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A modeling approach for capturing the three-dimensional deployment dynamics
of complex folded deployable structures with flexible hinges on spacecraft is de-
veloped. This paper provides an initial investigation on how to model flexible
hinges that connect rigid panels. Such hinges are emerging as a promising use of
composite materials to create novel folded structures. The nonlinear multi-body
dynamics is studied and described using an energy-based approach and parame-
terizations developed for attitude dynamics and control to better understand how
the structure’s motion affects the spacecraft. While this study assumes a simple
hinge-response behavior, the dynamical formulation is general enough to substi-
tute experimentally derived response functions in future efforts.

INTRODUCTION

This paper aims to develop a modeling technique to capture the deployment dynamics of complex
folded deployable space structures on spacecraft. Folded deployable space structures are a class of
structures where the surface is segmented by a given pattern to be compactly folded. These struc-
tures are a promising concept to address a growing need in deployable structures technology. Several
contemporary mission concepts require structures on the order of 10s or 100s of meters diameter
in size, far exceeding the 5 meter diameter constraint of launch vehicle fairings.1 For example, the
free-flying occulter concept for exoplanet imaging missions such as THEIA and New Worlds Ob-
server2 has a structure diameter of 40 meters at minimum.3 It’s acknowledged that deployables are
critical for future astrophysics missions,4 as has already been demonstrated with the James Webb
Space Telescope architecture and the proposed High Definition Space Telescope. Future manned
missions using solar electric propulsion will rely on solar power production at scales requiring mas-
sive deployable solar panel systems. For these examples, a continuous rigid or semi-rigid surface
structure is required, such that sparse structure architectures such as mesh or membrane structures
are not applicable, but foldable concepts work well. Additionally, this work not only applies to large
structures, but is also critical to small spacecraft where the deployed structure is much larger than
the bus size.

For cases where the deployed structure is several factors greater in size than the spacecraft bus,
the dynamics of the deployment and the effect on the host bus dynamics are of significant concern.
The current approach in the field relies on experimental testing and Finite Element Analysis (FEA)
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software to verify deployment for developing structure designs, a slow and resource expensive pro-
cess. Additionally, novel concepts for folded space structures use highly flexible materials for hinge
connections across folds. These materials enable significant mass savings and are able to actuate
the deployment through strain energy alone. However, the behavior of these materials are difficult
to model using FEA tools, and modeling a system with many hinges acting simultaneously is highly
computationally expensive.

Modeling the dynamics of deployable structure and spacecraft systems using a more efficient
approach has not been investigated due to the complexity and lack of approach precedence in the
literature. The deployment dynamics of complex deployable systems must be understood to verify
deployment and to ensure mission success, and should be available early in the design process to
enable more efficient and reliable designs. In this paper, modeling the hinge behaviors in folded
deployable structures as functions of the translational and rotational displacement is investigated.
This approach is applied to a prototypical single panel and a three panel folded structure pattern.
The system is studied and described using dynamics techniques traditionally developed for attitude
dynamics and control to better understand how the structure’s motion affects the spacecraft motion.

OVERVIEW OF ORIGAMI-INSPIRED FOLDING SPACE STRUCTURES

A prevalent concept for designing folding structures has drawn inspiration from origami folding
techniques. Many fold patterns are developed for two dimensional surfaces, such as the Miura-Ori,
the Scheel pattern,5 and others.6 Fold patterns are being extensively studied for space applications in
the field of flexible gossamer membrane space structures,7, 8 and are applied to solar sails,9, 10 defrac-
tive optics,11 and many more concepts.12 However these studies in highly lightweight membrane
technologies are primarily focused on feasibility, concept demonstration, and stiffness analysis, and
do not delve deeply into deployment dynamics or system dynamics modeling. Additionally, these
structures are less concerned about dynamic effects due to the properties of lightweight membrane
materials and due to the smaller size scale of these designs. Concepts concerning rigid or semi-rigid
plate folding structures that mimic the fold patterns of these membrane structures are also being
considered,13 and for these concepts, the dynamics can no longer be neglected.

A folded planar surface is referred to here and in the literature as a “flasher”. The fold patterns ap-
plied to the these space structure flashers have common characteristics. The first is in the orientation
of the folded state with respect to the spacecraft bus. The most effective folding designs for circular
and symmetric structures such as occulting disks, antenna, and optics have a radially oriented pat-
tern, that either wraps about the hub or collapses circumferentially into the hub. An example of this
concept is illustrated in Figure 1. Radial patterns enable the design to maintain symmetric inertia
properties, a highly desired characteristic for any spacecraft, and allow the structure to be stowed on
the perimeter. In this paper, radial patterns will be the primary motivation, however the modeling
techniques developed here might also be adapted to map-pattern folded flashers. While radially
wrapped folded structures are advantageous, the deployment of such configurations requires that
the structure spin away from the hub. The momentum balance of such a system results in a spin
rate differential between the hub and the structure that can be problematic at the moment of full
deployment. Without control, this can cause re-wrapping and other issues.14 This study aims to
capture this behavior through the dynamics models.

A primary challenge for folded space structures is determining advantageous methods to actuate
deployment. One such method focuses on hinge designs and materials where energy is stored in
the hinge and actuates deployment on release. Mechanical hinges, compliant mechanisms, and steel
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Figure 1. A simple deployed flasher example illustrating the base folds of the Scheel pattern.

tape spring hinges have been studied in the past for this. Additionally, recent investigations in de-
ployable structure materials have focused on the development of highly flexible composite materials
for a wide variety of uses, including as hinges for folded structures.15 These composite materials
are desirable due to their lightweight properties and strain energy behavior. These flexible hinges
are not necessarily constrained, single rotation hinges however, and complex three dimensional fold
capabilities have been demonstrated on tape spring hinges.16 Figure 2 displays basic diagrams of
tape spring configurations, where an ideal simple rotational fold is one degree of freedom, however
these flexible materials are capable of multiple axis rotations that do not occur at the hinge midpoint.
This paper focuses on the basic modeling of such hinged systems, and how they should be kinemati-
cally described relative to a generally rotating rigid spacecraft hub. The scope of this paper assumes
relatively simple hinge force and torque response function. The dynamical formulation, however,
is setup generally enough that more complex hinge response behaviors can readily be substituted in
future work.

MODELING APPROACH

A simple example of a folded space structure is a z-folded solar array, where the fold pattern
extends the structure linearly through single axis rotations. For the applications mentioned above,
more complex patterns are needed, where panels are folded on multiple edges and undergo full
three dimensional rotations through the fold. Therefore, these problems must be approached using
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Figure 2. Tape spring hinges are simple, lightweight hinge solutions capable of many
fold configurations.

full three dimensional rotational and translational descriptions, and will not be simplified to sin-
gle degree of freedom kinematic chains. Additionally, the coupling of the panel behaviors and the
spacecraft attitude are of primary concern. Therefore, intuitive relations between the panel descrip-
tions and the hub descriptions are pursued. The modeling approach is developed using energy-based
dynamics modeling methods, particularly Lagrange’s Equations, to create full multi-body dynamics
models. This method works well for derivations of n-body problems such as this, where energy can
be described in general coordinates for each panel set. The equations of motion as found through
Lagrange’s Equation is expressed generally as

∂

∂t

∂T

∂q̇i
− ∂T

∂qi
= Qi (1)

where Qi is the generalized force and can represent conservative and non-conservative forces and
torques, T is the kinetic energy of the system, and qi are the generalized coordinates. There are many
ways to describe these three components, and the formulation will become less trivial as the model
expands across larger structure flashers. The generalized coordinates of each rigid sub-component
contains 6 degrees of freedom, which are best described in either global position and orientations
or relative position and orientations. The trade here is due to kinetic energy being a function of
global terms, and the generalized forces being a function of the relative terms. The definition of
the relative terms, δA/A0

and θA/A0
, are illustrated in Figure 3 on a single panel example. The

body-fixed A0 frame represents the position and orientation at which there are no restorative forces
or torques acting between the two bodies. The panel-fixed A frame represents the actual position
and orientation of the panel relative to this reference, and when these two frames are aligned, there
are no internal hinge forces or torques in the system.

In this approach, the relative term descriptions are needed for integrating empirical models of
flexible hinge behaviors into the multi-body dynamics simulation. Experiments on hinge force and
torque responses can be conducted on a single hinge test article for all possible combinations of
displacement and orientation. A mathematical approximation of the hinge behavior as a function
of the relative coordinates would be ideal, however even without a mathematical fit, a interpolation
over a look up table would also provide this. Therefore, the generalized forces are written in terms
of the relative position displacement and relative orientation of the attached panel. All forces are
modeled as generalized forces Qi, instead of using potential functions, as this study is interested
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Figure 3. Reference frame and relative coordinate definitions of one panel.

in developing a framework where any forces written as functions of the hinge displacement and
orientation relative to the body can be applied.

SPACECRAFT BUS AND SINGLE PANEL MODEL DERIVATION

Equations of Motion Development

A single panel case is first considered to develop the hinge representation expressions. This case
is set up as two general bodies representing a spacecraft bus and a rigid panel. The spacecraft
bus center of mass position, RB/N , and orientation, θB/N , are unconstrained and tracked through
inertial space. For this study the body orientation is parameterized using 3-2-1 Euler Angles, but
any attitude parameterization can be applied. The spacecraft bus kinetic energy is then determined
through

TB =
1

2
ωB/N [IB]ωB/N +

1

2
mBṘB/N · ṘB/N (2)

Where the B frame is a body fixed frame and N indicates an inertial frame. A diagram of the
required reference frames is shown in Figure 3. Additionally, ωB/N is the rotation rate of the body
with respect to the inertial frame, [IB] is the body inertia tensor, mB is the body mass, and ṘB/N
is the inertial velocity of the body. Similarly, the kinetic energy of the panel is written in a general
form, for a panel fixed frame P , as

TP =
1

2
ωP/N [IP ]ωP/N +

1

2
mP ṘP/N · ṘP/N (3)
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Where ωP/N is the rotation rate of the panel with respect to the inertial frame, [IP ] is the panel
inertia tensor, mP is the panel mass, and ṘP/N is the inertial velocity of the panel.

Then the total kinetic energy of the system is the sum of these two contributions. The generalized
coordinates are selected to include the spacecraft states as expressed in the spacecraft body frame,
and the panel relative coordinates as expressed in the zero-orientation A0 frame,

q =
[
BRB/N

BθB/N
A0δA/A0

A0θA/A0

]ᵀ
(4)

Where the inertial position of the panel is

RP/N = rP/A + δA/A0
+ rA0/B +RB/N (5)

the inertial velocity is determined using the transport theorem,17 where each position vector is ex-
pressed in a convenient frame. The inertial velocity is a function of the position and the rate of the
frame it is expressed in with respect to the inertial frame. This presents the need for careful frame
selection and expression. To develop the most general solution, each vector will be expressed in the
spacecraft body frame. Then the velocity expression is

ṘP/N =
Bd
dt
(
rP/A + δA/A0

+RB/N
)
+ ωB/N ×RP/N (6)

To express each relative position vector in the body frame, the transformation of the vector’s ex-
pressed frame to the body frame is needed. The relative orientation of the hinge attachment frames,
the A and A0 frames, to their fixed bodies, the P and B frames respectively, are defined for any
general configuration and recorded as 3-2-1 Euler Angles. This allows flexibility in the system
assembly and keeps the analysis applicable to all panel shapes and configurations. The relative
orientation between each frame is then converted to corresponding direction cosine matrices. The
frames are illustrated in Figure 3, and because the A0 frame is fixed in the B frame, the orientation
is time invariant. Similarly, the orientation of the attachment origin on the panel frame relative to
the panel, A, is time invariant. Then the relative orientations are

[PA] = f(θ1,P/A, θ2,P/A, θ3,P/A) (7a)

[BA0] = f(θ1,B/A0
, θ2,B/A0

, θ3,B/A0
) (7b)

Additionally, the transformations of the generalized orientations are

[AA0] = f(θ1,A/A0
(t), θ2,A/A0

(t), θ3,AA0(t)) (8a)

[BN ] = f(θ1,BN (t), θ2,BN (t), θ3,BN (t)) (8b)

The relative orientation between the P and N frames are determined then from direction cosine
matrices as

[PN ] = [PA][AA0][BA0]
ᵀ[BN ] (9)

This orientation matrix models how the panel rotates relative to the inertial frame and is needed
to express the panel inertial rate in the kinetic energy function, where the kinematic differential
equation of this orientation is known for 3-2-1 Euler Angles.17 This attitude is highly nonlinear
expression as a function of the time variant general coordinates θB/N (t) and θA/A0

(t), as well as
the offset orientations [AP] and [BA0].
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Elastic Hinge Force and Torque Derivation

Now the interactions between these two bodies are to be defined, where the two bodies interact
only through the elastic hinge connection. The contributions from elastic hinges are implemented as
restorative forces and torques as a function of the relative displacements and rotations between the
two bodies. To do this, a relative equilibrium state is defined such that when the bodies reach this
state, there are no internal forces or torques acting between the bodies. In this study, these forcing
functions are generic place holder representations, however in future studies, these will be replaced
with functions that are determined empirically for a given hinge material. The relative states are
tracked through two reference frames, an equilibrium frame, A0, at which zero force and torque is
experienced, and a true position frame, A, as depicted in Figure 3. The equilibrium frame is fixed
in the body frame, however it does not share the same position or orientation as the body center of
mass because these forces and torques are not acting directly at the body center of mass. Conversely,
the relative position frame is fixed in the panel frame.

Here a derivation of the relative force and torque between two bodies is presented. The classical
definition for N generalized forces Qj is17, 18

Qj =
N∑
i=1

fi ·
∂Ri

∂qj
(10)

where Ri is the location of the point where the force is being applied. The generalized force
expression of a pure inertial torque, L acting on an arbitrary body E , is derived from this as17

Qj = τ ·
∂ωE/N

∂q̇j
(11)

The internal restorative force and torque of the hinge will act in equal and opposite sense on the
bus and panel, however, they will not be acting on the same locations in inertial space due to the
displacement of the hinge. Therefore these force and torque vectors are expressed in general coor-
dinates as follows

Qj = FA/A0
·
∂RA0/N

∂qj
− FA/A0

·
∂RA/N

∂qj
+ τA/A0

·
∂ωA0/N

∂q̇j
− τA/A0

·
∂ωA/N

∂q̇j
(12)

Recognizing that the bus and panel are each rigid bodies and expanding yields

Qj = FA/A0
·
∂RA0/N

∂qj
− FA/A0

·
∂(δA0/A +RA0/N )

∂qj

+ τA/A0
·
∂ωB/N

∂q̇j
− τA/A0

·
(∂ωA/A0

+ ∂ωB/N )

∂q̇j
(13)

Simplifying, the positions and rates relative to inertial cancel out to the following expression

Qj = −FA/A0
(δA0/A(t)) ·

∂δA0/A(t)

∂qj
− τA/A0

(θA/A0
(t)) ·

∂ωA/A0
(θA/A0

(t))

∂q̇j
(14)

This reduction reveals that the generalized forces can be expressed as a function of the relative
displacement and relative orientation only, a desirable simplification. Finally, the force and torque
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expressions must be defined. For this study, the forces and torques are written as linear spring
functions for the sake of simplicity of verification.

F = [KF ]δA/A0
(t) (15a)

τ = [Kθ]
[
θ3,A/A0

(t) θ2,A/A0
(t) θ1,A/A0

(t)
]ᵀ

(15b)

An advantage to building the hinge model using this approach is the ability to tune these forcing
functions to investigate desired behaviors. For example, a major desire for deployment dynamics
is damping the motion to achieve rest at full deployment, avoiding kickback and energy dissipation
through undesirable material deformations. By including a damping term in this expression, the
required damping properties of a material or device can be investigated. Additionally, in cases where
a given motion is negligible, constraint forces can be used to arrest the motion in the simulation.

SPACECRAFT BUS AND SINGLE PANEL MODEL INITIALIZATION AND VALIDATION

The derivation discussed above is carried out using symbolic tools in Mathematica to auto-
generate the equations of motion. The script is written in a general way, such that only the spacecraft
and panel mass, inertia, and configuration properties are needed to generate a model. Additionally,
the model is verified using numerical tools in Mathematica, where only the state initial conditions
are required for the simulation. Generation of the generalized forces is also built in a general way,
such that any internal hinge force and torque functions can be given to the system.

Knowledge of the spacecraft bus and rigid panel mass and inertia properties is needed, as well as
the reference frame configurations in the zero-force orientation. This information is generated here
for a simple model in Table 1 and Table 2. Additionally, general initial conditions are generated for
this simulation to test the model’s performance across all generalized coordinates and are reported
in Table 3. However, in a real deployment test scenario, these initial conditions would be generated
to simulate the deployable structure’s stowed configuration and would be entirely dependent on the
kinematic behavior of the flasher pattern and on constraints of the hinge and panel materials.

Table 1. Mass and principle inertia parameters of the single panel simulation.

mB (kg) mP (kg) IB (kg/m2) IP (kg/m2)

100 10 [100, 100, 100] [1, 1, 1]

Table 2. Relative positions and orientations of the single panel simulation.

rA0/B θA0/B rP/A θP/A

[0.75, 0.433, 0] m [0, 0, 30] deg [1, 1, 0] m [0, 0, 0] deg

Table 3. Initial conditions of the single panel simulation.

RB/N (0) θB/N (0) δ(0) θP/N (0)

0 0 [1, 1, 1] cm [10, 20, 30] deg

The results of a verification simulation run are displayed in Figure 4. The angular momentum
is observed to maintain an effective zero momentum, indicating that the forces and torques act
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Figure 4. Single panel simulation results and validations.
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Figure 5. Reference frame definitions of a 3 panel case.

internally and only produce relative motion. This is further verified by tracking the barycenter of
the bus and panel system and observing that it maintains a constant position through the simulation,
indicating all forces and torques act internally.

MULTIPLE PANEL SET MODEL

Equations of Motion Development

The approach outlined for the single panel case are now expanded to a 4-body, 3-panel case with
panel-to-panel interconnections. The derivation for this case is written as generally as possible,
where further extrapolation to greater sets of panels would be carried out using the same approach.
The model is limited to 3 panels to maintain traceability for the reader. For any N panels, the total
kinetic energy of the system is written as

T =
1

2
ωB/N [IB]ωB/N+

1

2
mBṘB/N ·ṘB/N+

N∑
i=1

[
1

2
ωPi/N [IPi ]ωPi/N +

1

2
mPiṘPi/N · ṘPi/N

]
(16)

The relative generalized coordinates will be selected for this model to simplify identifying desired
initial conditions and the zero force and torque configurations. Therefore the generalize coordinates
are

q =

[
BRB/N

BθB/N
A0,1δA1/A0,1

A0,1θA1/A0,1
A0,2δA2/A0,2

A0,2θA2/A0,2
A0,3,1δA0,3,1/A3,1

A0,3,1θA0,3,1/A3,1

]ᵀ (17)

Then the inertial position of each panel will have dependencies on the relative position of itself and
any connecting panels. For panels adjacent to the body, or in this example, for i = 1,2

RPi/N = rPi/Ai
+ δAi/A0,i

+ rA0,i/B +RB/N (18)
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The inertial position vector of the 3rd panel is

RP3/N = rP3/A3,1
+ δA3,1/A0,3,1

+ rP1/A1
+ δA1/A0,1

+ rA0,1/B +RB/N (19)

Again, the inertial velocity of each panel body is determined using the transport theorem,17 where
multiple reference frames are now in use. The frames for expression of these position descriptions
are chosen to simplify these calculations, however it is not possible to avoid a resulting expression
that is heavily non-linear and coupled across the generalized coordinates.

Generalized Forces for Multiple Panel Connections

The interdependence of the third panel is observed in Figure 5 where displacement and orienta-
tion of the panel must be known with respect to the two adjacent panels. However, the generalized
coordinates selected only track one of these relative states to avoid a redundant and over-constrained
system. Therefore, the other relative state must be backed out through the kinematic chain as fol-
lows, coupling the motion to the adjacent panel.

δA0,3,2/A3,2
= (rA0,3,2/P2

+RP2/N )− (RP3/N − rP3/A3,2
) (20)

Additionally, the rotation rates of the third panel with respect to the second must be calculated from
the rates of the adjacent bodies

ωA0,3,2/A3,2
= ωA0,2/A2

− (ωA0,1/A1
+ ωA0,3,1/A3,1

) (21)

With these two additional relationships, the generalized forces and torques can be determined. The
simplification found in Equation 14 be used for the force and torque of each hinge, where the
generalized forces acting on the system are the sum of the generalized forces generated by each
hinge. The total generalized force expression for the system is the sum of these body forces and
torques across the system.

Qj = −FB/P1
(δA0,1/A1

(t)) ·
∂δA0,1/A1

(t)

∂qj
− τB/P1

(θA0,1/A1
(t)) ·

∂ωA0,1/A1
(θA0,1/A1

(t))

∂q̇j

− FB/P2
(δA0,2/A2

(t)) ·
∂δA0,2/A2

(t)

∂qj
− τB/P2

(θA0,2/A2
(t)) ·

∂ωA0,2/A2
(θA0,2/A2

(t))

∂q̇j

− FP3/P1
(δA0,3,1/A3,1

(t)) ·
∂δA0,3,1/A3,1

(t)

∂qj

− τP3/P1
(θA0,3,1/A3,1

(t)) ·
∂ωA0,3,1/A3,1

(θA0,3,1/A3,1
(t))

∂q̇j

− FP3/P2
(δA0,3,2/A3,2

(t)) ·
∂δA0,3,2/A3,2

(t)

∂qj

− τP3/P2
(θA0,3,2/A3,2

(t)) ·
∂ωA0,3,2/A3,2

(θA0,3,2/A3,2
(t))

∂q̇j
(22)

Where the forces and torques are functions of the displacements at the hinge indicated in the sub-
scripts. As with the one panel simulation, these forces and torques are tested as simple linear spring
functions as defined in Equation 15. The equations of motion of this system can now be gener-
ated using Equations 16 and 22 in Equation 1. This results in a system of 24 equations for the 24
generalized coordinates selected.
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THREE PANEL MODEL INITIALIZATION AND VALIDATION

The spacecraft bus and rigid panel mass and inertia properties, position and orientation parame-
ters, and initial conditions are generated here for a multiple panel model in Table 4, Table 5, Table
6, and Table 7, respectively. These parameters represent a simple toy case that is designed to test
performance across the generalized coordinates. The results of the 3 panel case simulation run are
shown in Figure 6.

Table 4. Model parameters of the single panel simulation check, mass is in kg and inertia is in (kg/m2)
and shows the principle inertias.

mB mP1 mP2 mP3 IB IP1 IP2 IP3

100 7 7 9 [100, 100, 100] [1, 1, 0.1] [1, 1, 0.1] [1, 1, 0.1]

Table 5. Relative positions (m) of the single panel simulation check.

rA0,1/B rA0,2/B rP1/A1
rP2/A2

rP1/A3,1
rP2/A3,2

[0.75, 0.433, 0] [−0.75,−0.433, 0] [1, 1, 0] [1, 1, 0] [1, 1, 0] [1, 1, 0]

Table 6. Relative orientations (deg) of the single panel simulation check.

θA0,1/B θA0,2/B θP1/A1
θP2/A2

θP1/A3,1
θP2/A3,2

[0, 0, 30] [0, 0,−30] [0, 0, 0] [0, 0, 0] [0, 0, 45] [0, 0, 45]

CONCLUSION AND FUTURE WORK

Implementation of deployment actuating hinge behavior as internal forces and torques in a multi-
body system is demonstrated for a single panel case and a multi-panel case with panel intercon-
nections. The conservation of momentum and conservation of motion validates the derivation and
modeling methods. However, the analysis provided in this work is only the first step towards creat-
ing realistic models of complex folded deployable structure deployment dynamics. Future work will
investigate expanding to complete flasher panel sets and modeling multiple panel interconnections
across the system. Additionally, future work will investigate using empirical data to fit force and
torque functions that accurately model true hinge behaviors. Flexible high strain composite materi-
als will be tested and an approximate mathematical fit will be pursued. Alternatively, a lookup table
of force and torque responses for a range of motions may be generated and interpolated to deter-
mine the response at a given configuration. Future systems with a greater number of interconnected
bodies may need the assistance of fast multi-body physics software to aid in behavior simulation,
where complex behaviors such as contact forces may be studied as well. Integrating the internal
hinge force and torque models into these software packages will also be investigated in future work.
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Figure 6. Three panel simulation results.
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Table 7. Initial conditions of the single panel simulation check.

RB/N (0) δA1/A0,1
(0) δA2/A0,2

(0) δA0,3,1/A3,1
(0)

0 [0.01, 0.02, 0.03] [0.01, 0.02, 0.03] [0.01, 0.01, 0.01]

θB/N (0) θA1/A0,1
(0) θA2/A0,2

(0) θA0,3,1/A3,1
(0)

0 [30, 20, 10] [−30,−20,−10] [−5,−10, 5]
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Figure 7. Three panel simulation validations.
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