
AVS
Laboratory

Ann and H. J. Smead Aerospace
Engineering Sciences Department
University of Colorado, Boulder

An End-to-End FSW Development Cycle
for an Interplanetary Spacecraft Mission

Mar Cols Margenet*, Hanspeter Schaub† and Scott Piggott‡

*Graduate Researcher, University of Colorado

†Professor, Glenn L. Murphy Chair, University of Colorado

‡ADCS Integrated Simulation Software Lead, Laboratory for Atmospheric and Space Physics

�1

Outline

�2

AVS
Laboratory

• Complete FSW cycle for an interplanetary spacecraft mission

• Desktop algorithm design: the Basilisk software testbed

• Migration into the Core Flight System

• Embedded testing of CFS-FSW in an emulated flat-sat

• Interesting aspects:

1. Automated yet transparent migration into CFS

2. Consistent testing throughout testbeds

BSK

FSW Algs (C)

Controls

Guidance

Navigation

SC Models(C++)

Actuators

Sensors

DKE

MPI

User Scripts (Python)

Development Cycle

�3

AVS
Laboratory

CFS

Controls

Guidance

Navigation
FSW App

same physical models

transparent
migration

Ground System
Emulator

CFS

Controls

Guidance

Navigation

TCP

BSK

SC Models(C++)

Environment

Kinematics

Dynamics
FSW App

Telemetry
Database

Commands
Database

TCP

SBC Emulator

Basilisk Desktop Testbed: Overview

• Basilisk: open-source, cross-platform, desktop testbed

‣ Designing flight algorithms

‣ Testing in closed-loop dynamics

• Language: C/C++ source code wrapped in Python (through SWIG)

‣Python for: (1) setup, (2) desktop execution, (3) post-proc

• Nominal configuration:

‣ Dynamics Process: spacecraft physical models (C++)

‣ FSW Process: mission-specific GN&C algorithms (C)

• Features: modular arch. & pub-sub message passing

�4

AVS
Laboratory

BSK

FSW Algs (C)

Controls

Guidance

Navigation

SC Models(C++)

Environment

Kinematics

Dynamics

MPI

User Scripts (Python)

Migration of the Basilisk Flight Application

�5

AVS
Laboratory

• Single processor environment: • Multi processor environment: realistic testing

BSK

FSW Algs (C)

Controls

Guidance

Navigation

SC Models(C++)

Environment

Kinematics

Dynamics

MPI

User Scripts (Python)

Raspberry Pi
(ARM + Linux)

Qemu emulator
(Leon + RTEMS)

Middleware

Controls

Guidance

Navigation

TCP

BSK

SC Models(C++)

Environment

Kinematics

Dynamics

SBC Emulator

FSW App

BSK

FSW Algs (C)

Controls

Guidance

Navigation

TCP

BSK

SC Models(C++)

Environment

Kinematics

Dynamics

FSW Migration: from Basilisk to CFS

�6

AVS
Laboratory

• What does it take to migrate FSW algs?

• Recall: Basilisk leverages Python for FSW

1. Setup

2. Desktop execution

3. Post-processing

• Setup code: translated from Python to C

‣ Modules’ variable initialization

‣ Tasks definition (modules groups)

FSW Algs (C)

Controls

Guidance

Navigation

MPI
C

User Scripts (Python)
module init & tasks def

FSW Algs (C)

Controls

Guidance

Navigation

MPI
C

"Auto-Setup" code (C)
 (setup.h, setup.c)

Controls

Guidance

Navigation
FSW App=

AutoSetter.py

CFS

Controls

Guidance

Navigation
FSW App

BSK FSW app:
Python & C

CFS FSW app:
only C

• Basilisk C module: a stand-alone model
or self-contained logic.

‣Config struct

‣Generic algorithm calls: self-init,
cross-init, update & reset

• Python module initialization

Python setup: C module initialization

�7

AVS
Laboratory

called from Python for
desktop execution

Python setup: task groups & rates

�8

AVS
Laboratory

• Define tasks at certain rates

• Modules added into each to task

• Example: init-only task contains vehicle config data module

Basilisk hierarchy:
Process —> Tasks —>Modules

FSW Process

 0 HzConfiguration Init Task

Vehicle Config Data

 1 HzSensor Read Task

Coarse Sun Sensor Decode

• Setup code (module init & tasks definition): from Py to C

• Key remark:

‣ Only setup code is translated

‣ FSW algs. source code: remains unchanged

• Pure-C FSW: FSW Algs + (setup.c + setup.h)

• Automatic translation of setup code: “AutoSetter.py”

‣ Transparent & open template mapping var types

‣ Resulting C setup code: minimal

• Trick: Python introspection

Pure-C FSW Application

�9

AVS
Laboratory

C setup code: one header
+ one source file

FSW Algs (C)

Controls

Guidance

Navigation

MPI
C

User Scripts (Python)
module init & tasks def

FSW Algs (C)

Controls

Guidance

Navigation

MPI
C

"Auto-Setup" code (C)
 (setup.h, setup.c)

Controls

Guidance

Navigation
FSW App=

AutoSetter.py

Python Introspection: AutoSetter

�10

AVS
Laboratory

User Scripts
module init & tasks def

AutoSetter.py

Setup Code
 (setup.h, setup.c)

I am a model.
I’ve these variables

and algorithm names.

 Embedded FSW Dev & Testing

�11

AVS
Laboratory

FSW Algs (C)

Controls

Guidance

Navigation

MPI
C

"Auto-Setup" code (C)
 (setup.h, setup.c)

Controls

Guidance

Navigation
FSW App=

CFS

Controls

Guidance

Navigation
FSW App

Ground System
Emulator

CFS

Controls

Guidance

Navigation

BSK

SC Models(C++)

Environment

Kinematics

Dynamics
FSW App

Telemetry
Database

Commands
Database

SBC Emulator• CFS-FSW testing in emulated flat-sat

• Interaction with embedded FSW becomes tricky

• FPGA registers: memory map for I/O of bin data

Embedded Testing: CFS

�12

AVS
Laboratory

CFS

Controls

Guidance

Navigation
FSW App

SBC Emulator

FPGA
Registers

Emulated Flat-Sat Models

�13

AVS
Laboratory

• Flight Processor Emulator: QEMU

‣ Virtual Leon3 + RTEMS

‣ CFS-FSW app + FPGA registers

• Spacecraft Models: Basilisk

‣ Dynamics, Kinematics, Environment

‣ Sensors, Actuators, Avionics HW

• Ground System Emulator: Hydra

‣ Command & Telemetry

• Visualization: Vizard

‣ Unity-based GUI

Spacecraft Models (BSK) C++

Environment

GS Emulator (Hydra) C++

Commands Database

Telemetry Database

Dynamics

Kinematics

Avionics HW

Sensors

Actuators

CCSDS packet

raw binary data

Viz Interface

Visualization (Unity) C#

raw binary data

Flight Processor Emulator (QEMU) C/C++
 Leon board + RTEMS

IOB 1 Register

SSR Register

SBC Register

IOB 2 Register

FPGA Registers
CFS

Controls

Guidance

Navigation
FSW App

• Written in different programming languages

• Different execution speeds (asynchronous vs. synch, faster vs. slower than RT)

• Multi-threaded vs. single-threaded (important for sockets)

• Different endianness (specially tricky)

Models heterogeneity

�14

AVS
Laboratory

SBC Emulator (QEMU)
C / C++

Ground System Emulator (Hydra)
C++

Spacecraft Models (Basilisk)
Python / C++

Visualization (Unity GUI)
C#

CCSDS packets

raw bin data

C++ structs

C# structs

CCSDS packets

raw bin data

C++ structs

C# structs

stand-alone apps
never designed to work

together…

The Black Lion Communication Architecture

�15

AVS
Laboratory

Spacecraft
Models (DKE)

Graphical User
Interface

Single Board
Computer
Emulator

Ground System
Emulator Black Lion

??
What else?

Flight Software

• Communication Goals

1. Transport of binary data

2. Serialization of binary data

3. Synchronization of nodes/components

4. Dynamicity in the connections map

• While remaining abstracted from each node

‣ Central Controller: msg broker & synch master

‣ Delegate API: sockets & connections

‣ Router API: route data in & out of node

Black Lion: Architecture Overview

�16

AVS
Laboratory

Node 1

Router

Delegate

BLACK LION
Central Controller

Node 2

Router

Delegate

Node 3

Router

Delegate

Node N

Router

Delegate

Black Lion: Synchronization

�17

AVS
Laboratory

• “Tick-Tock”: maintain all the nodes in lock-step

SBC Emulator + FSW

Router

Delegate

BLACK LION
Central Controller

Spacecraft Models

Router

Delegate

Router

Delegate

Router

Delegate

TICK
TOCK

TICK
TOCK

TICK TICK

TOCK TOCK

Ground System
Emulator Visualization

TOCK

Publish

Subscribe

Step Sim

B
la

ck
 L

io
n

TICK

• FPGA: 4 different register boards

‣ Each register has a memory buffer

‣ Shared FSW states are mapped (snorkels)

• FSW reads/writes in HW-like fashion

‣ Board interrupts are also replicated

• Avionics HW models:

‣ Leverage complex functionality

‣ PCU: avionics cards (ctrl, switch, prop)

‣ IPC: NVM commands & HK packets
�18

AVS
Laboratory

Flight Processor Emulator
 Leon board + RTEMS

FPGA Registers

Spacecraft Models

Environment

Dynamics

Kinematics

Avionics HW

Sensors

Actuators

IOB 1 Register

SSR Register

SBC Register

IOB 2 Register

CFS

Controls

Guidance

Navigation
FSW App

TCP

CFS-FSW Interaction: FPGA + Avionics HW

�19

AVS
Laboratory

• Register snorkels:

‣ Actuators: RW cmd & speeds

‣ Sensors: CSS, ST

‣ Avionics: PCU, IPC

‣Clocks

‣ Command & telemetry

• Heterogeneity challenges

‣ Unidirectional vs. bidirectional

‣ Packet &/ descriptor addresses

‣ Single word packets vs. queues

‣ Fixed-sized vs. variable-sized

‣ Add/remove byte headers

‣ Endianness handling

Spacecraft Models

SSR Register

IPC

interrupts: UM, IPC

SBC Register

Master VTC: coarse time,
fine time, fine divider, IRQ

IPC: housekeeping &
NVM storage

CSS converter

RW converter

PCU

TX: telemetry

RX: command

Interrupts: TX, RX

DKE

Actuators

Sensors

Clock

UM / PCU: controller, prop
& switch cards

DPU’s: fused attitude &
MIRU data queues

CSS

IOB 2 Register
RW2 & RW4

torque commands

RW2 & RW4 speeds

Interrupts

IOB 1 Register
RW1 & RW3

torque commands

RW1 & RW3 speeds

Interrupts

Slave VTC: coarse time,
fine time, fine divider, IRQ Ground Sys Model

Telemetry

Commands

CFS-FSW

Numerical Closed-Loop Simulations

�20

AVS
Laboratory

1. Spacecraft pointing manoeuvres manually triggered by the user

• Monitoring Command + Inertial Pointing Command

• Ephemeris Correlation Command + Mars Pointing Command

• Sun Pointing Command

• Mars Pointing Command

2. Mars orbit insertion

• Time jam: bring SC right before MOI

• DV burn: propulsion cards within the PCU

• Off-nominal testing: FSW resets + off-nominal ST acquisition

GS Emulator (Hydra) C+
+

Commands Database

Telemetry Database
CFDP

block sequence uplink

GS Emulator (Hydra) C+
+

Commands Database

Telemetry Database

 Inertial Point

 Mars Point

 Sun Point

GS command:
inertial point

GS command:
Mars point

GS command:
Mars point

GS command:
Sun point

1. Spacecraft Pointing Manoeuvres

�21

AVS
Laboratory

Spacecraft Models (BSK) C++

Environment

GS Emulator (Hydra) C+
+

Commands Database

Telemetry Database

Dynamics

Kinematics

Avionics HW

Sensors

Actuators

CCSDS packet

raw binary data

Viz Interface

Visualization (Unity) C#

raw binary data

Flight Processor Emulator (QEMU) C/C++
 Leon board + RTEMS

IOB 1 Register

SSR Register

SBC Register

IOB 2 Register

FPGA Registers
CFS

Controls

Guidance

Navigation
FSW App

Inertial
Point

Sun
Point

Mars
Point

Mars
Point

1. Spacecraft Pointing Manoeuvres

�22

AVS
Laboratory

• Sun pointing error

• Mars pointing error Convergence

Convergence

�23

AVS
Laboratory

Conclusions

�24

AVS
Laboratory

• Complete FSW cycle for an interplanetary spacecraft mission

• Desktop algorithm design: the Basilisk software testbed

• Migration into the Core Flight System

• Embedded testing of CFS-FSW in an emulated flat-sat

Thanks for listening!

