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The deployment dynamics of a radially configured, spin stabilized, electrostatic
sail (E-sail) are modeled for a hub-mounted control actuator. Spacecraft hub con-
trol torque requirements for obtaining desired system spin rate trajectories are in-
vestigated. The dynamics are treated as a planar deployment and feedback control
is applied with a PID controller. The sail is modeled for two different deployment
strategies and tether stowage configurations, a tether spool wound up on a cylindri-
cal hub which deploys the tether end masses tangentially, and a radially deployed
configuration where each tether is stowed on an individual hub and actuated by a
spool motor. The advantages and challenges of each deployment strategy are dis-
cussed. Additionally, deployment durations and torque capability requirements are
determined for several tangentially deployed E-sails with varying characteristics.

INTRODUCTION

This paper aims to develop a characterization of the controlled deployment for the electrostatic
sail, or electric sail (E-sail). The E-sail is a novel propellantless in-space propulsion concept with
great potential for fast interplanetary and near interstellar missions, invented and proposed by Pekka
Janhunen1 at the Finnish Meteorological Institute. In this concept, a system of radially configured,
thin, charged tethers generate an electric field that interacts with solar wind protons to harvest accel-
eration for spacecraft propulsion, demonstrated in Figure 1. This provides infinite specific impulse
and eliminates the need for traditional chemical propellants,2 where only an electron gun is required
to maintain the electrostatic charge on the tethers. This solar wind propulsion concept is advanta-
geous in comparison to the solar radiation pressure (SRP) based solar sail due to the effective area
of the electrostatic forces and improved solar radius dependence.3 A single charged wire, microns
thick, will create a meters-wide effective area, expanding the area of influence of a minimal struc-
ture. In comparison, SRP is directly dependent on the physical area of the solar sail, providing
many challenges in manufacturing, packaging, and deploying large membranes.4 The solar radius
dependence of the E-sail has been shown to decay the acceleration at 1/r7/6, slower than that of the
solar sail at 1/r2. This is encouraging for long distance missions to the outer planets and beyond.
However, the E-sail is not operable within a planet’s magnetosphere, where the solar wind protons
are deflected, whereas a solar sail still accelerates on the photons in this region.

Multiple missions have been designed using the E-sail as the primary propulsion system with
encouraging results. A fast entry probe mission to Uranus could be achieved in less than 6 years,6
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Figure 1. The electrostatic sail is charged by a spin axis-pointed electron beam and
deflects solar wind protons to generate thrust. Artist concept image by A. Szames.5

the interstellar medium reached in as little as 10 years,7 and a near Earth asteroid rendezvous could
be completed within a year.8 Additionally, missions to the inner planets, such as Venus and Mars,
could also be achieved in less than 1 and 2 years, respectively.9 This provides adequate motivation
to pursue further development of the E-sail system. The electrostatic propulsion theory enabling
these missions has been thoroughly studied. However, the coupled dynamics of the spacecraft
and charged tether system is not well understood. Typically, the E-sail systems considered are
composed of 50-100 tethers, 10-30 km in length, with payload masses of 100-1000 kg. These
tethers are constructed using multiple micron-thick conductive tethers with auxiliary loops, known
as a Hoytether,10 to provide redundancy and protect against micrometeors. Construction of such
tethers at the desired length has been investigated with encouraging results.11 One such tether, 10
meters in length, was flown on the EstCube-112 but was not deployed.13 Despite this, evidence
supporting the feasibility of the E-sail is continuing to develop, and steps will now be taken towards
understanding the deployment requirements for such a structure.

During flight, the tethers are spin-stabilized to maintain tensioned, radial, straight line configura-
tions. Therefore, the deployment scheme must settle with the spacecraft and each tether component
rotating at equal rates. However, a mass spinning out from a central body will dramatically change
the body rates as momentum is exchanged from the body to the deploying mass. For example,
a spacecraft-tether system modeled with a spherical pendulum (such as a yo-yo despinner) will
asymptotically approach the negative initial rate if left in free spin. Therefore, energy and momen-
tum must be continually input to the system as the tethers are deploying to prevent large deviations
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in spin rates. A primary challenge for the E-sail deployment is determining a low-risk scheme to
accomplish this, presenting a non-trivial task.

A proposed scheme for the E-sail mounts the tethers at a radial orientation, where each tether is
housed with an individual hub and motor subsystem to conduct the tether unspooling. An auxiliary
tether would line the periphery of the sail, and thruster units would interface between the tether
end points and auxiliary tether to control position and momentum. These components significantly
increase the mass budget of the E-sail and introduce a highly complex dynamics problem. In this
paper, an alternative E-sail configuration is investigated, where no auxiliary tether is used and only
small end masses are mounted at the tips. This would greatly reduce the mass budget of the E-sail
system. Additionally, novel deployment schemes are proposed, where the control will be actuated
using hub-mounted devices such as electric thrusters. Doing so will eliminate the difficulty of
coordinating and commanding multiple systems. Furthermore, applying torque through the hub can
be done using commercially available products, whereas tether end point thruster units are currently
under development.

Two deployment schemes of this type are considered. The first is a tangentially aligned deploy-
ment, where all tethers are mounted on a central hub oriented with the spacecraft hub spin axis,
taking advantage of the rotational dynamics to deploy the tethers simultaneously. This method re-
quires further engineering development with regard to how such a system would be designed, where
methods such as stacking each tether in parallel may be feasible but have not be tested. The second
deployment scheme uses a radially oriented deployment configuration. The dynamic behavior, en-
ergy requirements, and control stability of these two methods are compared. The coupled rotational
dynamics of the spacecraft hub and E-sail system is modeled during the deployment phase and the
control of these dynamics is investigated. The deployment is assumed to occur in a single plane,
reducing the problem to rotational degrees of freedoms about the out of plane axis and ignoring out
of plane dynamics. It is also assumed that the spacecraft has reached deep space conditions before
initiating deployment, the sail is not charged during deployment, and the tethers do not stick or
adhere as they deploy.

TANGENTIAL AND RADIAL DYNAMICS MODELING

Spacecraft and E-Sail Mass Model

The mass budget of the E-sail and spacecraft system is selected such that the characteristic ac-
celeration of the E-sail at 1 Au from the Sun is between a⊕ = 0.1 − 1 mm s−2. At a⊕ = 1 mm
s−2, significantly faster missions to the outer planets and beyond are feasible.6 The characteristic
acceleration is given by:14

a⊕ =
fNL

m
(1)

whereN is the number of tethers, L is the length of the tethers,m is the total mass of the spacecraft,
and f is the thrust per unit tether length at 1 AU from the Sun. Using the physical reference data
given for the E-sail,14 this is known to be f = 579.84 nN m−1 for an E-sail operating at 25 kV
nominal tether voltage. The total system mass is set to m = 500 kg, a smaller but feasible mass
for an interplanetary science mission, to facilitate greater focus on the other free parameters of the
system. It is assumed that the maximum number of tethers is 100 and the maximum length of a
tether is restricted to 20 km.14 However, this only slightly restricts the range of E-sail sizes that will
yield the desired characteristic acceleration in (1). The significance of these parameters is explored
in considering the system inertia and momentum in later sections of the paper.
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Accurate modeling of the E-sail deployment requires that the tethers are not treated as massless
sub-structures. For a scenario where there is minimal end mass, no remote devices, and minimal
number of tethers with maximum length, the tethers themselves are the largest contribution to the
spacecraft system momentum. Therefore, tether inertia is no longer negligible and is modeled as
a slender rod with total mass equal to the system mass. This model assumes the tether remains
straight, but future models will include discrete points of freedom to increase the fidelity of the
flexible body dynamics model. The tether mass is described as a function of the deployment length,
where the mass per unit length per tether is assumed to be λ = 1.155 × 10−5 kg/m.14 Where ρ is
the mass per unit length for N number of tethers, ρ = Nλ for a given sail size. The mass of all
deploying tethers is then described as:

mT = ρl = ρRφ (2)

where l is the deployed length, which can be described in terms of the unwrap angle φ and the
spacecraft hub radius R for a tangential deployment. The derived tether inertia for each case is
included in later sections. The spacecraft is modeled with the additional mass of the stowed portion
of the tethers placed along the circumference of the spacecraft. Combining the time varying stowed
tether contribution of the inertia to the spacecraft, the inertia of the hub is expressed in the tether
fixed S frame, where only the third axis term will be of a contributor to the planar deployment. This
third axis term expressed in the tether frame is the same for all deployment models, where mH is
the hub mass.

Is33 =
1

2
mHR

2 +R2(mT,0 −mT ) (3)

Equations of Motion via Lagrange’s Equation

The equations of motion for each case are efficiently determined using the Lagrange energy based
approach. The kinetic energy of the system is

T = TH +
N∑
i=1

TT,i +
N∑
i=1

TE,i = TH + TT + TE (4)

where subscript H refers to the spacecraft hub, T refers to the tethers, E refers to the tether end
mass, and i indicates an individual tether. Assuming that all N tethers are deployed at equal rates
and have identical construction, these summation terms can be reduced to a single lumped term,
where the energy contribution of the tether system is equivalent to a single tether of equivalent
mass. Similarly, the energy contribution of the end masses is condensed. The kinetic energy of each
component is written as follows:

TH =
1

2
ωᵀ
B/N [Is]ωB/N (5a)

TT =
1

2
ωᵀ
S/N [IT ]ωS/N +

1

2
mT ṘT,C · ṘT,C (5b)

TE =
1

2
mEṘE · ṘE (5c)

The equations of motion are then derived using Lagrange’s Equations, which state

d
dt

(
∂L
∂q̇j

)
−
(
∂L
∂qj

)
= Qncj (6)
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If there are no potential energy sources, Lagrange’s Equations are simplified to

d
dt

(
∂T

∂q̇j

)
−
(
∂T

∂qj

)
= Qncj (7)

where the non-conservative force is the torque applied on the spacecraft hub. The contribution of
this torque to each general coordinate equation is determined as follows.

Qncj = us ·
∂ωB/N

∂q̇j
(8)

Stowed Deploying Deployed

tethers

spacecraft 
hub

end 
masses

wrapped 
tethers

Figure 2. Diagram showing various stages of the tangential deployment scheme

Tangential Unwrap Dynamics

In this concept, the tethers are deployed tangentially using a free deployment, where the accel-
eration of the end mass advances the tether, much like with a yo-yo despinner. The phases of this
deployment are illustrated in Figure 2. Each of the tethers are wrapped about a central hub and are
unreeled from the hub simultaneously. This method takes advantage of the spin stabilized system
dynamics to actuate the deployment and relies only on the spacecraft spin rate. Therefore, control
of the spacecraft spin rate will couple with the deployment rate, creating a more complex dynamical
system but providing a free deployment scheme. Additionally, transitioning the fully deployed tan-
gential tethers to a radial configuration must also be modeled. Therefore, the deployment is operated
in two phases, an unwrap phase that releases the tether length, and a hinging phase that transitions
the tethers from the tangential to radial configurations.

The positions of the end mass and the tether center of mass are described in the S : {ŝ1, ŝ2, ŝ3}
frame, where ŝ1 is the tether deployment direction, ŝ2 points to the tangent point, and ŝ3 is out of
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Figure 3. Tangential deployment dynamics parameters

the deployment plane.

RE = Rφŝ1 +Rŝ2 (9)

RT,C =
1

2
Rφŝ1 +Rŝ2 (10)

Here φ is the deployment unwrap angle, measured from the tether tangent point’s original position.
The velocity of the end mass and tether center of mass are next determined using the Transport
Theorem,15 where the rotation rates with respect to the inertial frame are known to be

ωB/N = ωŝ3 (11)

ωS/N = (ω + φ̇)ŝ3 (12)

where ω is the spacecraft spin rate and φ̇ is the deployment rate. The transport theorem states:15

ṘE =
N d
dt

(RE) =
Bd
dt

(RE) + ωS/N ×RE (13)

Then the velocity vectors are determined as

ṘE = −Rωŝ1 +Rφ(ω + φ̇)ŝ2 (14)

ṘT,C = −1

2
R(2ω + φ̇)ŝ1 +

1

2
Rφ(ω + φ̇)ŝ2 (15)

Treating the inertia of the tether as a slender rod, and applying the parallel axis theorem, the
inertia of the tethers with respect to an origin located at the spacecraft center of mass is shown in
Eq. (16), expressed in the tether fixed S frame.

[IT ] = [IT,C ] +mT [R̃T,C ][R̃T,C ]
ᵀ (16)

[IT ] =

 R3ρφ −1
2R

3ρφ2 0

−1
2R

3ρφ2 1
3R

3ρφ3 0

0 0 1
12R

3ρφ3 +Rρφ(R2 + 1
4R

2φ2)

 (17)

The generalized coordinates are chosen as the angular position description of the spacecraft hub
and the tether deployment, where θ = ωt.[

q1 q2
]
=
[
θ φ

]
(18)
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Using Eqs. (9) - (17) in the Lagrange’s Equation algorithm of Eqs. (4) - (8), the equations of
motion are determined.

1

24
R2(−3(4Rρ+ 8mEφ+ 7Rρφ2)ω2 + 3(5Rρ+ 8mEφ+ 7Rρφ2)φ̇)+

1

12
R2φ(18Rρ+ 12mEφ+ 7Rρφ2)ω̇+

1

12
R2φ(15Rρ+ 12mEφ+ 7Rρφ2)φ̈ = 0 (19)

1

12
R2(3(4Rρ+ 8mEφ+ 7Rρφ2)ωφ̇+ 3(6Rρ+ 8mEφ+ 7Rρφ2)φ̇2)+

1

12
R2(6(2mE +mH + 2mT,0) + 12Rρφ+ 12mEφ

2 + 7Rρφ3)ω̇+

1

12
R2φ(18Rρ+ 12mEφ+ 7Rρφ2)φ̈ = us (20)

E
O!

Is

N

S

R

mEmT

�

�, �̇

Figure 4. Hinging from tangential to radial dynamics parameters

Tangential Hinging Dynamics

Considering the hinging phase of the tangential deployment, and using similar methods as those
described above, the hinge phase equations of motion are also determined. The parameters of
interest are defined in Figure 4. The tether has freedom to rotate about the connection point by
angle β, where the desired dynamics will come to rest at β = 90deg. The deployment angle φ is
now fixed constant. The positions of the end mass and the tether center of mass are now described
in the S frame.

RE,H = Rφŝ1 +Rê2 (21)

RT,H =
1

2
Rφŝ1 +Rê2 (22)

Using Eq. (13), where the relative rate is Eq. (23), the velocity vectors are determined.

ωS/N = (ω + β̇)ŝ3 (23)

ṘE,H = Rφŝ1 (24)

ṘT,H = −R cosβωŝ1 +
1

2
R((φ+ 2 sinβ)ω + φβ̇)ŝ2 (25)
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The tether inertia for this phase is determined using Eq. (16), where the hinging position descrip-
tion is used. Only the third axis inertia is included in the planar dynamics.

IT,H33
=

1

3
R3ρφ(3 + φ2 + 3φ sinβ) (26)

Selecting the general coordinates to be the spacecraft position angle and the hinging angle, q1 = θ
and q2 = β, and using Eqs. (21) - (26) in the Lagrange’s Equation algorithm of Eqs. (4) - (8), the
equations of motion are determined.

1

2
R2φ cosβ(−2(mE +Rρφ)ω2 +Rρφβ̇2)+

1

12
R2φ(12mEφ+Rρ(12 + 7φ2) + 6(2mE + 3Rρφ) sinβ)ω̇+

1

12
R2φ(12mEφ+Rρ(12 + 7φ2) + 12Rρφ sinβ)β̈ = 0 (27)

1

12
R2(24φ(mE +Rρφ) cosβωβ̇ + 6φ(2mE + 3Rρφ) cosββ̇2)+

1

12
R2(6mH + 12mT,0 + 12mE(1 + φ2) +Rρφ(12 + 7φ2) + 24ρ(mE +Rρφ) sinβ)ω̇+

1

12
R2φ(12mEφ+Rρ(12 + 7φ2) + 6(2mE + 3Rρφ) sinβ)β̈ = us (28)

Stowed Deploying Deployed

dl

dt
= l̇

end 
masses

spacecraft 
hub

deploying 
tethers

Figure 5. Various stages of the radial deployment scheme
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Radial Deployment Dynamics

Another method for deployment would be to use radially deploying tethers, as seen in Figure 5.
Such a design requires tether reeling modules to stow and control each of the 20-100 tethers individ-
ually, and therefore requires 20-100 drive mechanisms. This introduces a large power consumption
during the deployment as well as synchronization challenges. Additionally, the system still expe-
riences significant momentum exchange and rate changes that couples with the unreeling process.
However, this method enables independent control of the tethers and decouples deployment failure
risks of the tethers from each other. Furthermore, substantial engineering development has been
done on a reeling mechanism.12 Energy methods are used to determine the equations of motion for
the radial deployment case.

N

E S

O

!
Is

mE
mT

l, l̇

�, �̇

Figure 6. Radial deployment dynamics parameters

The positions of the end mass and the tether center of mass are described in the S frame, illus-
trated in Figure 6, as

RE,H = lŝ1 +Rê1 (29)

RT,H =
1

2
lŝ1 +Rê1 (30)

Here β is the angle of deviation of the tether from radial, and β̇ is the rotation rate of the tether, the
tether rotation with respect to inertial is

ωS/N = (ω + β̇)ŝ3 (31)

Using (13), where the rotation rate is (31), the velocity vectors are determined as

ṘE,H = (l̇ +R sinβω)ŝ1 + (l(β̇ + ω) +R cosβω)ŝ2 (32)

ṘT,H =

(
1

2
l̇ +R sinβω

)
ŝ1 +

(
1

2
l(β̇ + ω) +R cosβω

)
ŝ2 (33)

The radial tether inertia of the third axis is determined using (16):

IT,H33
=

1

12
ρl3 + ρl((R cosβ +

1

2
l)2 +R2 sinβ2) (34)

Selecting the general coordinates to be the spacecraft position angle and tether hinging angle, q1 = θ
and q2 = β, and using Eqs. (29) - (34) in the Lagrange’s Equation algorithm of Eqs. (4) - (8), the
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equations of motion are determined.

1

12
(6Rρ sinβl̇2 − 12Rl sinβmE β̇(β̇ + 2ω)− 6Rρl2 sinββ̇(3β̇ + 4ω))+

1

12
(3l̇((4R2ρ+ 7ρl2 + 8lmE)(β̇ + ω) + 2R cosβ(4mE(β̇ + ω) + ρl(7β̇ + 8ω))))+

1

12
(12R2ρl+ 24Rρ cosβl2 + 7ρl3 + 24R cosβlmE + 12l2mE + 6R2(2mE +mH + 2mT,0))ω̇+

1

12
(12R2ρl + 18Rρ cosβl2 + 7ρl3 + 12R cosβlmE + 12l2mE)β̈ = us (35)

1

12
(6Rl sinβ(−ρlβ̇2 + 2(ρl +mE)ω

2))+

1

12
(3l̇((4R2ρ+ 7ρl2 + 8lmE)(β̇ + ω) + 2Rρ cosβl(4β̇ + 5ω)))+

1

12
(6R cosβl(3ρl + 2mE) + l(12R2ρ+ 7ρl2 + 12lmE))ω̇+

1

12
(12Rρ cosβl2 + l(12R2ρ+ 7ρl2 + 12lmE))β̈ = 0 (36)

CONTROL DEVELOPMENT

The goal of the deployment control scheme is to determine if the desired deployment behavior
can be achieved using only one torque actuation source located on the spacecraft hub and closed
loop feedback control. Placing the deployment control actuation on the tethers directly would in-
troduce many complex challenges. Up to 100 actuators would require rapid simultaneous sensing
and commanding and fuel consumption for the deployment would reduce the fuel available for sub-
sequent E-sail operations. The ability to input the energy and momentum through hub mounted
thrusters provides a practical solution to the deployment requirements.

Controllability Analysis

To provide preliminary evaluation of the controllability of the radial deployment through an ap-
plied torque on the spacecraft hub, linearized time invariant models of the tangential and radial
deployment models are developed. Each system of equations is first reduced such that the length of
the tether is fixed. This simplification assumes the length rate is negligible. The ideal deployment
configuration, where the tether does not deviate from the desired orientation and the spacecraft is
rotating at a prescribed rate, provides the reference point for the linearization. The nonlinear sys-
tems of equations are approximated using the Taylor series expansion in Eq. (37), where higher
order terms are neglected.

ẋ ' ∂f(xr,ur)

∂x
x+

∂f(xr,ur)

∂u
u ' [A]x+ [B]us (37)

where x is the radial deployment state vector

x =
[
ω β β̇

]
(38)

and Eqs (35)-(36) are written in the standard form

ẋ = f(x,u) (39)
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System controllability is evaluated by verifying the controllability matrix is of full rank. Where the
number of states in each model is n = 3, the controllability matrix is formed as[

C
]
=
[
B AB A2B

]
(40)

where the 3× 3 [A] and 3× 1 [B] matrices are the Jacobians defined in Eq. (37) and are determined
analytically. The analytical solutions are omitted here for brevity. It is determined that a single
control input on the spacecraft hub provides a controllable system for cases operating near their
reference point with a very slow deployment rate.

Control Algorithm

Initial control schemes shown here use simple proportional-integral-derivative (PID) control al-
gorithms to affect the system behavior. Time invariant gains are used for the following simulations.
For the tangential unwrap and radial cases, the controller will feedback on the spacecraft rate to
follow the desired rate trajectory.

usi = KP (ωi − ωr) +KD
ωi − ωi−1

dt
+KI

∫ t

0
(ωi − ωr)dt (41)

where KP , KD, and KI are control gains. Here the tether deployment dynamics are treated as an
unmodeled torque, requiring high gains to compensate for the unpredicted behavior. Achieving the
desired spin rate becomes more challenging through the deployment as the inertia of the tethers
increases, therefore increasing the contribution of the unmodeled dynamics. Using time varying
gains could help address this issue and is left for future work. For the tangential hinging phase, a
PID controller with tether position feedback is used.

Spacecraft Rate Considerations

The spacecraft spin rate trajectory about the deployment spin axis is a critical condition in the
deployment simulations. There are two factors to consider to determine the ideal rate - the internal
tether tension force and spin rate trajectory curves.

Tether Tension An expression for the internal tether tension force is derived from the force bal-
ance equations on the tether end mass. A maximum acceptable tether tension force is determined
from the strength of the conducting material. In tensile strength testing of a prototype Hoytether, the
maximum tensile strength was found to be 0.4-0.5 N.12 The baseline Hoytether has a maximum us-
able tension of 0.05 N, when considering the bonds between the main and redundant tether loops.16

The expression for tether tension in the tangential model is defined as

FTT
= mE,iR(φ(ω + φ̇)2 + ω̇) (42)

and the tension force is similarly determined for the radial deployment as

FTR
= mE,i(R cosβω2 + l(β̇ + ω)2 − l̈ −R sinβω̇) (43)

Tangential Deployment Spin Rate Trajectories The reference trajectories of the spacecraft spin
rate will strongly affect the deployment behavior, where the torque, tether tension, and deployment
rates vary under different trajectories. While it is simplest to set trajectories that maintain a constant
desired rate, there are advantages to considering nonlinear trajectories for the spacecraft rate. For
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an uncontrolled deployment, the spacecraft rate is exponentially driven to approach the negative of
the initial rate. This drop in spacecraft rate quickly transfers momentum to the deploying tethers,
however a negative spacecraft rate is highly undesirable, where tension is no longer maintained. The
concept of permitting the spacecraft rate to spin down slightly to transfer momentum to the tethers
can be implemented by setting a reference trajectory that follows an exponential decay towards a
desired final rate. Such a trajectory can be written as follows, where c is a constant that scales the
rate of decay.

ωref = (ω0 − ωf )e
−t/c + ωf (44)

SIMULATION RESULTS

The following baseline E-sail and spacecraft model is used to demonstrate the behavior of both the
tangential and radial simulations. Differences in behavior for the two models will become apparent
through studying multiple case runs, however this shows the general trends of deployment. The E-
sail described in Table 1 represents an E-sail with the smallest inertia for the smallest characteristic
acceleration under consideration. Subsequently, the deployment behaviors shown are representative
of the lower bound for torque requirements and deployment time. The end mass is minimal and
represents the case where no auxiliary tether or remote thrusters are used. Control of individual
tethers in this case would be achieved using mass efficient photonic blades17 or other mass efficient
methods if needed.

Table 1. Spacecraft and E-sail parameters implemented in both example simulations are chosen to
minimize E-sail inertia.

a⊕ N L mEi mT mH

mm/s2 m kg kg kg

0.1 100 862.3 0.05 0.996 500

Tangential Model

Sample results are provided in Figure 7 for a controlled simulation of the tangential unwrap
deployment with a hinging transfer to the desired configuration demonstrated in Figure 8. The
parameters used in this case are recorded in Table 1. The initial spin rate is chosen such that the
tether tension does not exceed 0.05 N at the end of deployment. The spacecraft rate trajectory is
held constant throughout. It’s shown that the deployment is completed in just 1.3 days for this small
E-sail model. The inertia and angular momentum grows nonlinearly through the deployment, as
expected from the inertia derivation discussed earlier. For this small E-sail model, the tether inertia
is approximate 7% of the end mass inertia. However, for much larger E-sails, the tether inertia is
comparable to the end mass inertia contribution. The torque effort needed to maintain the constant
desired hub rate increases linearly to 1.17 Nm, which can be achieved by applying a couple moment
through time varying electric thrusters about the hub radius. The tether tension grows linearly to
0.01 N, well below the approximate operable max of 0.05 N. As seen in Figure 8, the time to correct
the tether orientation is less than 20 minutes. The controller can enforce a slower transition, but a
torque effort must be applied. The torque required for this transition peaks at 1.2 Nm, around the
same range as the deployment phase and therefore within the required torque capabilities.
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Figure 7. Unwrap phase deployment states of the tangentially deployed E-sail
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Figure 8. Hinging phase deployment states of the tangentially deployed E-sail

Radial Model

Sample results from the radial model are displayed in Figure 9. The tether deployment rate, l̇, is
set to a constant rate such that the time of the deployment is equal to the previous tangential case.
Maintaining a radial configuration, where the tether relative position angle, β, is near zero with
respect to the spacecraft hub, requires a high spacecraft spin rate that results in an unacceptably
large tether tension force of 1.7 N for this case. Additionally, the torque required to maintain
such a configuration is over 15 N.m, ten times greater. Therefore, it is not possible to deploy at a
purely radial configuration in the same time frame as for the tangential case using constant spin rate
control. The relative angle, β, must be allowed to drift such that the tether tension is not above 0.05
N. Practical implementation of such a deployment would need to identify acceptable bounds for β.
Alternatively, the deployment could be conducted with much slower deployment rate to maintain a
radial configuration. Maintaining the same spin rate as the tangential case, and slowing down the
deployment until β is less than 5 degrees, the deployment needs up to 50 times longer, or 66 days, to
complete. This long deployment duration raises consideration for why a purely radial deployment
orientation would be desired, and motivates allowing some hinging during the deployment.
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Figure 9. Deployment states of the radially deployed E-sail
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Tangential Deployment Parameter Study

The tangential model is now adapted for several cases of characteristic accelerations and E-sail
sizes to determine torque and deployment time, shown in Table 2. The radial model is not yet
considered for a parameter study because of the large variations in deployment behavior based on
initial conditions and β requirements. The hub spin rate is set such that the final tension in the
tethers, FTf

, is equal to the maximum operable tension. This suggests a minimal deployment time
for a constant spin rate trajectory deployment, where a slower deployment would result in lower
tension force. The deployment time, td, is shown to increase dramatically for large E-sails with
longer tethers, taking over two months for some cases. While using fewer short tethers for the same
characteristic acceleration would mean fewer individual tethers to actuate and fabricate, the trade is
needing more time to deploy. All cases in Table 2 have a total spacecraft mass of m = 500 kg and
end masses of mE,i = 50 g. Note that larger end masses will produce higher tension force on the
tethers, requiring slower deployments.

Table 2. Tangential deployment behavior for various E-sails

a⊕ ω N L mT us,max FTf
td

mm/s2 deg/s km kg N.m N days

0.1 0.98 100 0.86 1.00 5.89 0.050 0.58
0.1 0.69 50 1.72 1.00 3.34 0.050 1.66
0.1 0.44 20 4.31 1.00 1.86 0.050 6.56
0.1 0.31 10 8.62 1.00 1.37 0.050 18.47

0.5 0.43 100 4.31 4.98 9.08 0.049 6.57
0.5 0.31 50 8.62 4.98 6.89 0.050 18.25
0.5 0.19 20 21.16 4.98 5.46 0.050 71.41

1.0 0.30 100 8.62 9.96 13.74 0.050 18.25
1.0 0.21 50 17.25 9.96 11.30 0.050 50.66

SPACECRAFT RATE TRAJECTORY IN TANGENTIAL DEPLOYMENT

The nonlinear reference trajectory shown in Eq. (44) is applied to a tangential deployment that
shares all other parameters as the case shown in Figure 7. The decay rate constant c adjusted
to optimize the results. The spacecraft is spun up to a rate 6 times greater than the desired final
rate. Figure 10 shows that the deployment is achieved using the same range of torques in 0.889
days, or 32% less time than a constant trajectory case. This can be advantageous for larger E-sail
deployments, where the deployment time can take up to a few months.
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Figure 10. Tangential deployment using a nonlinear reference trajectory

CONCLUSIONS AND FUTURE WORK

The two E-sail deployment schemes investigated in this paper provide feasible means to actuate
the deployment of an E-sail structure using hub mounted torque only. The tangential deployment
scheme provides a simpler deployment for lower torque, however it removes the ability to control
the individual tether spooling. Deployment in a truly radial configuration, where β = 0, is shown to
require much greater spin rates or much longer deployment duration than allowing tethers to drift.
The advantage of an ideal radial deployment is that a hinge phase would not be needed, however
in practical application it is shown that allowing hinging will greatly reduce the deployment time
or hub spin rate requirements. The radial deployment configuration was developed based on the
individual tether spooling concept. Modifying the individual spools to orient the deployment to
a tangential configuration would be worth considering in future simulations, and may provide the
optimal deployment.

The deployment torque can be applied to the hub using a variety of methods, depending on the
order of magnitude and duration of torque needed for the deployment. Electric thrusters are ideal
candidates for their range of thrust magnitudes and time varying capabilities for smaller inertia E-
sails. Reaction wheels could also be used if fine control is needed, however the momentum stored
in the wheels would need to be actively removed through thrusters. Chemical thrusters may also be
used to achieve large torques for large E-sails, however the time variations could only be achieved
using pulse width modulation thrust. The effects of such an approach on the deployment dynamics
must be investigated to ensure stability. Incorporating realistic thruster models to the deployment
simulation is left to future work.

The spacecraft rate trajectory, deployment rate, characteristic acceleration, and tether tip mass are
large contributors to the deployment dynamics and must be chosen judiciously. Defining realistic
boundaries for these parameters based on technology capabilities and mission requirements will
inform future simulations. Additionally, it is determined that E-sails designed to have a greater
number of shorter tethers have smaller inertia and therefore require less energy and momentum
to deploy. However, these tethers would be in closer proximity to each other and may present
collision risks. State error estimation of the tether positions must be done to determine the closest
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allowable proximity of two adjacent tethers. Future work will model each tether individually with a
unique state and determine the factors influencing variation in position to do this. Permitting tether
hinging raises concern that the flexible tethers may exhibit in-plane bending despite internal tension.
Model fidelity will therefore be further increased by using a lumped-mass method to incorporate
the flexibility of the tethers. While many questions on the finer behavior of the E-sail deployment
remain, the baseline momentum and torque requirements of the hub actuated deployment are now
defined.
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