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• Complete FSW cycle for an interplanetary spacecraft mission 

• Desktop algorithm design: the Basilisk software testbed


• Migration into the Core Flight System 


• Embedded testing of CFS-FSW in an emulated flat-sat


• Interesting aspects:


1. Automated yet transparent migration into CFS 

2. Consistent testing throughout testbeds
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Basilisk Desktop Testbed: Overview

• Basilisk: open-source, cross-platform, desktop testbed 


‣ Designing flight algorithms 


‣ Testing in closed-loop dynamics


• Language: C/C++ source code wrapped in Python (through SWIG)


‣Python for: (1) setup, (2) desktop execution, (3) post-proc  

• Nominal configuration:


‣ Dynamics Process: spacecraft physical models (C++)


‣ FSW Process: mission-specific GN&C algorithms (C)


• Features: modular arch. & pub-sub message passing
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Migration of the Basilisk Flight Application
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• Single processor environment: • Multi processor environment: realistic testing 
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FSW Migration: from Basilisk to CFS
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• What does it take to migrate FSW algs? 

• Recall: Basilisk leverages Python for FSW 


1. Setup 

2. Desktop execution 


3. Post-processing 

• Setup code: translated from Python to C


‣ Modules’ variable initialization 

‣ Tasks definition (modules groups)
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• Basilisk C module: a stand-alone model 
or self-contained logic.


‣Config struct


‣Generic algorithm calls: self-init, 
cross-init, update & reset 


• Python module initialization

Python setup: C module initialization
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Python setup: task groups & rates
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• Define tasks at certain rates


• Modules added into each to task 

• Example: init-only task contains vehicle config data module


Basilisk hierarchy: 
Process —> Tasks —>Modules

FSW Process

                                                0 HzConfiguration Init Task

Vehicle Config Data

                                                1 HzSensor Read Task

Coarse Sun Sensor Decode



• Setup code (module init & tasks definition): from Py to C


• Key remark: 


‣ Only setup code is translated


‣ FSW algs. source code: remains unchanged 


• Pure-C FSW: FSW Algs + (setup.c + setup.h)


• Automatic translation of setup code: “AutoSetter.py” 


‣ Transparent & open template mapping var types


‣ Resulting C setup code: minimal 


• Trick: Python introspection

Pure-C FSW Application
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C setup code: one header 
+ one source file
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Python Introspection: AutoSetter
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User Scripts
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 Embedded FSW Dev & Testing 
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• Interaction with embedded FSW becomes tricky 

• FPGA registers: memory map for I/O of bin data

Embedded Testing: CFS
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Emulated Flat-Sat Models
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• Flight Processor Emulator: QEMU


‣ Virtual Leon3 + RTEMS


‣ CFS-FSW app + FPGA registers


• Spacecraft Models: Basilisk


‣ Dynamics, Kinematics, Environment


‣ Sensors, Actuators, Avionics HW


• Ground System Emulator: Hydra


‣ Command & Telemetry


• Visualization: Vizard


‣ Unity-based GUI
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• Written in different programming languages 

• Different execution speeds (asynchronous vs. synch, faster vs. slower than RT)


• Multi-threaded vs. single-threaded (important for sockets)


• Different endianness (specially tricky)

Models heterogeneity
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The Black Lion Communication Architecture
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• Communication Goals 

1. Transport of binary data 

2. Serialization of binary data 

3. Synchronization of nodes/components


4. Dynamicity in the connections map


• While remaining abstracted from each node 

‣ Central Controller: msg broker & synch master


‣ Delegate API: sockets & connections


‣ Router API: route data in & out of node

Black Lion:  Architecture Overview
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Black Lion:  Synchronization
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• “Tick-Tock”: maintain all the nodes in lock-step
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• FPGA: 4 different register boards


‣ Each register has a memory buffer


‣ Shared FSW states are mapped (snorkels)


• FSW reads/writes in HW-like fashion 

‣ Board interrupts are also replicated


• Avionics HW models: 


‣ Leverage complex functionality 


‣ PCU: avionics cards (ctrl, switch, prop) 


‣ IPC: NVM commands & HK packets
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• Register snorkels: 


‣ Actuators: RW cmd & speeds 


‣ Sensors: CSS, ST


‣ Avionics: PCU, IPC


‣Clocks 

‣ Command & telemetry


• Heterogeneity challenges 

‣ Unidirectional vs. bidirectional


‣ Packet &/ descriptor addresses


‣ Single word packets vs. queues


‣ Fixed-sized vs. variable-sized


‣ Add/remove byte headers


‣ Endianness handling

Spacecraft Models

SSR Register

IPC

interrupts: UM, IPC

SBC Register

Master VTC: coarse time, 
fine time, fine divider, IRQ

IPC: housekeeping &
NVM storage

CSS converter

RW converter

PCU

TX: telemetry

RX: command

Interrupts: TX, RX

DKE

Actuators

Sensors

Clock

UM / PCU: controller, prop 
& switch cards

DPU’s: fused attitude & 
MIRU data queues

CSS

IOB 2 Register
RW2 & RW4

torque commands 

RW2 & RW4 speeds

Interrupts

IOB 1 Register
RW1 & RW3

torque commands 

RW1 & RW3 speeds

Interrupts

Slave VTC: coarse time, 
fine time, fine divider, IRQ Ground Sys Model

Telemetry

Commands

CFS-FSW



Numerical Closed-Loop Simulations
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1. Spacecraft pointing manoeuvres manually triggered by the user


• Monitoring Command + Inertial Pointing Command


• Ephemeris Correlation Command + Mars Pointing Command


• Sun Pointing Command


• Mars Pointing Command


2. Mars orbit insertion 

• Time jam: bring SC right before MOI


• DV burn: propulsion cards within the PCU


• Off-nominal testing: FSW resets + off-nominal ST acquisition

GS Emulator (Hydra) C+
+

Commands Database

Telemetry Database
CFDP

block sequence uplink

GS Emulator (Hydra) C+
+

Commands Database

Telemetry Database



 Inertial Point  

 Mars Point  

 Sun Point  

GS command:
inertial point

GS command:
Mars point

GS command:
Mars point

GS command:
Sun point

1. Spacecraft Pointing Manoeuvres 
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• Sun pointing error 

• Mars pointing error Convergence

Convergence
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Conclusions
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• Complete FSW cycle for an interplanetary spacecraft mission 

• Desktop algorithm design: the Basilisk software testbed


• Migration into the Core Flight System 


• Embedded testing of CFS-FSW in an emulated flat-sat

Thanks for listening!


