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Abstract

A fast dynamics model that captures the deployment dynamics of self-actuated, origami-inspired, folded planar
spacecraft structures is desired for design and verification applications. In this paper, a general simulation framework
for numerically generating the equations of motion of any structure that complies with a set of pattern assumptions is
designed and presented. The framework is built through expansion of the articulated body forward dynamics algorithm
and the tree-augmented approach for closed-chain forward dynamics. These are multi-body dynamics approaches
developed in the literature for complex robotic manipulator systems. Unique adaptations are required to address the
highly constrained nature of a folding structure, and summaries of the resulting algorithms are provided. This solution
is desirable due to the computational efficiency of the base algorithms and the ability to analyze multiple systems

without reformulation of the core dynamics algorithm.

1. Introduction

The development and analysis of origami-inspired space-
craft structures is an active area of interest. Folded space-
craft structure concepts have been developed to stow pla-
nar structures with large area relative to the spacecraft
bus size, such as solar arrays,1 star occulters.? and an-
tenna” A central challenge for this class of deployable
structure is understanding the deployment dynamics and
designing the deployment actuation of the folded struc-
ture and spacecraft system. Previous research in the liter-
ature indicates active interest in this area. Recent stud-
ies developing folding structure concepts have adapted
pre-existing software tools for dynamics analysis such as
MathWorks SimScape Multibody,* or JPL’s DARTs" sim-
ulation toolkit. However these tools are not necessarily
optimized for processing the high volume of closed-chain
constraints presented by a folding system. This point is
highlighted in a previous folded structure study where the
fold pattern was designed specifically to avoid the pres-
ence of closed chains entirely, trading structural rigidity
for computational simplicity” This motivates the need for
a fast dynamics simulation approach to be developed. In
this research, a custom method for modeling the dynam-
ics using advanced multi-body techniques is developed.
This method provides a fast simulation where complex
hinges can be implemented at the folds to actuate the de-
ployment.

This paper presents a general approach to the equa-
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tions of motion of an origami folded spacecraft struc-
ture. The dynamics model is derived using the artic-
ulated body forward dynamics algorithm and the tree-
augmented approach for closed-chain forward dynamics.
These are multi-body approaches developed in the litera-
ture for complex robotic manipulator systems.® The appli-
cability of this approach for this problem is demonstrated,
and the algorithms are expanded for the unique case of
folded deployable spacecraft structures. The robotics ap-
proach is desirable due to the computational efficiency of
the algorithms and the ability to implement multiple types
of complex internal hinge behavior without reformulation
of the algorithms as the configuration and number of bod-
ies in the system are changed. Reference |/ investigates
following the Lagrangian approach and provides an ini-
tial understanding of the problem, but is found to be in-
sufficient for scaling to multiple closed chain systems.
An additional investigation discussed in Reference |8 de-
termines the suitability of the presented approach for the
simplest version of the origami problem, reviews relevant
mathematics in the context of the origami-folded space-
craft structures problem, and outlines the need for the new
work discussed in this paper.

A few key assumptions are ingrained in the construc-
tion of this approach. First, only origami fold patterns
with repeating structure, such as the Miura and Scheel
patterns,® are considered. These patterns share the com-
mon property of having no more than four panels meeting
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Fig. 1: Example structure concept: A spacecraft hub with a ra-
dially folding deployable structure.

at each vertex, as seen in Figures E] and E} It is assumed
that any pattern modeled using this framework will only
contain four panel vertices. Additionally, the fold lines
of the pattern are treated as delineations between panels
that are assumed to be rigid. Therefore, this approach
is only appropriate for structures where the material of
the fold hinge is sufficiently more flexible than the pan-
els, and the panels are stiff enough that this assumption is
valid. It is also assumed that only scleronomic holonomic
constraints are enforced on the closed chain systems. Fi-
nally, it is assumed that the base-body of the structure is
a free-flying spacecraft system, meaning the body is not
rigidly attached to the ground and has six degrees of free-
dom. This assumption enables a computation shortcut in
the constraint calculations and is consistent with the scope
of the research.

2. Dynamics and Multi-body Systems Fundamentals
2.1 Spatial Vector Kinematics

The dynamics algorithms are structured using spatial vec-
tors for computational and mathematical efficiency. Spa-
tial vector algebra uses six dimensional representations of
rigid body properties to capture both the rotational and
linear components in a single expression. For example,
a rigid body’s orientation and position, referred to as the
spatial coordinates q of frame G with respect to frame F
is expressed as

a(f,g)] 0

q(]:ag) = |:l(f,g)

where o is a three coordinate representation of orienta-
tion and [ is the position vector in 3D Euclidean space. In
this application, the spacecraft orientation is represented
by the standard Modified Rodriguez Parameters (MRPs ).
with shadow set switching to avoid geometric singulari-
ties. The spatial velocity is chosen as the angular rotation
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rates and the linear velocities of the body

o0 - (75

Where the relative angular velocity is a non-integrable
quasi-velocity, meaning it is not the time derivative of the
spatial coordinates, and the notation w(F, G) denotes the
angular velocity of frame G with respect to frame F. The
spatial orientations and spatial angular velocities are then
related to each other using a linear transformation. For
MRPs, this transformation is'®

2

.1 ~
o= [(1—0?)[I5x3] +2[6] + 2007 |w = [B]*w
3)
Then the full spatial transformation from spatial velocity
to generalized coordinate derivatives is

a-11- |19 e @

2.2 Serial-chain ABFD Framework

A prominent dynamics algorithm developed for serial
chains is presented in literature as the O(N) Articulated-
Body Forward Dynamics (ABFD) algorithm developed
independently by Featherstone' and Rodriguez'® and
detailed in a unified manner by Jain® Here A refers
to the total number of velocity degrees of freedom in the
system. The algorithm is developed to be appropriate for
any multi-body robotic system that is treated as a net-
work of serial-chain rigid bodies. The full derivation of
the algorithm can be reviewed in the literature, but key
formulations are repeated here to provide context to the
derivations developed for spacecraft and deployable struc-
ture systems. In the articulated-body model, each of the
rigid bodies down-chain of the current body being consid-
ered are treated as completely free with zero hinge force.
Under this assumption, the articulated body inertia is cal-
culated to represent those free bodies and a correction
term is then developed to compensate for this assumption.
This approach is in contrast to the composite body model,
which treats the connected rigid bodies as fixed relative to
each other, and uses a similar composite body inertia and
correction term to derive the hinge force. However, the
articulated body model is more appropriate for the for-
ward dynamics problem. Additionally, the ABFD algo-
rithm can be expanded to handle the multiple serial-chain
branches of a tree-topology case.

The ABFD framework outlined by Jain® provides the
basis of the version implemented here, with a few key
adaptations that are described here as needed. The gener-
alized spatial coordinates are chosen as hinge coordinates
at the k™ hinge, or the k™ rigid body’s outboard hinge
frame, Oy, orientation and position with respect to the
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kth hinge

D)
k + 1th body

kth body

Fig. 2: Vector and frame notation between the k + 1™ and the ™ body.

k + 1 rigid body’s inboard hinge frame, O;, as illustrated
in Figure
+

Q(k) = [l(@;, Ok)

and the generalized velocities are chosen as the hinge spa-
tial velocities, taken as the time derivative with respect to
the k frame o )
w(O Ok
k) = k-’ 6
R et ©

For a given set of rigid bodies, these are collected in the
full coordinate and velocity sets

a(1) B(1)
¢=|a®) 5= | Bk ™
a(n) B(n)

Where the tip of the chain is denoted as body 1 and the
base body is denoted as body n. This leads to system
equations of motion in the form

M(q)B+C(g,B) =T (8)

where M(q) is the full system mass matrix, C(g, ) con-
tains the Coriolis contributions, and 7" is the vector of sys-
tem generalized forces. The use of the quasi-velocities di-
verges from the assumptions implemented in Jain’s text.
In the forward dynamics problem, g, 3 and T" are known
quantities and the time derivative 3 is the desired quantity.
Direct inversion of the mass matrix M is typically done
for small order systems, but is a computationally expen-
sive O(N3) matrix operation for an N degree of freedom
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problem. This becomes prohibitively slow for large DOF
multi-body systems. The computational efficiency of the
ABFD algorithm is achieved by applying the Innovations
Operator Factorization of the mass matrix M and deriving
an explicit and analytical expression of the inverse, M ™!,
The details of this factorization are left to the literature.®
The dynamics are derived using body frame derivatives.
The algorithm is set up in the following way. First, a re-
cursive sweep that solves the velocities and Coriolis ac-
celerations of the chain is run from the base body to the
tip. Then, the articulated body inertias and corrections are
solved for in a tip to base recursion. The final step is to do
a base to tip recursion to solve for the body accelerations,
yielding the system equations of motion.

3. Folded Structure Topology Processing
3.1 Graph Theory Applications

A system of hinge-connected rigid bodies can be de-
scribed using graph theory by treating the rigid bodies as
nodes and the hinges or fold lines as edges. This repre-
sentation will aid in breaking down the complex system
into a form that can be efficiently analyzed. The manner
in which the system of nodes is connected determines the
classification of the system. For a given graph, the node
from which an edge leads from is designated the parent
node and the node at the destination of that edge is re-
ferred to as the child node. A node with no parent is the
root node. A parent node can have multiple child nodes,
and if these nodes do not share edges within the graph, the
graph is referred to as a tree topology. The basis of the dy-
namics algorithm discussed here is written to recursively
solve for a serial chain of bodies, following the branch of
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atree. At initial consideration, the closed-loop patterns of
a folded spacecraft structure is a multiply connected graph
where multiple child nodes span from a parent node and
are interconnected, and there exist paths in the graph that
lead back to a given node. The first step in modeling a
folded spacecraft structure is to identify edges of the sys-
tem to “cut” such that the bodies are segmented into a
topology where there are no closed loops, also known as
a tree topology. These cut edges must then be constrained
to enforce the actual closed-chain topology.

3.2 Tree Topology of Planar Origami Patterns

The development and analysis of origami-inspired fold
patterns appropriate for use in spacecraft structures is
an active area of interest. A select number of patterns
have received more study due to the clear applicability to
spacecraft needs. The Miura pattern,'# illustrated in Fig-
ure 3] is a highly efficient folding scheme with one the-
oretical degree of freedom that deploys linearly in dual
directions and is thoroughly studied in the literature. Sim-
ilarly, the Scheel pattern illustrated in Figureis a radially
wrapped pattern that is commonly studied for spacecraft
structure applications.

0>0>0>0>p>¢
P00

o000
0-0-0-6-6-06

Fig. 3: Miura folding pattern and example system graph and cut
edges where r denotes the root node.

Fig. 4: Scheel folding pattern and example graph with cut edges
where r denotes the root node.

Figures[3|and f]also display example graph patterns for
their corresponding origami pattern. The patterns are seg-
mented such that a single root parent node spawns the
serial chains of the origami pattern in a manner that it-
self displays a repeatable and expandable pattern. These
serial chains are then constrained to each other at each
adjacent node of their chains. For algorithm processing,
it is assumed that the root node is always the free fly-
ing spacecraft body. The pattern is then defined through
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declaring each chain series and defining each set of con-
straint nodes. For this approach, these tree topologies are
assumed to be cut and defined such that they form an or-
ganized grid , as clearly seen in the graph of Figure[3] A
graph like the Scheel pattern in Figure f] can be adapted
to mimic a grid with minimal adaptation, as demonstrated
in Figure[5] The chains of the structure are laided out like
a grid, and the constraint nodes are defined as the dashed
lines. This system will require an additional set of closure
nodes defined between the chains on the edge of the grid
(represented by a repeated set of the leftmost chain).

Fig. 5: Scheel folding pattern graph adapted to a grid format,
where the closed grid is represented by the closure con-
straints on the repeated left edge chain’s nodes.

3.3 Constraints for Grid Adapted Tree Topologies

A given panel can have more than one constraint node,
as is present where there are three or more chains in a
pattern. The cut kinematic chains are defined by recording
the chain sequence in terms of the named bodies in the
chain from tip to base in the chain matrix & as

Ko = [a(1) a(na)|

For reference, n,, are the number of constraint node pairs
or number of implemented constraints, n. are the total
number of constraint nodes, n; are the number of rigid
bodies in the system, and n;, are the number of chains in
the cut tree topology. Then the constraints information is
stored in the n,, x 2 constraint node matrix, I', containing
the constraint node pair designations.

)

(10)
b(nth)

For a given set of bodies connected in a grid format
that does not close onto itself, like the Miura pattern, the
total number of constraints needed to adapt the set to a
tree-topology system is summarized by Equation [TT] and
the total number of constraint nodes on the system can be
predicted by Equation [I2} assuming constraint nodes are
unique to a constraint pair.

np=(nh—1)(:}’i—1>

a(n,1)

(1)
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Ne = Np — Ny, (12)

These are needed for constraint generating algorithms.
Similar calculations can be derived for radially closed pat-
terns by simply including the additional closure nodes.

3.4 Automated and Recursive Generation of Rigid Body
Properties

For patterns that are built with repeating subgraphs, such
as the Miura-Ori, populating the geometric definitions for
the chain nodes and constraint nodes of each rigid body
panel can be automated by using a uniform reference
frame convention. For the numerical simulations pre-
sented here, the repeated panels of the Miura ori pattern
are populated from two stock reference bodies. These pro-
vide the relative position and orientation of defined nodes
of the bodies, the mass and inertia properties, and the rel-
ative position and orientation of nodes related to the in-
bound body on the chain. These last properties are pro-
vided through a base to tip recursive calculation.

4. Multi-body Algorithm Expansions for Folded
Structure Tree Topologies

(b) Scatter recursion

(a) Gather recursion

Fig. 6: illustrations of multiple serial chains algorithm process-
ing schemes

The recursive forward dynamics algorithms from the
literature are expanded to accommodate the generalized
tree topology framework needed to handle folded struc-
tures. These expansions are suggested in the literature but
are not explicitly presented. The expansions implemented
by the author are now summarized as follows. Each tip-to-
base recursion formula must be converted to a tips-to-base
gather recursion. Each chain outbound from a branching
node is computed recursively and summed to the branch-
ing node. In Figure[6|the branching node is denoted as n
and the chains are labeled a, b, and ¢, with subscript 1 de-
noting the tip node of each respective chain. Conversely,
each base-to-tip recursion formula must be converted to a
base-to-tips scatter recursion. The base body node behav-
ior is calculated first and propagated through each chain.
These gather and scatter algorithms present an opportu-
nity for parallel computation, where each chain recursion
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can be done simultaneously apart from the final gathering
or initial scattering calculations.

The following algorithms are provided as supplemental
material to the literature.® and therefore the mathematical
derivations and significance of the variables and opera-
tors are not discussed. Algorithm[T] [2] and [3|are executed
sequentially. Algorithm [I] summarizes the first recursion
in the dynamics framework and calculates the kinemat-
ics and velocities of the bodies. Algorithm [2| demon-
strates the gather operation for the spatial inertia and spa-
tial body forces recursions on the system. Finally, Al-
gorithm [3] summaries adaptation for the spatial acceler-
ations of the cut chains. For gather recursions, the al-
gorithm expansions for multiple chains assume that for
a given branching node, the chains branching from that
node are processed before the chain that the branch is a
member of. Similarly, for scatter recursions, chains con-
taining branching nodes are processed before the branch
chains. This ordering is contained in the

Result: kinematics and velocities for each chain’s

bodies
Vin+1)=0
calculate all kinematics and velocities for the root
body, n
for m = 1ton, do
for j = ny(m) —1to 1 do
set k to be the m(j)th body
set [ to be the next body, m(j + 1) in the m
chain
¢(k™, k) = f(q(k), body geometry)
Av(k) = HT(k)B(k)
Av?(k) = [Aw(k),0,0,0]
V(k) = oT(k", k)V (1) + Av(k)
a(k) = —Av” (k)(V (k) — B(k))
b(k) = V(k)M(k)V (k)
T(k) = f(q(k), H(k))
end

end
Algorithm 1: articulated body spatial velocities algo-
rithm for multiple chains

The variables referenced in this paper are consistent
with that in the literature® and previous work® The in-
dex n references the base body and n + 1 references the
inertial frame. V' (k) is the spatial velocity of a given body
k, (k™ k) is the spatial transformation matrix, Av(k) is
the relative spatial velocity of a body with respect to the
next body in the chain, a (k) is the Coriolis spatial acceler-
ation, b(k) is the gyroscopic spatial acceleration, T'(k) is
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the internal spatial force acting at the hinge, and H (k) is
the hinge map matrix that defines the configuration depen-
dence of the hinge behavior and maps the hinge velocities
to the generalized spatial velocities of the body.

Algorithm [2] contains the sequence for recursively cal-
culating the articulated body spatial inertia P(k) and the
articulated body forces ¢(k). This requires the definition
and reference of several spatial operators, and these can
be reviewed in the literature. The articulated body spatial
inertia represents the inertia of all the bodies connected
outbound of a given body, and similarly the articulated
body force represents the cumulative body force of all the
bodies outbound in the chain. The superscript * denotes
the transition of a value to the inboard reference frame
defined in Figure 2} The spatial inertia of just body k is
denoted M (k), D(k) is the articulated body hinge iner-
tia, G(k) is the articulated body Kalman gain operator,
7 (k) is the complement of the articulated body projection
operator, €(k) is the articulated body inertia innovations
generalized force, and 7(k) is the articulated body iner-
tia innovations generalized acceleration. For the gather
recursion, n,. is the number of root bodies in the cut tree
topology, or bodies that have chains branching from them.

Algorithm [3] provides the accelerations of the gener-
alized coordinates, 3(k), and the spatial accelerations,
a(k), from the spatial operators listed in the previous al-
gorithms. At this point, the equations of motion for the
cut tree-topology of the structure is obtained, and the con-
straints for enforcing the closed-chain topology must be
implemented.

5. Closed-Chain Forward Dynamics

As discussed in Section[3] capturing the closed-chain be-
havior is achieved by cutting an edge of a closed-chain
system and treating each leg of the cut as an open serial
chain, emulating a tree topology. Then the cut edges are
treated as motion constraints imposed on the free dynam-
ics of the tree. There are several approaches to enforcing
the closure constraints. The augmented approach com-
pensates for the cut edge by including a correction ac-
celeration, resulting in additional motion constraint equa-
tions and a non-minimal coordinate set. This approach
requires the use of differential-algebraic equation integra-
tors and faces issues with error drift that must be com-
pensated for with error control techniques. The direct
approach uses matrix solvers and absolute coordinates,
resulting in a much larger system and greater computa-
tional complexity. This approach also shares similar is-
sues as the augmented approach, and therefore is not con-
sidered, as the augmented approach is more desirable for
this application. A new technique that provides a mini-
mal coordinate set is the constraint embedding approach.
In this approach, the non-tree graph is transformed into
a tree topology by aggregating the closed-chain struc-
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Result: serial chain articulated body spatial inertia
and articulated body forces for each chain’s
bodies

Pt(0)=0,("(0)=0,7(0)=0,7(0) =0

for m = 1 to ny, do

for j = 1to ny(m) — 1 do

set k to be the m(j)th body
set 4 to be the previous body, m(j — 1) in the
m chain
P(k) = ¢(k, i) PT(i)¢7 (ki) + M (k)
D(k) = H(k)P(k)HT (k)
G(k) = P(k)HT (k)D™" (k)
T(k)=1—-G(k)H (k)
P* (k) =7(k)P(k
C(k) = ¢(k, )¢ (i) + P(k)a(k) + b(k)
e(k) = T (k) — H(k)C(k)
n(k) = D™ (k)e(k)
¢ (k) = C(k) + G(k)e(k)

end

end

for n = 1 ton, do

initialize P(n) = M (n)

for m = 1to n;, do
set j to be the node of chain m connecting to
that chain’s root body

P(n) = P(n) + ¢(n, j)P*(j)¢" (n, j)

end
calculate D(n), G(n), K(n), and ¢(n*,n)
initialize ¢(n) = P(n)a(n) + b(n)
for m = 1to ny do
set j to be the node of chain m connecting to
the root body

¢(n) =¢(n) + ¢(n,4)¢"(j)

end
end

calculate €(n) and n(n)
Algorithm 2: articulated body spatial inertia and articu-

lated body forces algorithm for multiple chains
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Fig. 7: Vector and frame notation between multiple serial chains subject to multiple closure constraints.
tures of the topology into a representative node. This is
suitable for systems with a clear tree-like structure sur-
rounding the closed-chain elements. The folded structures
Result: serial chain relative coordinate accelerations of interest contain multiply dependent systems of closed
and spatial accelerations for multiple chains loops, as demonstrated in Figures [3|and [4] and therefore
an+1)=0 this approach is not well suited to the problems of inter-
calculate accelerations for the root body, n est and is not currently considered. Therefore, the tree-

for m = 1 to ny, do

chain

end
end

Algorithm 3: articulated body spatial accelerations and
general coordinate accelerations algorithm

TAC-19.C1.5.8x50478

for j = ny(m) —1to1do
set k to be the m(j)th body

set [ to be the next body, m(j + 1) in the m ber of closed-chain constraint calculations across multiple

o (k) = ¢T(k", k)e(l)
B(k) = n(k) — GT(k)a" (k)

a(k) =at (k) + HT(k)B(k) + a(k)

augmented approach is selected and developed for the
general origami-folded spacecraft structure. Custom algo-
rithms are developed specifically to handle the large num-

serial chains, as depicted in Figure [/} and are presented.

5.1 Tree-Augmented Approach to Closed Chain Struc-
tures

Implementing the correction terms to account for the mo-
tion constraints is captured in the system equations of mo-
tion by introducing the Lagrange Multipliers,® denoted as
A, to represent the constraint forces. Additionally, a new
set of equations must be considered to include the con-
straint expression. The generalized acceleration is rede-
fined as

B = Bs + Be (13)
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where 5 ¢ are the free unconstrained accelerations and BC
are the correction accelerations. The correction accelera-
tion is derived from the constraint expression, and is ex-
pressed in terms of global system spatial operators as

Be = [I — HOK]D™'HoBQTA (14)
where H is the global hinge map matrix, ¢ is the 6n;, x 6n,
global spatial transformation matrix, K is the 61, x 6ny
spatial operator referred to in literature as the shifted
Kalman gain operator, D is the 6n; x 6ny, articulated body
hinge inertia, and B is th 6n;, x 61, node pick-off operator
that identifies relevant nodes on the bodies of the system.
Q is the n,,, x 6n constraint matrix that defines the con-
strained degrees of freedom between nodes where n.,
are the total number of constrained node pair degrees of
freedom. For a node that is rigidly constrained to another,
the corresponding entry in (Q is a 6 x 6 identity matrix.
Finally, A is the n.,, x 1 Lagrange Multipliers. These are
defined for loop constraints as

~[QAQT]™ (15)
where A is the operation space compliance matrix
A =BTQB (16)

and {2 is the extended operational space compliance ma-
trix. Additionally, d(3,t) is the derivative of a Pfaffian
form constraint equation, d(ﬁ ,t). A holonomic coordi-
nate based constraint equation, d(q,t), is not considered
due to the complications of re-expressing the constraint in
terms of non-integrable quasi-velocities. This use of rate-
based constraints will introduce error control concerns.
For the enforcement of closure constraints for cut edges
that do not change over time, and therefore are sclero-
nomic holonomic constraints, the Pfaffian form constraint
equation is expressed as

d=Qa,, ; 17)

where o,y is the free, unconstrained spatial acceleration
of the constraint node bodies.

The diagonal terms of ) are computed directly using a
recursion for free-flying system from the literature® as

=T (k) = [P(k) + S(k)] ™

for all bodies k, where Y (k) is known as the operational
space compliance kernel. The compliance properties of a
free-flying system enables these terms to be expressed in
terms of the articulated body inertia and what is referred to
as the dual articulated body inertia, S(k). The difference
between these two inertias is simply whether the base or
tip body is treated as hinged to free inertial space, and
each is calculated using the recursive algorithm defined in

Q(k, k) (18)
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Result: serial chain dual spatial inertia for each
chain’s bodies

Pt(0)=0,7(0)=0

for m = 1to ny do

for j = ny(m) — 1to 1 do
set k to be the m(j)th body
set [ to be the next body, m(j + 1) in the m
chain
ST (k) = @7 (i, k)(S(i) + M(i)) (i, k)
Da(k) = H(k)S™ (k)HT (k)
Gar(k) = —S*( JHT (k) Dy’ (k)
Ta(k) = I — Ga(k)H (k)
S(k) = 7a(k)S™ (k)
end

end
Algorithm 4: articulated body dual spatial inertia algo-
rithm for multiple chains

Algorithm ] Spatial operator expressions are identical to
those defined for Algorithm[2] with subscript dl indicating
the dual inertia distinction.
The diagonal terms of {2 are computed directly using
Equation Then, where for two bodies k and j
Q(k,j) = Q@ k)T (19)
the off diagonal terms are computed by propagating
through the root node, r, as

Q@ k)

= Q(, ), ) (r, k) (20)

where 1(r, k) represents the articulated body transforma-
tion matrix and is calculated from the articulated body
projection operator and the spatial transformation matrix
P(r,k) = ¢(r,k)7(k) . This property enables all of the
operational space matrix terms to be computed from the
diagonal terms, and in turn from the recursive articulated
body inertias.

To populate the operational space matrix, A, only the
diagonal terms and cross-diagonal terms of the extended
operational space matrix that correspond with the con-
straint nodes are needed due to the structure of 5. The
node pick off operator B is a 6n x 6n, sparse spatial op-
erator matrix that contains the spatial rigid body transfor-
mation matrix from a given body frame to the constraint
node frame at that body’s row and that node’s column,
for example ¢T(k, N,). Then A is populated using the
shortcut expression provided by®

A(Nkzh/v.jl) = ¢T(kaNk2)Q(k

OGN @D
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when using the node frame definitions demonstrated in
Figure[7} and k is shorthand for Oy,.

This summarizes the mathematical background needed
to generate the node constraint expressions, and the steps
are implemented in Algorithm [5] The Lagrange multipli-
ers A are now interpreted into a constraint force that is
applied to the rigid body system. The constraint force is
defined as

Je=—QTA (22)

and is converted into constraint correction body force at
each hinge degree of freedom through Algorithm [6] an
algorithm that is formulated for any general case of multi-
ple serial chains subject to multiple constraints. The con-
straint correction body forces are then used to calculate
the constraint correction accelerations (. in Algorithm
Here, ((k) and 7(k) are not related to those used in previ-
ous algorithms but are representing similar roles.

Result: internal forces due to closure constraints

1. Generate the extended operational space compliance
matrix € using Equation 20| for all constraint node
bodies in the system

2. Project this into the operational space compliance
matrix A for all constraint nodes using Equation

3. Calculate the Lagrange multipliers A in Equation [I5]

4. Express the constraint force f, using Equation[22]

Algorithm 5: Converting constraint node information to
constraint forces

5.2 Origami-Folded Deployable Spacecraft Structure Al-
gorithm

The complete algorithm for solving the dynamics of a
set of rigid bodies subject to any number of closure con-
straints is summarized in Figure |8} The connections be-
tween information obtained and required at multiple steps
in the algorithm are depicted by arrows. This algorithm is
written to only apply to multiple closed-chain constraints
within a free-flying spacecraft system, but can be applied
to any system that resembles the folding-structure topolo-
gies described in this paper. While the ABFD framework
provides an O(N) solution to the free serial chain dynam-
ics in Algorithm [3] the overall computational efficiency
of the Algorithm summarized in []is less. The matrix in-
version of Equation |15| represents an O(n.*) operation
that dramatically slows down the simulation as more con-
straint nodes of the origami pattern are introduced. Un-
fortunately the non-square structure of the () matrices and
the fully populated structure of the A matrix indicates that
further decomposition of the matrices will not yield a con-
venient property as the Innovations Factorization Method
lends to the articulated body model. Therefore, the overall
computation efficiency of this algorithm is O(n.3).

TAC-19.C1.5.8x50478

Result: constraint correction body forces for multiple
serial chains

an+1)=0

for m = 1to n;, do

for j = 1tony(m)—1do

set k to be the m(j)th body

if j = 1 then

(k) = —o(Br, Ni) fe(k)

else
set ¢ to be the previous body, m(j — 1) in
the m chain

C(k) = ¥(k, )¢ () — d(Br, Ni) fe(k)

end

end

end

initialize {(n) = 0

for m = 1to n;, do
set j to be the node of chain m connecting to the
root body

¢(n) = ¢(n) + é(n, )¢ ()

end
Algorithm 6: Constraint correction body forces for mul-
tiple serial chains

Result: constraint correction accelerations for
multiple serial chains

an+1)=0

calculate accelerations for the root body, n

for m = 1to n; do

for j = ny(m) — 1to 1 do

set k to be the m(j)th body

set [ to be the next body, m(j + 1) in the m

chain

A(k) = ¢T(LR)AQ) + HT (k)n(k)
Be(k) = m(k) = KT(k)A()

end

end
Algorithm 7: Constraint correction accelerations for
multiple serial chains
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User defines system graph and constraint edges

Key:

s

S

|:| complete system

Algorithm 2: Recursive
regular AB inertias

Algorithm 4: Recursive

|:| “free" chain

dual AB inertias D closed chain

P(k) S(k) constraint
Algorithm 2: Recursive Algorithm 5: Operational Algorithm 5: Operational
regular AB corrections space compliance kernels P space compliance matrices
¢(k) (k) A
Algorithm 3: Free chain Algorithm S: Algorithm 6: Constraint body forces
accelerations »| Lagrange multipliers [ ™| n(k)
Bt #

Algorithm 7: Recursive constraint
acceleration corrections

Be

P

B=PBs+Be

Complete system accelerations

Fig. 8: Diagram of full closed-chain dynamics algorithm flow.

6. Conclusions and Future Work

A self-actuated folded deployable spacecraft structure
presents a novel modeling challenge due to free-flying
spacecraft dynamics coupled with a complexly con-
strained multibody system. An approach that blends
several articulated body-derived robotics dynamics al-
gorithms together is presented to address the multiple
closed-chain folded structure problems. The topology is
studied and interpreted for dynamics analysis using graph
theory, and a simple map fold pattern of 9 bodies is an-
alyzed for algorithm demonstration. Origami-inspired
folding topologies with large number of bodies are shown
to have algorithm gains for recursively calculated loop
constraints. The articulated body forward dynamics algo-
rithm is outlined as the basis for the approach, and deriva-
tions that generalize the ABFD algorithm to the spacecraft
folded deployable structure scenario are provided. The
tree augmented approach is developed for any grid for-
matted spacecraft structure. It is found that this approach
provides significant value over the Lagrangian approach
or Kane’s equations. This is due to the computation gains
of the recursive structure of the equations of motion and
that the algorithm provides a framework for working with
a high volume of rigid bodies and rigid body constraints.
Future work will focus on applying the tool to complex
folded structure design studies and on integrating com-
plex hinge force models for deployment actuation.
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