orbit
with an altitude of 150 km:

ro = [6521,0, 0] km
vy = [0, 7.818, 0] km/s

(39)
(40)
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The complete set of first-order SDEs is

r v 0
GM, -
d M = | T — 3 2% /ol | at + 20 dw
" T e \/go'n,st
) 41)
with
plr,k) = (14 k)p(r) (42)
p(r) = ﬁ067(||r||7R@*h0)/H 43)
7(to) = 7o (44)
v(to) = o (45)
K(to) ~ N(0,07.5) (46)

Figure 13 illustrates how this problem can be implemented
in a model-based toolkit such as Basilisk, using Approach
6 described in Table 1. Each block corresponds to a self-
contained component of the simulation, and the connections
between them define the flow of information. This modular
setup allows models to be replaced, removed, or reused with
minimal changes to the surrounding architecture. A more
detailed description of each block follows.

The “Atm Model” provides the deterministic background
density. It receives the spacecraft’s position vector r and
computes the nominal density p at the corresponding altitude.
Note that this model can easily be replaced by a more sophis-
ticated density model (e.g., NRLMSISE-00), without altering
the rest of the simulation.

The “OU Model” applies the stochastic correction « to the
nominal density. It takes p as input and returns the corrected
value p = (1 + k)p. Additionally, it determines the evolution
of x according to the Ornstein-Uhlenbeck process by defining
both its drift and diffusion terms. The model is generic: the
same implementation could be used to apply an OU-based
stochastic correction to any scalar quantity in the simulation
(for example, to represent thrust noise or sensor bias). On the
other hand, if this model were omitted, the simulation would
revert to a purely deterministic density.

The “Gravity Model” computes the gravitational accelera-
tion. In this example, it uses a point-mass formulation, but
the modular architecture allows this model to be swapped
for higher-fidelity alternatives, such as spherical harmonics
or polyhedral gravity models, while leaving other parts of the
simulation unchanged.

The “Drag Model” computes the atmospheric drag force.
It receives both the density p from the OU model and the
velocity v from forward kinematics, and returns the drag
force. As with the gravity model, alternative formulations
(such as a flat-plate model) can be substituted if higher
fidelity is required.

The “Fwd Kin” (forward kinematics) model translates the
generalized coordinate vector g into derived kinematic quan-
tities, in this case position r and velocity v. In a more
complex spacecraft, g could include rotational states or joint
angles, and the forward kinematics model would output the
corresponding positions, velocities, or orientations needed by
other models. The “Fwd Dyn” (forward dynamics) model
collects the outputs of the force models (gravity and drag in
this case) and combines them into the time derivative of the
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Figure 13: Model-based simulation setup of a stochastic de-orbit scenario using Approach 6 (see Table 1).
represents a self-contained model that can be replaced, removed, or reused.
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Figure 14: Sample realizations of the density correction
factor x for different 7,,. Shorter 7,, produces more rapid
fluctuations; 7,, — oo yields a constant bias.

generalized coordinates dg/d¢. These models are described
at length in Reference 20.

Together, these blocks illustrate the plug-and-play advantages
of the model-based approach. Each model is responsible
for a single, well-defined task, and the connections between
them are standardized. A user can replace the atmospheric
model, change the drag formulation, or add new perturbation
sources without reconfiguring the rest of the simulation.
Moreover, since only the OU model defines diffusion terms,
stochastic integration is computationally efficient: expensive
evaluations of the gravity or drag models are bypassed when
only diffusion is required.

Figure 14 shows realizations of « for different correlation
times. Short 7, produces rapidly varying processes, while
long 7,; results in smoother, slowly varying corrections. In
the limit 7, — o0, K is constant but randomly drawn at
initialization.

Monte Carlo simulations with 1000 realizations per 7, reveal
how 7, shapes re-entry predictions. Figure 15 shows the
mean and 30 bounds for altitude vs. time. Table 2 reports
statistics of the time to reach 100 km altitude. Shorter 7,
produces smaller spreads due to rapid fluctuations that cancel
each other, while using a constant x (7,, — 00) overestimates
the variability.
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Figure 15: Monte Carlo results for 1000 realizations of the
de-orbit problem under different 7,,. Solid lines show mean
altitude evolution; shaded regions denote 30 bounds.

Tw E[¢(h = 100 km)] [hr] ~ Std[¢(h = 100 km)] [hr]
7495 10.83 0.12
748.5 s 10.87 0.35
7485 s 10.75 0.81
00 11.57 1.67

Table 2: Mean and standard deviation of de-orbit time to 100
km altitude for different 7.

These results highlight the importance of modeling atmo-
spheric density as a stochastic process rather than as a
constant random parameter. The assumed correlation time
strongly influences the predicted dispersion in de-orbit times.
Neglecting temporal variability by assuming 7, — oo pro-
duces a misleading characterization of trajectory uncertainty.

Scripts to run this example scenario are available in the public
repository for Basilisk.

7. CONCLUSION

This paper presents a framework for incorporating stochastic
uncertainties in astrodynamics through stochastic differential
equations. The discussion begins with the mathematical
foundations of SDEs and proceeds to relevant stochastic
processes such as the Ornstein-Uhlenbeck and higher-order



Gauss-Markov models. Several sources of uncertainty in
spacecraft dynamics are examined, including atmospheric
variability, solar flux, thruster performance, prescribed mo-
tion errors, and unmodeled perturbations. Across these do-
mains, stochastic processes provide a principled means of
representing uncertain parameters and assessing their impact
on orbital dynamics.

To enable their use in practice, the paper proposes an ex-
tension of model-based simulation paradigms to support
stochastic dynamics. Alternative implementation strategies
are analyzed in terms of computational efficiency, usabil-
ity, and flexibility, and an approach suited for the Basilisk
framework is described in detail. A de-orbit case study
illustrates how stochastic atmospheric density can be inte-
grated into simulation, and how different correlation times
in the density process lead to markedly different predictions
of orbital lifetime. The results demonstrate that treating
uncertain inputs as random constants mischaracterizes orbital
evolution, while SDE-based models yield more accurate and
physically-meaningful outcomes.

The findings of this work argue for the systematic adoption
of stochastic processes in modeling astrodynamical uncer-
tainties. Their inclusion enables higher-fidelity simulations,
better quantification of risk, and improved robustness in
mission design and analysis.

ACKNOWLEDGEMENTS

The research was partly supported by the Jet Propulsion
Laboratory, California Institute of Technology, under a con-
tract with the National Aeronautics and Space Administration
(8ONMO0018D0004).

Generative Al (ChatGPT 5) was used in the preparation
of this manuscript for editing and grammar enhancement
purposes.

REFERENCES

L. Qian and S. C. Solomon, “Thermospheric density:
An overview of temporal and spatial variations,” Space
Science Reviews, vol. 168, no. 1, . 147-173,
June 2012. [Online]. Available: https://doi.org/10.1007/
s11214-011-9810-z

E. Doornbos,

[1]

(2]

“Thermospheric density and wind

determination from satellite dynamics,” PhD
thesis, Delft University of Technology, 2008.
[Online]. Available:  https://resolver.tudelft.nl/uuid:
33002be1-1498-4bec-a440-4c90ec149aea

[3] C. R. Mclnnes, Solar Sailing, 1st ed., ser.
Springer Praxis Books.  Springer London, 1999,
jointly published with Praxis Publishing, UK.
115 b/w illustrations. [Online]. Available: https:

//doi.org/10.1007/978-1-4471-3992-8

G. Kopp and J. L. Lean, “A new, lower value of total
solar irradiance: Evidence and climate significance,”
Geophysical Research Letters, vol. 38, no. 1, 2011.
[Online]. Awvailable: https://agupubs.onlinelibrary.
wiley.com/doi/abs/10.1029/2010GL045777

S. Xu, Z. Zhang, Z. Zhang, W. Yang, H. Tang,
and W. Y. L. Ling, “Time-frequency-domain method
for thrust noise characteristics of electric thrusters,”
Acta Astronautica, vol. 188, pp. 308-325, 2021.

13

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[Online]. Available: https://www.sciencedirect.com/
science/article/pii/S009457652100391X

J. Ziemer, C. Marrese-Reading, C. Dunn, A. Romero-
Wolf, C. Cutler, S. Javidnia, T. Li, I. Li, G. Franklin,
P. Barela, O. Hsu, P. Maghami, J. O’Donnell,
J. Slutsky, J. I. Thorpe, N. Demmons, and V. Hruby,
“Colloid microthruster flight performance results from
space technology 7 disturbance reduction system,” in
Proceedings of the International Electric Propulsion
Conference (IEPC 2017). Atlanta, GA, USA:
NASA, Oct. 2017, document ID: 20170010216.
Report Number: GSFC-E-DAA-TN47585. [Online].
Available: https://ntrs.nasa.gov/citations/20170010216

N. P. Koenig and A. Howard, “Design and use
paradigms for gazebo, an open-source multi-robot
simulator,” 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (IEEE
Cat. No.0O4CH37566), vol. 3, pp. 2149-2154 vol.3,
2004. [Online]. Available: https://api.semanticscholar.
org/CorpusID:206941306

E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics
engine for model-based control,” 2012 IEEE/RSJ
International Conference on Intelligent Robots and
Systems, pp. 5026-5033, 2012. [Online]. Available:
https://api.semanticscholar.org/CorpusID:5230692

NVIDIA, “Isaac Sim.” [Online]. Available: https:
//github.com/isaac-sim/IsaacSim

J. Garcia-Bonilla, C. Leake, A. Elmquist, T. D. Has-
seler, V. Steyert, A. Gaut, and A. Jain, “Dshell-darts:
A reusability-focused multi-mission aerospace and
robotics simulation toolkit,” in 2025 IEEE Aerospace
Conference, 2025, pp. 1-13.

A. Tasora, R. Serban, H. Mazhar, A. Pazouki,
D. Melanz, J. A. Fleischmann, M. Taylor, H. Sugiyama,
and D. Negrut, “Chrono: An open source multi-physics
dynamics engine,” in International Conference on High
Performance Computing in Science and Engineering,
2015. [Online]. Available: https://api.semanticscholar.
org/CorpusID:218062602

H. Elmgvist, S. E. Mattsson, and M. Otter, “Modelica
— a language for physical system modeling, visual-
ization and interaction,” in Proceedings of the 1999
IEEE International Symposium on Computer-Aided
Control System Design (CACSD °99), Maui, Hawaii,
USA, Aug. 1999, pp. 630-639, [Online]. Available:
https://dx.doi.org/10.1109/CACSD.1999.808720; Mod-
elica homepage: https://modelica.org/.

M. Bouissou, H. Elmqvist, M. Otter, and
A. Benveniste, “Efficient Monte Carlo simulation
of stochastic hybrid systems,” in The [0th
International Modelica Conference 2014. Lund,

Sweden: Hubertus Tummescheit and Karl-Erik
Arzén, Mar. 2014. [Online]. Available: https:
//inria.hal.science/hal-01182410

R. Tedrake and the Drake Development Team, “Drake:
Model-based design and verification for robotics,” https:
//drake.mit.edu, 2019, accessed: 2025-10-02.

S. P. Hughes, R. H. Qureshi, S. D. Cooley,
and J. J. Parker, Verification and Validation of
the General Mission Analysis Tool (GMAT), 2014.

[Online]. Available:  https://arc.aiaa.org/doi/abs/10.
2514/6.2014-4151

A. Wall, Systems Tool Kit (STK). CRC
Press, 1 2024, pp. 11-32. [Online]. Available:


https://doi.org/10.1007/s11214-011-9810-z
https://doi.org/10.1007/s11214-011-9810-z
https://resolver.tudelft.nl/uuid:33002be1-1498-4bec-a440-4c90ec149aea
https://resolver.tudelft.nl/uuid:33002be1-1498-4bec-a440-4c90ec149aea
https://doi.org/10.1007/978-1-4471-3992-8
https://doi.org/10.1007/978-1-4471-3992-8
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010GL045777
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010GL045777
https://www.sciencedirect.com/science/article/pii/S009457652100391X
https://www.sciencedirect.com/science/article/pii/S009457652100391X
https://ntrs.nasa.gov/citations/20170010216
https://api.semanticscholar.org/CorpusID:206941306
https://api.semanticscholar.org/CorpusID:206941306
https://api.semanticscholar.org/CorpusID:5230692
https://github.com/isaac-sim/IsaacSim
https://github.com/isaac-sim/IsaacSim
https://api.semanticscholar.org/CorpusID:218062602
https://api.semanticscholar.org/CorpusID:218062602
https://dx.doi.org/10.1109/CACSD.1999.808720
https://modelica.org/
https://inria.hal.science/hal-01182410
https://inria.hal.science/hal-01182410
https://drake.mit.edu
https://drake.mit.edu
https://arc.aiaa.org/doi/abs/10.2514/6.2014-4151
https://arc.aiaa.org/doi/abs/10.2514/6.2014-4151

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

https://www.taylorfrancis.com/chapters/edit/10.1201/
978100332181 1-4/systems-tool-kit-stk-alexis-wall

G. Dell, M. Hametz, P. Noonan, L. Newman, D. Folta,
and J. Bristow, EOS AM-1 and EO-1 support using
FreeFlyer and AutoCon, 1998. [Online]. Available:
https://arc.aiaa.org/doi/abs/10.2514/6.1998-4196

E. Stoneking, “42: An open-source simulation tool for
study and design of spacecraft attitude control systems,”
Lecture presentation at Georgia Institute of Technology,
NASA Goddard Space Flight Center, Atlanta, GA,
United States, Presentation GSFC-E-DAA-TN52069,
feb 2018, document ID: 20180000954. Work of the U.S.
Government, public use permitted. [Online]. Available:
https://ntrs.nasa.gov/citations/20180000954

P. W. Kenneally, S. Piggott, and H. Schaub, “Basilisk: A
flexible, scalable and modular astrodynamics simulation
framework,” Journal of Aerospace Information Systems,
vol. 17, no. 9, pp. 496-507, 2020. [Online]. Available:
https://doi.org/10.2514/1.1010762

J. Garcia-Bonilla and H. Schaub, “A message-passing
simulation framework for generally articulated space-
craft dynamics,” in Proceedings of the AAS/AIAA As-
trodynamics Specialist Conference, Boston, MA, USA,
2025.

K. A. Myers and B. D. Tapley, ‘“Dynamical
model compensation for near-earth satellite orbit
determination,” AIAA Journal, vol. 13, no. 3,
pp. 343-349, 1975. [Online]. Available:  https:
//doi.org/10.2514/3.49702

J. M. Leonard, F. G. Nievinski, and G. H. Born,
“Gravity error compensation using second-order gauss-
markov processes,” Journal of Spacecraft and Rockets,
vol. 50, no. 1, pp. 217-229, 2013. [Online]. Available:
https://doi.org/10.2514/1.A32262

S. Sarkkd and A. Solin, Parameter Estimation in SDE
Models, ser. Institute of Mathematical Statistics Text-
books. Cambridge University Press, 2019, p. 234-250.

P. E. Kloeden and R. Pearson, “The numerical solution
of stochastic differential equations,” The ANZIAM Jour-
nal, vol. 20, no. 1, pp. 8-12, 1977.

A. RoBler, “Second order runge—kutta methods for itd
stochastic differential equations,” SIAM Journal on Nu-
merical Analysis, vol. 47, no. 3, pp. 1713-1738, 2009.

X. Tang and A. Xiao, “Efficient weak second-order
stochastic runge—kutta methods for itd stochastic
differential equations,” BIT Numerical Mathematics,
vol. 57, no. 1, pp. 241-260, 2017. [Online]. Available:
https://doi.org/10.1007/s10543-016-0618-9

J. P. N. Bishwal, Parameter Estimation in Stochastic
Differential Equations, 1st ed., ser. Lecture Notes in
Mathematics.  Berlin, Heidelberg: Springer-Verlag
Berlin Heidelberg, 2008, vol. 1923. [Online]. Available:
https://doi.org/10.1007/978-3-540-74448-1

J. N. Nielsen, H. Madsen, and P. C. Young,
“Parameter estimation in stochastic differential
equations: An overview,” Annual Reviews in
Control, vol. 24, pp. 83-94, 2000. [Online].
Available: https://www.sciencedirect.com/science/
article/pii/S1367578800900178

N. C. for Environmental Information, “Data and
products,” Dec 2005. [Online]. Available: https:
/Iwww.ngdc.noaa.gov/ngdcinfo/onlineaccess.html

G. Kopp, “Sorce level 3 total solar irradiance 6-

14

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

[39]

(40]

[41]

[42]

[43]

hourly means, version 020,” https://doi.org/10.5067/
TSLKVMDR7LPX, Greenbelt, MD, USA, 2025, ac-
cessed: 2025-09-18.

S. M. Choi and C. Bach, “Experimental investigation of
pwm throttling in a 50-newton-class htp monopropellant
thruster: Analysis of pressure surges and oscillations,”
Aerospace, vol. 12, no. 5, 2025. [Online]. Available:
https://www.mdpi.com/2226-4310/12/5/418

J. Mansell, D. A. Spencer, B. Plante, A. Diaz,
M. Fernandez, J. Bellardo, B. Betts, and B. Nye,
Orbit and Attitude Performance of the LightSail 2
Solar Sail Spacecraft. [Online]. Available: https:
//arc.aiaa.org/doi/abs/10.2514/6.2020-2177

J. Garcia-Bonilla, L. Carzana, and J. Heiligers,
“Uncertainty quantification for solar sails in the
near-earth environment,” in Proceedings of the 6th
International Symposium on Space Sailing (ISSS
2023), New York, USA, June 2023. [Online].
Available:  https://www.researchgate.net/publication/
381251800_Uncertainty _Quantification_for_Solar_
Sails_in_the_Near-Earth_Environment

M. Soppet and C. Frueh, Stochastic Modeling of Solar
Radiation Pressure on High Area-Mass Ratio Objects,
2016. [Online]. Available: https://arc.aiaa.org/doi/abs/
10.2514/6.2016-5201

M. Hissig, K. Altwegg, H. Balsiger, U. Calmonte,
A. Jickel, B. Schlédppi, T. Sémon, P. Wurz, J. J. Berthe-
lier, J. De Keyser, B. Fiethe, S. A. Fuselier, U. Mall,
H. Réme, and M. Rubin, “Spacecraft outgassing, a
largely underestimated phenomenon,” in 2011 2nd In-

ternational Conference on Space Technology, 2011, pp.
1-4.

I. Fodde, J. Feng, and M. Vasile, “Uncertainty
maps for motion around binary asteroids,” Celestial
Mechanics and Dynamical Astronomy, vol. 134,
no. 5, p. 41, 2022. [Online]. Available: https:
//doi.org/10. 1007/310569 022-10096-2

M. Wittal, K. Gucwa, and D. Batcheldor, “Orbital drag
near small bodies due to lofted fines from surface activ-
ity,” 09 2022.

M. Reyhanoglu, Modelling and Control of Space Vehi-
cles with Fuel Slosh Dynamics, 02 2011.

L. Pettazzi, H. Kriiger, S. Theil, and D. Izzo, “Electro-
static force for swarm navigation and reconfiguration,”
Acta Futura, vol. 4, pp. 80-86, 01 2008.

A. Lassakeur and C. Underwood, “Determination and
mitigation of the residual magnetic dipole moment of
cubesats for improved attitude stability,” 10 2021.

MathWorks, “Simulink:  Simulation and model-
based design,” https://www.mathworks.com/products/
simulink.html, 2025, accessed: 2025-09-18.

A. T. Hiatt, “Deriving atmospheric density estimates
using satellite precision orbit ephemerides,” Master’s
thesis, University of Kansas, Lawrence, KS, 2009.

D. A. Vallado, Fundamentals of Astrodynamics and
Applications, 4th ed., ser. Space Technology Library.
Microcosm Pres, 2013.


https://www.taylorfrancis.com/chapters/edit/10.1201/9781003321811-4/systems-tool-kit-stk-alexis-wall
https://www.taylorfrancis.com/chapters/edit/10.1201/9781003321811-4/systems-tool-kit-stk-alexis-wall
https://arc.aiaa.org/doi/abs/10.2514/6.1998-4196
https://ntrs.nasa.gov/citations/20180000954
https://doi.org/10.2514/1.I010762
https://doi.org/10.2514/3.49702
https://doi.org/10.2514/3.49702
https://doi.org/10.2514/1.A32262
https://doi.org/10.1007/s10543-016-0618-9
https://doi.org/10.1007/978-3-540-74448-1
https://www.sciencedirect.com/science/article/pii/S1367578800900178
https://www.sciencedirect.com/science/article/pii/S1367578800900178
https://www.ngdc.noaa.gov/ngdcinfo/onlineaccess.html
https://www.ngdc.noaa.gov/ngdcinfo/onlineaccess.html
https://doi.org/10.5067/TSLKVMDR7LPX
https://doi.org/10.5067/TSLKVMDR7LPX
https://www.mdpi.com/2226-4310/12/5/418
https://arc.aiaa.org/doi/abs/10.2514/6.2020-2177
https://arc.aiaa.org/doi/abs/10.2514/6.2020-2177
https://www.researchgate.net/publication/381251800_Uncertainty_Quantification_for_Solar_Sails_in_the_Near-Earth_Environment
https://www.researchgate.net/publication/381251800_Uncertainty_Quantification_for_Solar_Sails_in_the_Near-Earth_Environment
https://www.researchgate.net/publication/381251800_Uncertainty_Quantification_for_Solar_Sails_in_the_Near-Earth_Environment
https://arc.aiaa.org/doi/abs/10.2514/6.2016-5201
https://arc.aiaa.org/doi/abs/10.2514/6.2016-5201
https://doi.org/10.1007/s10569-022-10096-2
https://doi.org/10.1007/s10569-022-10096-2
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html

BIOGRAPHY

Juan Garcia-Bonilla is a Robotics
Technologist at the Jet Propulsion Lab-
oratory. He holds a B.S. in aerospace
engineering from the University Carlos
IIT of Madrid and a M.S. in aerospace
engineering from the Delft University
of Technology. He is pursuing a Ph.D.
S at the University of Colorado Boulder
i Eh under the guidance of Dr. Hanspeter

S Shaub, where he focuses on developing
advanced astrodynamics simulation tools.

Hanspeter Schaub is a distinguished
professor and chair of the University
of Colorado aerospace engineering sci-
ences department. He holds the Schaden
leadership chair. He has over 30 years
of research experience, of which 4 years
are at Sandia National Laboratories. His
research interests are in astrodynam-
ics, relative motion dynamics, charged

: spacecraft motion as well as spacecraft
autonomy. This has led to about 228 journal and 371
conference publications, as well as a 4th edition textbook
on analytical mechanics of space systems. Dr. Schaub has
been the ADCS lead in the CICERO mission, the ADCS
algorithm lead on a Mars mission and supporting ADCS for
a new asteroid mission. In 2023 he won the Hazel Barnes
Prize, the top award granted to faculty at the University of
Colorado. He has been awarded the H. Joseph Smead Faculty
Fellowship, the Provost’s Faculty Achievement Award, the
faculty assembly award for excellence in teaching, as well
as the Outstanding Faculty Advisor Award. He is a fellow
of AIAA and AAS, and has won the AIAA/ASEE Atwood
Educator award, AIAA Mechanics and Control of Flight
award, as well as the Collegiate Educator of the Year for
the AIAA Rocky Mountain section. In 2025 he became a
member of the National Academy of Engineering.

15



	Introduction
	Stochastic Differential Equations
	Relevant Stochastic Processes
	Stochastic Uncertainties in Astrodynamics
	Implementation in Dynamics Toolkits
	Simulation Results
	Conclusion
	Acknowledgements
	References
	Biography

