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The deployment dynamics of a spin stabilized electric sail (E-sail) with a hub-
mounted control actuator are investigated. Both radial and tangential deployment
mechanisms are considered to take the electric sail from a post-launch stowed config-
uration to a fully deployed configuration. The tangential configuration assumes the
multi-kilometer tethers are wound up on the exterior of the spacecraft hub, similar to
yo-yo despinner configurations. The deployment speed is controlled through the hub
rate. The radial deployment configuration assumes each tether is on its own spool.
Here both the hub and spool rate are control variables. The sensitivity of the deploy-
ment behavior to E-sail length, maximum rate and tension parameters is investigated.
A constant hub rate deployment is compared to a time varying hub rate that main-
tains a constant tether tension condition. The deployment time can be reduced by a
factor of 2 or more by using a tension controlled deployment configuration.

I. Introduction
The E-sail is a novel propellantless in-space propulsion concept with great potential for fast interplanetary and

near interstellar missions, invented and proposed by Pekka Janhunen1 at the Finnish Meteorological Institute. In this
concept, a system of radially configured, thin, charged tethers generate an electric field that interacts with solar wind
protons to harvest acceleration for spacecraft propulsion, demonstrated in Figure 1. This provides infinite specific
impulse and eliminates the need for traditional chemical propellants.2 Only an electron gun is required to maintain
a positive electrostatic charge on the tethers. The positive solar wind ions deflect of the results E-sail tether force
field, causing a net force onto the spacecraft. This solar wind propulsion concept is advantageous in comparison to
the solar radiation pressure (SRP) based solar sail due to the effective area of the electrostatic forces and improved
solar radius dependence.3 A single charged wire, microns thick, will create a meters-wide effective area, expanding
the area of influence of a minimal structure. In comparison, SRP is directly dependent on the physical area of the
solar sail, providing many challenges in manufacturing, packaging, and deploying large membranes.4 The solar radius
dependence of the E-sail has been shown to decay the acceleration at 1/r7/6, slower than that of the solar sail at 1/r2.
This is encouraging for long distance missions to the outer planets and beyond. However, the E-sail is not operable
within a planet’s magnetosphere, where the solar wind protons are deflected, whereas a solar sail still accelerates on
the photons in this region.

Multiple missions have been designed using the E-sail as the primary propulsion system with encouraging results.
A fast entry probe mission to Uranus could be achieved in less than 6 years,6 the interstellar medium reached in as
little as 10 years,7 and a near Earth asteroid rendezvous could be completed within a year.8 Additionally, missions
to the inner planets, such as Venus and Mars, could also be achieved in less than 1 and 2 years, respectively.9 This
provides adequate motivation to pursue further development of the E-sail system. The electrostatic propulsion theory
enabling these missions has been studied. However, the coupled dynamics of the spacecraft and charged tether system
is not well understood. Typically, the E-sail systems considered are composed of 20-100 tethers, up to 20 km in length,
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Figure 1: The electrostatic sail is charged by a spin axis-pointed electron beam and deflects solar wind protons
to generate thrust. Artist concept image by A. Szames.5

with payload masses of 100-2000 kg. These tethers are constructed using multiple micron-thick conductive tethers
with auxiliary loops, known as a Hoytether,10 to provide redundancy and protect against micrometeors. Construction
of such tethers at the desired length has been investigated with encouraging results.11 One such tether, 10 meters in
length, was flown on the EstCube-112 but was not deployed.13 Despite this, evidence supporting the feasibility of the
E-sail is continuing to develop, and steps will now be taken towards understanding the deployment requirements for
such a structure.

During flight, the tethers are spin-stabilized to maintain tensioned, radial, straight line configurations. Therefore,
the deployment scheme must settle with the spacecraft and each tether component rotating at equal rates. However, a
mass spinning out from a central body will dramatically change the body rates as momentum is exchanged from the
body to the deploying mass. For example, a spacecraft-tether system modeled with a spherical pendulum (such as the
yo-yo despinner mechanism used on the Dawn mission) will asymptotically approach the negative initial rate if left in
free spin. Therefore, energy and momentum must be continually input to the system as the tethers are deploying to
prevent large deviations in spin rates. A primary challenge for the E-sail deployment is determining a low-risk scheme
to accomplish this, presenting a non-trivial task.

A proposed scheme for the E-sail mounts the tethers at a radial orientation,14 where each tether is housed with an
individual hub and motor subsystem to conduct the tether unspooling. An auxiliary tether would line the periphery of
the sail, and thruster units would interface between the tether end points and auxiliary tether to control position and
momentum. These components significantly increase the mass budget of the E-sail and introduce a highly complex
dynamics problem. In this paper, an auxiliary tether is not included such that only a stand alone end mass is accounted
for. Additionally, novel deployment schemes are proposed, where the hub rate is controlled using hub-mounted devices
such as electric thrusters. A hub mounted strategy will be much simpler than coordinating and commanding individual
tether-mounted devices to actuate deployment. Furthermore, applying torque through the hub can be done using
commercially available products, whereas tether end point thruster units are currently under development.

Two deployment schemes that use a hub-mounted energy source are considered. The first is a tangentially aligned
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deployment, where all tethers are mounted on a central hub oriented with the spacecraft hub spin axis, taking advan-
tage of the rotational dynamics to deploy the tethers simultaneously. The second deployment scheme uses a radially
oriented deployment configuration. Such a configuration has each tether housed on a separate spool and motor device.
This paper compares the dynamic deployment behavior of these two methods. The coupled rotational dynamics of
the spacecraft hub and E-sail system is modeled during the deployment phase and the control of these dynamics is
investigated. The deployment is assumed to occur in a single plane, reducing the problem to rotational degrees of
freedoms about the deployment normal axis and ignoring out of plane dynamics. It is also assumed that the spacecraft
has reached deep space conditions before initiating deployment, the sail is not charged during deployment, and the
tethers do not stick or adhere as they deploy. Of interest is the nominal performance for each deployment type, as
well as the sensitivity of this performance with respect to the hub speed and spool reel rate. Numerical simulations
demonstrate the expected performance.

II. Dynamics Modeling
A. Spacecraft and E-Sail Mass Model

The mass budget of the E-sail and spacecraft system is selected such that the characteristic acceleration of the
E-sail at 1 Au from the Sun is between a� = 0.1 � 1 mm s�2. At a� = 1 mm s�2, significantly faster missions to the
outer planets and beyond are feasible.6 The characteristic acceleration is given by:15

a� =

fNL

m
(1)

where N is the number of tethers, L is the length of the tethers, m is the total mass of the spacecraft, and f is the
thrust per unit tether length at 1 AU from the Sun. Using the physical reference data for the E-sail,15 this is known
to be f = 579.84 nN m�1 for an E-sail operating at 25 kV nominal tether voltage. The total system mass is set to
m = 500 kg, a smaller but feasible mass for an interplanetary science mission, to facilitate greater focus on the other
free parameters of the system. It is assumed that the maximum number of tethers is 100 and the maximum length of a
tether is restricted to 20 km.15 However, this only slightly restricts the range of E-sail sizes that will yield the desired
characteristic acceleration in Eq. (1). For a scenario where there is minimal end mass, no remote devices, and minimal
number of tethers with maximum length, the tethers themselves are the largest contribution to the spacecraft system
momentum. Therefore, accurate modeling of the E-sail deployment requires that the tether inertia is not treated as
negligible and is modeled as a slender rod with total mass equal to the tether mass. This model assumes the tether
remains straight, but future models will include discrete points of freedom to increase the fidelity of the flexible body
dynamics model. The tether mass is described as a function of the deployment length, where the mass per unit length
per tether is assumed to be � = 1.155 ⇥ 10

�5 kg/m.15 Where ⇢ is the mass per unit length for N number of tethers,
⇢ = N� for a given sail size. The mass of all deploying tethers is then described as:

mT = ⇢l = ⇢R� (2)

where l is the deployed length, which can be described in terms of the unwrap angle � and the spacecraft hub radius
R for a tangential deployment. The derived tether inertia for each case is included in later sections. The spacecraft is
modeled with the additional mass of the stowed portion of the tethers placed along the circumference of the spacecraft.
Combining the time varying stowed tether contribution of the inertia to the spacecraft, the inertia of the hub is expressed
in the tether fixed S frame, where only the third axis term will be of a contributor to the planar deployment. This third
axis term expressed in the tether frame is the same for all deployment models, where mH is the hub mass.

Is33 =

1

2

mHR2
+ R2

(mT,0 � mT ) (3)

B. Equations of Motion via Lagrange’s Equation
The equations of motion for each case are efficiently determined using the Lagrange energy based approach. The

kinetic energy of the system is

T = TH +

NX

i=1

TT,i +

NX

i=1

TE,i = TH + TT + TE (4)

where subscript H refers to the spacecraft hub, T refers to the tethers, E refers to the tether end mass, and i indi-
cates an individual tether. Assuming that all N tethers are deployed symmetrically at equal rates and have identical
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construction, these summation terms can be reduced to a single lumped term, where the energy contribution of the
tether system is equivalent to a single tether of equivalent mass. Similarly, the energy contribution of the end masses
is condensed. The kinetic energy of each component is then written as follows:

TH =

1

2

!|
B/N [Is]!B/N (5a)

TT =

1

2

!|
S/N [IT ]!S/N +

1

2

mT
˙RT,C · ˙RT,C (5b)

TE =

1

2

mE
˙RE · ˙RE (5c)

Where the expressions of the inertias, velocities, and rotation rates are defined uniquely for the two cases in subsequent
sections. The equations of motion are then derived using Lagrange’s Equation. Where there are no potential energy
sources, this is simplified to

d
dt

✓
@T

@q̇j

◆
�

✓
@T

@qj

◆
= Qncj (6)

where the non-conservative force is the torque applied on the spacecraft hub. The contribution of this torque to each
general coordinate equation is determined as follows.

Qncj = us ·
@!B/N

@q̇j
(7)

III. Tangential Deployment Method and Parameter Analysis
In this concept, the tethers are deployed tangentially using a free deployment, where the acceleration of the end

mass advances the tether, much like with a yo-yo despinner. The phases of this deployment are illustrated in Figure 2.
Each of the tethers are wrapped about a central hub and are unreeled from the hub simultaneously. This method takes
advantage of the spin stabilized system dynamics to actuate the deployment and relies only on the spacecraft spin rate.
Therefore, control of the spacecraft spin rate will couple with the deployment rate, creating a more complex dynamical
system but providing a free deployment scheme. Additionally, transitioning the fully deployed tangential tethers to a
radial configuration must also be modeled. Therefore, the deployment is operated in two phases, an unwrap phase that
releases the tether length, and a hinging phase that transitions the tethers from the tangential to radial configurations.

Stowed Deploying Deployed

tethers

spacecraft 
hub

end 
masses

wrapped 
tethers

Figure 2: Diagram showing various stages of the tangential deployment scheme

A. Equations of Motion for Tangential Deployment
A dynamical model of the deployment is developed based on a spacecraft hub based control scheme. This model

is primarily concerned with the momentum balance between the spacecraft hub, tethers, and tether end masses, and
therefore makes several simplifying assumptions. The tethers and tether end masses are assumed to behave in a sym-
metrical fashion, and therefore are described using one set of state parameters. The tether is treated as a time varying,
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straight slender rod and tether flexibility is not considered in this first order analysis. Such flexible considerations
can be addressed in future models by using an N degree of freedom lumped mass model. The parameters of this
deployment method are defined in Fig. 3.

E

O

!

Is
N

S

R

�,

˙�

mEmT

FT

ˆs1

ˆs2

ˆe2
ˆe1

Figure 3: Tangential deployment dynamics parameters

Here � is the deployment unwrap angle, measured from the tether tangent point’s original position and ! is the
spacecraft rate. Where the rotation rates with respect to the inertial frame are defined as

!B/N = !ˆs3 (8)

!S/N = (! +

˙�)

ˆs3 (9)

The velocity vectors are determined as

˙RE = �R!ˆs1 + R�(! +

˙�)

ˆs2 (10)

˙RT,C = �1

2

R(2! +

˙�)

ˆs1 +

1

2

R�(! +

˙�)

ˆs2 (11)

Treating the inertia of the tether as a slender rod, and applying the parallel axis theorem, the inertia of the tethers
with respect to an origin located at the spacecraft center of mass is shown in Eq. (12), expressed in the tether fixed S
frame.

[IT ] =

2

4
R3⇢� � 1

2R3⇢�2
0

� 1
2R3⇢�2 1

3R3⇢�3
0

0 0

1
12R3⇢�3

+ R⇢�(R2
+

1
4R2�2

)

3

5 (12)

These expressions are used to define the kinetic energy expressions of Eq. (5c). Then, the equations of motion are
derived using Lagrange’s Equation to be as follows. The spacecraft rate, !, the tether unwrap angle, �, and the unwrap
rate, ˙�, are the state coordinates of this system.

1

24

R2
(�3(4R⇢ + 8mE� + 7R⇢�2

)!2
+ 3(5R⇢ + 8mE� + 7R⇢�2

)

˙�)+

1

12

R2�(18R⇢ + 12mE� + 7R⇢�2
)!̇ +

1

12

R2�(15R⇢ + 12mE� + 7R⇢�2
)

¨� = 0 (13)

1

12

R2
(3(4R⇢ + 8mE� + 7R⇢�2

)! ˙� + 3(6R⇢ + 8mE� + 7R⇢�2
)

˙�2
)+

1

12

R2
(6(2mE + mH + 2mT,0) + 12R⇢� + 12mE�2

+ 7R⇢�3
)!̇+

1

12

R2�(18R⇢ + 12mE� + 7R⇢�2
)

¨� = us (14)

These are only applicable to the point where the tethers are fully unwrapped. Following this point, the tethers
must transition to a radial orientation with respect to the hub, and this transition will be referred to as the hinging
phase. Using similar methods as those described above, the hinge phase equations of motion are also determined. The
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Figure 4: Hinging from tangential to radial dynamics parameters

parameters of interest are defined in Figure 4. The tether has freedom to rotate about the connection point by angle
�, where the desired dynamics will come to rest at � = 90 deg. The deployment angle � is now fixed constant. The
angular rate and velocities of the end mass and the tether center of mass are now described in the S frame.

!S/N = (! +

˙�)

ˆs3 (15)
˙RE,H = R�ˆs1 (16)

˙RT,H = �R cos �!ˆs1 +

1

2

R((� + 2 sin �)! + � ˙�)

ˆs2 (17)

The tether inertia for this phase is determined where the hinging position description is used. Only the third axis
inertia is included in the planar dynamics.

IT,H33
=

1

3

R3⇢�(3 + �2
+ 3� sin �) (18)

These expressions define the kinetic energy state of the system expressed in Eq. 5c, and the Lagrange equations
can now be used to determine the equations of motion for the hinging phase.

1

2

R2� cos �(�2(mE + R⇢�)!2
+ R⇢� ˙�2

) +

1

12

R2�(12mE� + R⇢(12 + 7�2
) + 6(2mE + 3R⇢�) sin �)!̇+

1

12

R2�(12mE� + R⇢(12 + 7�2
) + 12R⇢� sin �)

¨� = 0 (19)

1

12

R2
(24�(mE + R⇢�) cos �! ˙� + 6�(2mE + 3R⇢�) cos � ˙�2

)+

1

12

R2
(6mH + 12mT,0 + 12mE(1 + �2

) + R⇢�(12 + 7�2
) + 24⇢(mE + R⇢�) sin �)!̇+

1

12

R2�(12mE� + R⇢(12 + 7�2
) + 6(2mE + 3R⇢�) sin �)

¨� = us (20)

B. Constant Spacecraft Rate in Tangential Deployment
A constant spacecraft rate is the simplest to implement and will be analyzed in detail here to provide a baseline

case. The constant rate case is further valuable in that it provides insights into the deployment parameter relationships
and behaviors. Additionally, it may be desirable in that it provides a predetermined reference trajectory and enables
prediction of system behavior. Alternative objectives, such as tracking to maintain a constant tether tension, require
live self observations and live updates of the reference trajectory, however in subsequent sections it is shown that these
time varying cases will improve deployment time significantly. Looking at the tether tension expression:

T = mEiR(�(! +

˙�)

2 � !̇)

ˆsR + mEiR(!2 � ˙�2 � �(!̇ +

¨�))

ˆs� (21)

Where there is no tension in the ˆs� direction, this portion of the expression can be set equal to zero. For a constant
spacecraft rate, assuming the tether deployment is not accelerating, this expression can be used to prove that the
deployment rate with respect to the spacecraft will be equal to the spacecraft spin rate

! =

˙� (22)
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Further applying these assumptions to the tension expression, the tether tension at a given point in the deployment
is determined for an individual tether, i, from:

Tf = 4mEi!
2R� (23)

Additionally, assuming perfect tracking and constant rates, the torque required through the deployment duration is
derived from the equations of motion to be

us =

1

12

R2
(30R⇢ + 48mE� + 42R⇢�2

)!2

It is notable that the tension and torque do not rely on the spacecraft mass. These relationships can then be used
to explore the sensitivity of the system to E-sail parameter choices. Of particular interest is the effect of the payload
mass size on the rate requirements and deployment time. Where the maximum allowable tension in the Hoytether is
known to be 0.05 N, the maximum allowable spin rate can be determined

!max =

s
Tmax

4mEiR�f
(24)

Maps of these expressions as a function of the tether length, which can be determined from the deployment angle,
and the payload end mass are displayed in Figure 5. These plots quickly demonstrate that for the constant spacecraft
rate case, where the tension increases linearly over time and the maximum tension will be reached at the end of the
deployment, the deployment reaches unreasonably long deployment times for large end mass payloads. One primary
advantage of the E-sail propulsion in comparison to others is the relatively fast outer planet trajectory cruise times,
which are on the order of 6-10 years for outer solar system destinations. If the sail requires nearly a year to deploy
it will greatly impact the spacecraft acceleration and trajectory. Where the acceleration is most effective closer to the
Sun, the E-sail deployment will most likely occur during the most propulsion-effective period of the trajectory (the
exception being a case where the deployment is executed as the spacecraft ballistically approaches an inner planet
flyby). This strongly motivates searching for time minimal deployment schemes that will reduce the impact on the
E-sail effectiveness. Additionally, for smaller payloads, the torque required to reach the desired tension is well outside
the range of feasible torque capabilities for modern spacecraft. This strongly motivates investigation of non-linear
reference rate trajectories that will minimize deployment time while not exceeding torque capabilities.

C. Hub Rate Tracking Feedback Control Analysis
Lyapunov stability theory provides an analytical method to evaluate and develop controlled nonlinear dynamical

systems using stability definitions and Lyapunov functions.16 Using this method, a feedback control is developed that
proves the hub-actuated, spacecraft-rate focused controller will be applicable and stable for this system. A positive
definite Lyapunov function is chosen for this development and is defined in (25). It is desired that the spacecraft rate
is controlled by a hub applied torque and tracks to a reference trajectory. Therefore, the Lyapunov function is only a
function of the tracking error, �! = ! � !r.

V (�!) =

�!2

2

(25)

The time derivative of the Lyapunov function is now taken:
˙V (�!) = �!�!̇ (26)

To have asymptotic stability, the Lyapunov function must be negative definite. To find a control that guarantees this,
(26) is set equal to a negative definite Lyapunov rate expression.

˙V (�!) = �P �!2
= �!�!̇ (27)

Simplifying yields:
�P �! = �!̇ = !̇ � !̇r (28)

where P is a positive gain. To determine the control torque, the expression for !̇ as a function of torque, us, is
substituted into Eq. (20) and us is solved for, shown in (29)

us =

1

24

R2
(�3(4R⇢ + 8mE� + 7R⇢�2

)!2
+ 3(5R⇢ + 8mE� + 7R⇢�2

)

˙�)+

+

1

12

R2�(15R⇢ + 12mE� + 7R⇢�2
)

¨� � P
1

12

R2�(18R⇢ + 12mE� + 7R⇢�2
)�! (29)
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a) max allowable body rate (deg/s) b) required torque (N.m)

c) time to deploy (days)

Figure 5: Color maps of the maximum allowable spacecraft body rate and the corresponding torque required
to maintain that rate and the time to deploy for the constant body rate case.

D. Spacecraft Rate Trajectory for Tension Maintenance
Alternatively, the spacecraft rate trajectory can be derived such that the tension is maintained constant. This allows

for a time-minimum deployment, where the strength of material is treated as the limiting factor. To determine this
reference rate, the time derivative of the tension expression is set equal to zero:

˙T = mR(

˙�(! +

˙�)

2
+ 2�(! +

˙�)(!̇ +

¨�) + !̈ = 0

Assuming there is no jerk, !̈ = 0 and the relationship between the spacecraft rate and the deployment rate is
determined as

˙� = 2!

and the spacecraft rate required to provide constant tension as a function of deployment angle is

!2
=

T

mR(9� � 1
� )

The expression above cannot be used alone as a reference, where the expression is not defined for � = 0 and
would exceed allowable rates for small �. Therefore, a maximum allowable rate must be identified for the spacecraft
and applied for the initial trajectory as a part of a piecewise approach, defined in Eq. (30). For simulation purposes,
the maximum allowable spacecraft spin rate is set to 2.5 deg/s. The behavior for a deployment case where this is used
as the reference speed is now compared to the constant rate case. Figure 6 shows the behavior over time for these two
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cases, where the E-sail size parameters are chosen such that the characteristic acceleration is 0.1 mm/s2 and there are
20 tethers, determining the tether length to be 4.3 km. The payload mass is set to a modest 50 grams to represent a
low-mass actuator such as a photonic blade or independent sensor device.

! =

⇢
!const !non-lin � !max
!non-lin !non-lin  !max

(30)

Table 1: Spacecraft and E-sail parameters implemented in example simulations.

a� N L mEi mT mH

mm/s2 m kg kg kg

0.1 20 4.3 0.050 0.996 500

E. Numerical Simulations

time, (days)
0 2 4 6 8

ra
te
s
(d
eg
/s
)

0

0.5

1

1.5

2

2.5

3
ω
ωr
φ-dot
ωc
ωrc
φc-dot

a) body and tether rates

time, (days)
0 2 4 6 8

A
n
gu

la
r
M
om

en
tu
m
,
(k
g
m

2
/s
)

×105

0

0.5

1

1.5

2

2.5

3
HubT,
TethersT
End MassesT
HubC
TethersC
End MassesC

b) angular momentum of each component

time, (days)
0 2 4 6 8

T
en
si
on

F
or
ce
,
(N

)

0

0.01

0.02

0.03

0.04

0.05

max tension case
constant rate case

c) tension force in each tether

time, (days)
0 2 4 6 8

T
or
qu

e
eff

or
t
(N

.m
)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

max tension case
constant rate case

d) torque required

Figure 6: Unwrap phase deployment of the tangentially deployed E-sail with a constant reference trajectory
(black) and a tension derived trajectory (red).

The tension optimized reference trajectory is shown to decrease the deployment time from 7.02 days to 3.59
days, or to 51% of the constant rate deployment time. This is somewhat consistent with the expressions of expected
deployment rate, Eq. (22) and Eq. (D.), which predict the tension derived reference will deploy at twice the hub rate.
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Figure 7: The hinge phase of the tangentially deployed E-sail is shown to be the same for a constant reference
trajectory (black) and a tension derived trajectory (red).

This is a significant savings and will be instrumental for deployment design, where the greatest strength of this concept
is it’s potential for implementing fast missions to the outer solar system and any time lost during deployment may
detract from that. The tensions achieved at the end of the deployment are within 0.5% of each other, providing nearly
equivalent end-tension cases. It is notable that the maximum torque capability needed to achieve the deployment is the
same for both cases, however the maximum tension case has a higher average torque over the shorter duration. The
hinge phase of both deployments are shown in Figure 7, and it’s noted that the two cases have nearly identical hinging
behaviors. Although there is a difference in the spacecraft rates at the start of deployment, at the moment hinging
begins, the tether deployment rates, ˙�, are transfered to tether hinging rates, and the net behavior is the same. The
applied torque ramps down as the tethers decelerate and transfer to the desired position and the hinging is completed
smoothly in under 15 minutes. This shows that controlled hinging can be accomplished using the hub-mounted control
scheme.

IV. Radial Modeling and Parameter Analysis
Another method to deploy the E-sail is to use radially deploying tethers, as seen in Figure 8. Such a design

requires tether reeling modules to stow and control each of the 20-100 tethers individually, and therefore requires 20-
100 drive mechanisms. This introduces a large power consumption during the deployment as well as synchronization
challenges. Additionally, the system still experiences significant momentum exchange and rate changes that couples
with the unreeling process. However, this method enables highly valuable independent control of the tethers and
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Figure 8: Various stages of the radial deployment scheme

decouples deployment failure risks of the tethers from each other. Furthermore, substantial engineering development
has been done on a reeling mechanism.12 Energy methods are used to determine the equations of motion for the radial
deployment case.

A. Radial Deployment Equations of Motion

A dynamics model of this concept is developed using the simplified schematic illustrated in Figure 9. Here � is
the angle of deviation of the tether from radial, and ˙� is the rotation rate of the tether. The tether rotation with respect
to inertial is

!S/N = (! +

˙�)

ˆs3 (31)

Then the velocity vectors are described in the S frame as

˙RE,H = (

˙l + R sin �!)

ˆs1 + (l( ˙� + !) + R cos �!)

ˆs2 (32)

˙RT,H =

✓
1

2

˙l + R sin �!

◆
ˆs1 +

✓
1

2

l( ˙� + !) + R cos �!

◆
ˆs2 (33)

The radial tether inertia of the third axis is determined to be:

IT,H33
=

1

12

⇢l3 + ⇢l((R cos � +

1

2

l)2 + R2
sin �2

) (34)

N

E S

O

!
Is

mE
mT

l, ˙l

�,

˙�

Figure 9: Radial deployment dynamics parameters

Using these definitions for the model components, the energy of the system is determined using Eq. (4). Using
again the Lagrangian dynamics formulation, the coupled equations of motion for the hub rate ! and deflection angle
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� are

1

12

(6R⇢ sin � ˙l2 � 12Rl sin �mE
˙�(

˙� + 2!) � 6R⇢l2 sin � ˙�(3

˙� + 4!))+

1

12

(3

˙l((4R2⇢ + 7⇢l2 + 8lmE)(

˙� + !) + 2R cos �(4mE(

˙� + !) + ⇢l(7 ˙� + 8!))))+

1

12

(12R2⇢l + 24R⇢ cos �l2 + 7⇢l3 + 24R cos �lmE + 12l2mE + 6R2
(2mE + mH + 2mT,0))!̇+

1

12

(12R2⇢l + 18R⇢ cos �l2 + 7⇢l3 + 12R cos �lmE + 12l2mE)

¨� = us (35)

1

12

(6Rl sin �(�⇢l ˙�2
+ 2(⇢l + mE)!2

))+

1

12

(3

˙l((4R2⇢ + 7⇢l2 + 8lmE)(

˙� + !) + 2R⇢ cos �l(4 ˙� + 5!)))+

1

12

(6R cos �l(3⇢l + 2mE) + l(12R2⇢ + 7⇢l2 + 12lmE))!̇+

1

12

(12R⇢ cos �l2 + l(12R2⇢ + 7⇢l2 + 12lmE))

¨� = 0 (36)

B. Radial Deployment with Constant Spacecraft Rate Case
Similarly to the tangential model analysis, the constant hub rate case can be further analyzed for the radial model.

However unlike the tangential case, the deployment rate of the radial case is controlled by ˙l which is assumed to be
controlled by the spool motor and held constant. Therefore, adjustments in the reference rate will not result in a time
savings. While including the deployment rate as a free variable is possible, it adds significant complexity to the model
and is left for future work. For a radial orientation, the tether tension is written as

T = m(R cos �!2
+ l( ˙� + !)

2
)

ˆsR � m(R sin �!2
+ 2

˙l( ˙� + !) + l ¨�))

ˆs� (37)

where there is no tension in ˆs�, the tether normal direction, the following are known:

T = mEi(R cos �!2
+ l( ˙� + !)

2
) (38)

�m(R sin �!2
+ 2

˙l( ˙� + !) + l ¨�)) = 0 (39)

Assuming the tether’s position is not changing or accelerating, ˙� = 0 and ¨� = 0, Equation 39 is used to solve for
an expression of �:

� = sin

�1 �2

˙l

R!
(40)

This result proves that for a radially deploying spin stabilized tether, there must be some deviation from the radial
orientation during deployment. This is a significant result that implies a trade between the deployment rate, spacecraft
rate, and tether position deviation. Due to the assumptions made in the derivation, there is some deviation from the
predicted position and the observed position in numerical simulations. However, the prediction is within 2% accuracy.
Furthermore, by this definition, the quantity including the ratio of the linear deployment rate to the spacecraft rate
must be from 0-1 for the tether position to be defined. This limits the possible rate configuration of the system.

C. Lyapunov Control Stability Analysis
Similarly to the tangential case, the Lyapunov function for the radial deployment is only a function of the tracking

error, �! = ! � !r, and the same Lyapunov function and derivation methods are applied here. To determine the
control torque, the expression for !̇ as a function of torque, us, is substituted into Eq. (35) and us is solved for. This
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derivation assumes a constant reference rate.

us =

1

12

(6R⇢ sin � ˙l2 � 12Rl sin �mE
˙�(

˙� + 2!) � 6R⇢l2 sin � ˙�(3

˙� + 4!))+

1

12

(3

˙l((4R2⇢ + 7⇢l2 + 8lmE)(

˙� + !) + 2R cos �(4mE(

˙� + !) + ⇢l(7 ˙� + 8!))))+

1

12

(12R2⇢l + 18R⇢ cos �l2 + 7⇢l3 + 12R cos �lmE + 12l2mE)

¨�

� P
1

12

(12R2⇢l + 24R⇢ cos �l2 + 7⇢l3 + 24R cos �lmE + 12l2mE + 6R2
(2mE + mH + 2mT,0))�! (41)

Spacecraft Rate Trajectory for Tension Maintenance
Considering instead the time-minimum approach where the tension force in the tether is maximized and maintained

constant, assuming the tether’s position is not changing or accelerating, and that there is no jerk on the spacecraft hub,
the position of the tether can be predicted as

� = sin

�1 �3

˙l

2R!
(42)

Which is similar to what is determined for the constant rate case, where there is a factor of 2 in the constant expression
and a factor of 3/2 here, indicating that this reference trajectory maintains a smaller tension deviation than the constant
case. The spin rate trajectory corresponding with this is determined as a function of the current tether deployment
length and rate as

! =

s
8T (2⇢L + mEi) + ⇢mEi

˙l2

mEi(4R2⇢ + 23⇢l2 + 16lmEi)

(43)

D. Numerical Simulation
The response of the system to this reference trajectory is illustrated in Figure 10 along with the the constant rate

case. The deployment rate, ˙l, in both cases is equivalent and constant, however, so the time to deploy is equivalent.
However, the tether angle in the time varying trajectory is notably smaller, and the magnitude of the torque effort
required is smaller, despite maintaining a higher tension. This analysis does not account for the additional spin up
phase prior to deployment. The discontinuity in the position angle occurs at the switch of the piecewise reference
trajectory, and is attributed to the derived expressions of the tether position angle for the two cases. Eq. (42) and
Eq. (40) show that the predicted tether position will change, and the numerical simulation reflects this discontinuity.
As in the tangential case, due to the tether position displacement, a hinging maneuver will need to be executed at
the end of the deployment. Figure 11 illustrates the hinging for these two cases. The constant rate case, which has
more displacement from radial, is shown to require a slightly more time and a greater torque effort to complete the
transition, but overall these two cases show similar behavior.

V. Conclusions and Future Work
The two E-sail deployment schemes investigated in this paper provide feasible means to actuate the deployment of

an E-sail structure using hub mounted torque only. The tangential deployment scheme provides a simpler deployment
for lower torque, however it removes the ability to control the individual tether spooling. Deployment in a truly radial
configuration, where � ⇡ 0, is shown to require much greater spin rates or much longer deployment duration than
allowing tethers to drift. The advantage of an ideal radial deployment is that a hinge phase would not be needed,
however in practical application it is shown that allowing hinging will greatly reduce the deployment time or hub spin
rate requirements. The radial deployment configuration was developed based on the individual tether spooling concept.
Modifying the individual spools to orient the deployment to a tangential configuration would be worth considering in
future simulations, and may provide the optimal deployment.

The deployment torque can be applied to the hub using a variety of methods, depending on the order of magnitude
and duration of torque needed for the deployment. Electric thrusters are ideal candidates for their range of thrust
magnitudes and time varying capabilities for smaller inertia E-sails. Reaction wheels could also be used if fine control
is needed, however the momentum stored in the wheels would need to be actively removed. Chemical thrusters may
also be used to achieve large torques for large E-sails, however the time variations could only be achieved using pulse
width modulation thrust. The effects of such an approach on the deployment dynamics must be investigated to ensure
stability. Incorporating realistic thruster models to the deployment simulation is left to future work.
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Figure 10: Behaviors of the radially deployed E-sail with a constant reference trajectory (black) and a tension
derived trajectory (red).

The spacecraft rate trajectory, deployment rate, characteristic acceleration, and tether tip mass are large contribu-
tors to the deployment dynamics and must be chosen judiciously. Defining realistic boundaries for these parameters
based on technology capabilities and mission requirements will inform future simulations. Additionally, it is deter-
mined that E-sails designed to have a greater number of shorter tethers have smaller inertia and therefore require less
energy and momentum to deploy. However, these tethers would be in closer proximity to each other and may present
collision risks. State error estimation of the tether positions must be done to determine the closest allowable prox-
imity of two adjacent tethers. Future work will model each tether individually with a unique state and determine the
factors influencing variation in position to do this. Permitting tether hinging raises concern that the flexible tethers
may exhibit in-plane bending despite internal tension. Model fidelity will therefore be further increased by using a
lumped-mass method to incorporate the flexibility of the tethers. While many questions on the finer behavior of the
E-sail deployment remain, the baseline momentum and torque requirements of the hub actuated deployment are now
defined.
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Figure 11: The hinging phases of the radially deployed E-sail deployment with a constant reference trajectory
(black) and a tension derived trajectory (red) are slightly different due to the difference in initial tether angle.
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