
An End-To-End Flight Software Development Approach Using Micropython and
The Basilisk Software Testbed

By Mar COLS-MARGENET,1) Hanspeter SCHAUB,1) and Scott PIGGOTT2)

1)Autonomous Vehicle Systems Laboratory, University of Colorado Boulder, Boulder, Colorado, United States
2)Laboratory for Atmospheric and Space Physics, Boulder, Colorado, United States

(Received July 1st, 2019)

This paper investigates novel strategies for end-to-end flight software development that support having both desktop and embedded
environments while minimizing the gap between them, in order to allow reiteration back and forth of the flight application. For desktop
prototyping, the use of Python as user-interface language wrapping C/C++ algorithm code is considered. The Basilisk software
testbed is presented as a specific incarnation of this desktop development proposal. For embedded development and testing, two
different approaches are reviewed and demonstrated: the use of NASA’s Core Flight System, which is a middleware layer, and the
use of the novel MicroPython, which is a new, lean and efficient implementation of the Python 3 programming language optimized
to run on constrained environments. The migration flow of the flight algorithms from the Basilisk desktop environment into each of
the considered embeddable targets is described. The feasibility, migration effort entailed and flexibility of the Core Flight System
approach and the MicroPython approach are compared and contrasted.

Key Words: Basilisk, Core Flight System, MicroPython

1. Introduction

Space missions rely highly on the efficiency and reliability
of the on-board flight software (FSW) in order to perform au-
tonomous attitude control or orbit corrections. These critical
software functions undergo a stringent review and validation
process prior to flight which can be both costly and time con-
suming. The complete engineering cycle to develop a FSW
system encompasses an involved path of deploying and run-
ning the flight algorithms within different testbed environments.
In a standard spacecraft mission, there may very well be three
testbed environments to consider: desktop computer (for proto-
typing and rapid iteration), hardware flight processor (for flat-
sat testing and eventually flying) and emulated flight processor
in a virtual machine (for emulated flat-sat testing). The two lat-
ter environments –hardware or emulated flight processor– are
considered to be embedded. Because a regular desktop com-
puter environment and an embedded flight processor environ-
ment are very different in terms of resources, capabilities and
end-user programmability, migrating the flight algorithms from
one environment to the other generally demands a significant
engineering effort. Further, there is also a disparity in the test-
ing tools and procedures that each testbed currently allows.

This paper investigates end-to-end FSW development strate-
gies that support having both desktop and embedded environ-
ments separately while minimizing the gap between them in
order to allow migration, back and forth, of the flight applica-
tion. In order for the algorithm migration to be transparent, it is
critical that the source-code itself remains unchanged. – the un-
derlying idea being, as the long-held NASA saying goes, “test
what you fly, fly what you test”, since the first day of develop-
ment until the last one, from the desktop all the way into the em-
bedded environment. On these lines, three FSW development
proposals are presented throughout the paper – one desktop de-
velopment proposal and two embedded development ones. The

combination of the desktop proposal and each one of the em-
bedded proposals constitutes an end-to-end FSW development
approach by itself.

The desktop development proposal suggests the use of
Python as a user-interface language for prototyping and testing
flight algorithm code that is actually written in C/C++. The
Basilisk software testbed∗ is presented as a specific incarna-
tion of this desktop development proposal. The first one of
the embedded development proposals suggests the use of the
Core Flight System† (CFS) middleware and the same C flight
algorithm source code as in the desktop. The second embedded
development proposal contemplates the replacement of the CFS
for the novel MicroPython‡, using C++ algorithm source code.

It is important to remark that all the development proposals
made in this paper consider exclusively open-source products
and strive for the embedded system to be as close as possible
to the desktop testbed in terms of user-friendliness and interac-
tion functionalities while still adhering to the needs of space:
determinism, concurrency and low use of resources. Currently,
deploying an embedded flight system and testing flight algo-
rithms on it is not an easy task. However, many small-satellite
missions or start-up companies with limited resources and with-
out extensive flight software legacy, would highly benefit from
having available an easily deployable, easily testable embedded
flight system. An interesting new trend in some missions is to
use commercial processors in redundant configurations, instead
of a single radiation hardened processor.1, 2) The increasing in-
terest on alternatives to classic radiation-hardened processors
reveals the need for improvement in existing embedded flight
systems.

The novelty of the work presented throughout this paper is

∗ https://hanspeterschaub.info/bskMain.html
† https://cfs.gsfc.nasa.gov
‡ https://micropython.org

https://hanspeterschaub.info/bskMain.html
https://cfs.gsfc.nasa.gov
https://micropython.org

found in two different levels: in the migration strategy of the
flight application and in the use-case of MicroPython. The mi-
gration of the flight application refers to the transition from the
Basilisk desktop environment into any of the considered embed-
ded environments. This transition is achieved by automatically
generating the integration code required to integrate the unmod-
ified C/C++ flight algorithm code into the corresponding em-
bedded environment – either CFS or MicroPython. The integra-
tion code, which is minimal and completely human-readable, is
generated through Python’s introspection capabilities. The use-
case of MicroPython is novel in the sense that, to the authors
knowledge, has not yet been considered as a potential middle-
ware layer to ensure portability of the onboard FSW among dif-
ferent RTOS and flight processor boards.

This paper is outlined as follows. First the features of a
desktop development environment are described and two dif-
ferent methodologies for desktop FSW prototyping are dis-
cussed: model-based development and Python wrapping of
C/C++ flight algorithm code. Next, the features of an embed-
ded environment are outlined. From this point onwards, the
three FSW development proposals that constitute the core of
this paper are presented, and their feasibility is demonstrated.
These are: 1) desktop FSW development in the Basilisk testbed,
2) integration of the developed flight application into CFS and
3) integration of the developed flight application into MicroPy-
thon.

2. Desktop Development Environment

The desktop is the most flexible of the environments, thanks
to the use of state-of-the-art processors and operating systems,
in terms of computing speed, memory available and user friend-
liness, among other. Because of its flexibility, the desktop envi-
ronment is used in the preliminary step of prototyping mission-
specific flight algorithms. These FSW algorithms are usu-
ally tested in closed-loop dynamics simulations with space-
craft physical models until the desired algorithm performance
is achieved and mission-specific requirements are met. For the
purposes of prototyping FSW in a desktop environment, the use
of high-level scripting languages like Python or Matlab is ex-
tremely convenient as it enables rapid development and iter-
ation. However, scripting languages are not suitable for em-
bedded flight applications requiring absolute control of timing
and deterministic behavior. For this reason, if flight algorithm
source code is first prototyped in the desktop environment using
scripting languages, it is then usually translated into program-
ming languages like Fortran, C or C++ for migration into an
embedded flight target. Two different desktop development ap-
proaches that are commonly adopted in the aerospace commu-
nity are discussed next: model-based development and Python
interface with underlying C/C++ code. The main difference be-
tween them is that, with a model-based approach, the source
code changes for migration into an embedded system.

2.1. Model-based development
This approach focuses on performing architecture design and

modeling of both software functions and hardware subsystems
using block-diagram programming software tools like, for ex-

ample, Mathworks’s Simulink§ and National Instruments Lab-
VIEW¶. After designing the flight algorithms, the next step is
typically to select an automated source-code generation soft-
ware tool that is compatible with the block-diagram model-
ing tools selected above and that auto-generates source code
in the required programming language (aka auto-coding). Both
Simulink and LabVIEW software can produce C code directly
from their drag and drop environment with the use of add-on
packages. Nevertheless, a problem with automatically gener-
ated code is that, usually, it is less efficient in either size or
execution than optimized hand-written code. Further, it can be
very challenging to edit and debug due to the lack of readability.
Although some code generators incorporate their own optimiza-
tion features, the challenges remain.3)

2.2. Python interface with underlying C/C++ code
The Python language is recognized as an excellent scripting

environment and code development testbed that would lend it-
self very well to the FSW development process if the code could
be run as FSW. However, the Python runtime is generally recog-
nized as insufficiently well-controlled for time-critical applica-
tions like those required for aerospace FSW. Having said that,
looking at the internals of the Python language itself reveals
that most built-in modules requiring speed are actually written
in C/C++ and then wrapped into Python with Python language
bindings. Using this logic, it makes good sense that Python
could serve as an excellent testbed for FSW development if the
FSW code is written exclusively in C/C++ and then wrapped
into Python for simulation, analysis, and testing. There are sev-
eral ways to extend the Python language with custom C/C++

modules. CPython is the native way of creating these bindings
but there are also higher level libraries like SWIG (Simplified
Wrapper and Interface Generator) that handle this extension.

The Basilisk astrodynamics framework is a desktop FSW
testbed that seeks to capitalize on the potential of wrapping
C/C++ dynamics simulation code and flight algorithm code
through SWIG and make it available at the Python level for
setup, desktop execution and post-processing. Apart from
Basilisk, there are other well-known FSW tools that also use
Python as the user-interface language while maintaining the
source code in C/C++. For instance, in the context of space-
craft navigation, there is the Mission Analysis, Operations, and
Navigation Toolkit Environment (MONTE) developed by the
Jet Propulsion Laboratory to support their deep space explo-
ration program.4)

The generalized interest in Python for FSW development is
indeed not surprizing; this high-level language has many pow-
erful features (like classes, list comprehension, exceptions han-
dling...), it is open-source and has a large existing community, it
is very easy to learn and still extremely powerful for advanced
users and, last but not least, it presents lots of opportunities for
optimization (since Python is actually compiled despite being a
scripting language).5)

§ https://www.mathworks.com/products/simulink.html
¶ http://www.ni.com/en-us/shop/labview.html

https://www.mathworks.com/products/simulink.html
http://www.ni.com/en-us/shop/labview.html

3. Embedded environment

Time-critical applications like those of FSW usually demand
the use of on-board processors with drastically fewer resources
available than the typical desktop environment. Therefore,
FSW systems are said to be constrained or embedded. Embed-
ded environments are, in essence, electronic systems which are
managed by a microprocessor (like a hardware flight processor)
or micro-controller that operates the whole system with precise
timing ensuring deterministic behaviors. A significant problem
of using scripting languages or big libraries in a flight appli-
cation is their memory footprint as there is reduced memory
(RAM/ROM) available on a typical flight system. Embedded
flight processor environments are defined by the selection of
two items: the microprocessor board and the Real-Time Oper-
ating System (RTOS). An alternative to using a hardware flight
processor is to emulate it on a virtual machine. The advan-
tage of using an emulation is that it provides a pure software
substitution for an expensive and limited piece of hardware,
therefore allowing simultaneous testing among different mis-
sion groups.6–8)

Regardless of the flight processor board being physical or
emulated, it still represents an embedded environment. Em-
bedded flight processors lag state-of-the-art processors (like
those in a desktop computer) by about 10 years due to flight
heritage and radiation-hardening requirements.9) Radiation
hardening of processors is important in order to ensure their
un-interrupted operation over long durations. Some of the
most common radiation-hardened processors used in space are
RAD750, Coldfire or Leon, all of them being very expensive
and presenting similar limited performance. An example of a
processor board emulator for any of the aforementioned hard-
ware boards is the open-source QEMU‖.

Because a regular desktop computer environment and a flight
processor environment operate differently, migrating the flight
application from one to another demands a significant migration
effort. Furthermore, this effort is intrinsically linked to the spe-
cific processor board and RTOS chosen, tending to be mission-
specific. An alternative target for the flight algorithms is a mid-
dleware layer. Middleware can be regarded as an abstraction
layer or “glue-code” that ensures portability of the flight algo-
rithms among different processors and RTOS. An example of
middleware is the Core Flight System (CFS),10, 11) which is an
open-source product provided by NASA Goddard Spaceflight
Center. While targeting middleware can be worthwhile in the
long run to ensure portability of the flight application, small
missions do not tend to follow this approach given the complex-
ity and steeper learning curve of the work entailed. However, if
a user-friendly, easily-deployable middleware layer existed, the
number of missions embracing reusability through middleware
would most likely increase.

Recently, a new, lean and efficient implementation of the
Python 3 programming language has appeared that is named
MicroPython and that is very compelling for use in embed-
ded FSW systems. MicroPython includes a small subset of
the Python standard library and is optimized to run on micro-
controllers and in constrained environments. MicroPython is

‖ http://qemu.org

packed full of advanced features while still being compact
and having little memory footprint. Currently, MicroPython
supports about 15 different ports available on GitHub, among
which there are: unix, windows, stm32, qemu-arm, bare-arm
or est32∗∗. This promising language has already captured the
attention of the European Space Agency, where the use of Mi-
croPython is being considered for onboard-control procedures
in spacecraft payloads.5, 12)

4. Desktop FSW Development: The Basilisk Testbed

The desktop FSW development proposal suggested in this
paper encompasses the use of Python as a user-interface lan-
guage for prototyping and testing flight algorithm code that is
actually written in C/C++. The Basilisk software testbed is pre-
sented next as an incarnation of such proposal.

Basilisk is an open-source, cross-platform, desktop testbed
for designing flight algorithms and testing them in closed-loop
dynamics simulations. The Basilisk testbed is currently being
implemented by the Autonomous Vehicle Systems (AVS) labo-
ratory at the University of Colorado Boulder and the Laboratory
for Atmospheric and Space Physics (LASP) in order to support
an interplanetary spacecraft mission.

Basilisk is architected in a modular, highly reconfigurable
fashion using C++ modules that perform spacecraft physical
simulation tasks and C modules that perform mission-specific
GN&C tasks. Currently, SWIG is used within Basilisk to wrap
the C/C++ modules and make them available at the Python
layer for setup, desktop execution and post-processing.
Some of the advantages of using Python as user-interface are:
ease of data analysis (which is comfortably leveraged through
the use of built-in libraries like Numpy, Matplotlib and PAN-
DAS among other), capability of automated regression tests (via
py-test) and rapid Monte-Carlo handling.

Figure 1 illustrates the nominal setup – but not necessary re-
quired – of a Basilisk desktop simulation. During a simula-
tion run, the different C and C++ modules communicate with
each other through a custom message passing interface (MPI in
Fig. 1). This MPI which is written in C/C++ and it is based
on a publish-subscribe pattern. The beauty of using an MPI

∗∗ https://github.com/micropython/micropython/tree/

master/ports

BSK

FSW Algs (C)

Controls

Guidance

Navigation

SC Models(C++)

Environment

Kinematics

Dynamics

MPI

User Scripts (Python)

Fig. 1.: Basilisk (BSK) Desktop Environment

http://qemu.org
https://github.com/micropython/micropython/tree/master/ports
https://github.com/micropython/micropython/tree/master/ports

is that it allows a clear separation between the different pro-
cesses – dynamics simulation process and FSW process for the
setup in Fig. 1. This separation facilitates, later on, the migra-
tion of the FSW application into a different processor. Figure 2
showcases two different processor targets to which Basilisk-
developed flight algorithms have been migrated.

The target processor in Fig. 2(a) is a Raspberry Pi, which has
a built-in ARM processor and comes with the Linux OS out-
of-the-box. Since Basilisk is cross-platform in nature, a regular
Basilisk FSW process runs readily on the Pi platform. Ref-
erence 2 showcases a numerical simulation with the setup of
Fig. 2(a) running on soft real-time. Reference 13 proposes a for-
mation flying scenario with multiple Raspberry Pi’s involved,
communicating flight data to each other.

The target processor in Fig. 2(b) is an emulated radiation-
hardened processor. Such target is currently being used for
testing in the aforementioned interplanetary mission in which
LASP and the AVS laboratory are collaborating. The emulated
board is a Leon, with RTEMS running on top. Since the emu-
lated system is embedded, the Basilisk process containing the
FSW algorithms cannot run natively on this system; for this
mission, the flight algorithms are first integrated into a CFS
application that is actually embeddable. The next section de-
scribes the details of this integration.

5. Embedded FSW Development: The CFS

First and foremost, let us provide some more insight on the
Core Flight System (CFS) itself. The CFS is a middleware layer
that ensures portability of a flight application among different
RTOS and processor boards. It is an open-source product by
NASA Goddard that has inherited software from missions over

BSK

FSW Algs (C)

Controls

Guidance

Navigation

TCP

BSK

SC Models(C++)

Environment

Kinematics

Dynamics

(a) FSW on the Raspberry Pi: ARM processor and Linux OS

CFS

Controls

Guidance

Navigation

TCP

BSK

SC Models(C++)

Environment

Kinematics

Dynamics

SBC Emulator

FSW App

(b) FSW inside CFS on an SBC emulator: emulated Leon board and RTEMS

Fig. 2.: Migration of the Flight Application

RTOS/Boot Layer

OS Abstraction Layer

cFE Executive Layer

Library Layer Executive Services
Event Services

Software Bus Services
Table Services
Time Services

Application Layer
Controls

Guidance

Navigation
FSW App

Fig. 3.: Architecture of the Core Flight System

the previous 20 years or more. The architectural design of CFS
is depicted in Fig. 3.

Starting from the highest level of the architecture to the low-
est: first, there is the application layer, which is where the
mission-specific flight algorithms –therefore this layer is cus-
tomized by the user. Below there is a library layer, where
common components that are typically part of a FSW system
are available for sharing and reuse (e.g. file delivery protocol,
checksum, housekeeping, etc.). In the middle, there is the core
Flight Executive layer (cFE), which is the central piece of CFS
and provides five core services: executive, event, software bus,
table and time services. One level lower there is the platform
and OS abstraction layer, which enables portability. At the very
bottom, the mission-specific RTOS and processor boot software
reside.

5.1. Flight Algorithm Migration into a CFS Application
This section explains what it takes to migrate the Basilisk-

developed flight algorithms into a CFS application that is actu-
ally embeddable.
5.1.1. What needs to be translated: Python setup code

Recall the desktop FSW development proposal of using
Python for FSW(C/C++) setup, desktop execution and post-
processing. There is one of these Python functionalities that
needs to be translated into C for migration: the setup for the
C flight algorithms. Then, the flight application is all in C and
can readily be integrated within CFS. The next question is, of
course, what does “setup” mean exactly? In the Basilisk frame-
work, the Python setup encompasses: variable initialization of
each individual C module and grouping of modules in tasks that
run at certain task rates. These two setup items are further ex-
plained next.

C Module Initialization: Each Basilisk C-module is a
stand-alone model or self-contained piece of logic. In the
context of FSW, a module could be: a specific navigation
filter, a control law, a torque-to-voltage converter or, simply,
a container for static vehicle configuration data. All Basilisk
C modules are characterized for having a C configuration
struct and four “generic” method calls operating on the defined
config struct –they are generic in the sense that they perform
the same type of operation: module self-initialization, cross-
initialization, update and reset. These “generic” functions
are externally called from Python in the desktop execution.
Listing 1 shows a snippet of code from a very simple module,
the vehicle configuration one, which contains vehicle static
data needed by other FSW modules.

Listing 1: C Module Code

// Configuration struct

typedef struct{

double ISCPntB_B[9]; // Inertia

double CoM_B[3]; // Center of mass

char outputMsgName[MAX_LENGHT]

}VehicleConfig;

// Generic algorithms

void SelfInit_vehConfigData(...);

void CrossInit_vehConfigData(...);

void Update_vehConfigData(...);

void Reset_vehConfigData(...);

Through SWIG, the C config struct of each module can be
instantiated in Python as if it was a Python object with the same
variables as in the struct. SWIG automatically handles the con-
version of types from Python to C, including nested C struc-
tures. As a matter of fact, the authors have not yet found a C
or C++ variable type that cannot be SWIG-ed. Initializing the
C variables of all the modules in Python is handy because it
makes the simulation completely reconfigurable – changing the
initialization values from Python does not force recompilation
of the C code again. This feature is specially useful to handle
Monte-Carlo testing. A snippet of Python code initializing the
C vehicle configuration module is shown in Listing 2.

Listing 2: Python Setup Code

Instantiate C config struct as a Python object

self.VehicleData = VehicleConfig()

Initialize variables

def SetVehicleConfigData(self):

self.VehicleData.ISCPntB_B = [600.0, 0.0, 0.0,

0.0, 600.0, 0.0,

0.0, 0.0, 600.0]

self.VehicleData.CoM_B = [0.0, 0.0, 1.0]

self.VehicleDatas.outputMsgName = "adcs_config_data"

return

All the module variables that in the desktop environment
are initialized from Python, in the CFS embedded environment
must be initialized directly in C. Further, in order to keep con-
sistency in the testing throughout both environments, the values
of these variables need to match exactly.

Task Groups and Rates: The other setup-item leveraged
from Python in the desktop environment is the instantiation of
C++ task containers that run at the defined task rates. Any num-
ber of modules can be added to each task created, and priorities
between the modules within the same task are also set by the
user from Python.

Figure. 4 illustrates a simple Python setup of tasks within a
FSW process (Config Init Task running at 0 Hz because it is
a one-time initialization task, and Sensor Read Task running at
1Hz). In the desktop simulation, Python itself loops through the
C++ tasks cyclically and, for each task, calls the update method
of all the modules in that task. Relating back to Fig. 4, all the
modules that belong to Sensor Read Task will be updated every
1 second in the simulation.

In the embedded environment, it is desired to maintain the
same task groups. Therefore, C calls will need to be imple-
mented that, for each task, contain callbacks to all the methods
of the modules belonging to the task. These C callbacks, of

FSW Process

 0 HzConfiguration Init Task

Vehicle Config Data

 1 HzSensor Read Task

Coarse Sun Sensor Decode

Fig. 4.: Python setup: task groups and rates

course, shall respect the module priority established previously
in the Python setup. The reason why the C++ tasks created
from Python in the desktop environment cannot be preserved is
because CFS does not natively support C++, which is a limita-
tion.
5.1.2. How the setup code is translated: the AutoSetter.py

As shown in Fig. 5, the setup code of the desktop Python
scripts needs to be translated into C. A key remark here is that
the flight algorithm source code (FSW Algs in Fig. 5) remains
unchanged. The pure-C application (FSW App in Fig. 5) is con-
formed by the unchanged algorithm source code plus one addi-
tional header (setup.h) and source file (setup.c) containing the
setup code written in C.

The translation of setup code from Python to C is handled
automatically via an independent script written in Python: the
AutoSetter.py. The beauty of the AutoSetter.py is that is not a
black box but rather a very simple python template that maps
Python variable types/values into their C counterparts. The re-
sulting C setup code is straightforward and completely human
readable. In the end, as long as recursion is handled properly, C
variables always boil down to the same types –and there are not
that many ways to initialize, for example, an array of 3 doubles.

The workings of the AutoSetter.py essentially rely on
Python’s introspection capabilities. Looking at oneself is some-
thing that neither C or C++ can accomplish without significant
investment in source parsing. In contrast, Python can easily
realize that, inside the C/C++ desktop simulation wrapped in
Python, there is a FSW process with a list of tasks. And inside

FSW Algs (C)

Controls

Guidance

Navigation

MPI
C

User Scripts (Python)
module init & tasks def

FSW Algs (C)

Controls

Guidance

Navigation

MPI
C

"Auto-Setup" code (C)
 (setup.h, setup.c)

Controls

Guidance

Navigation
FSW App=

AutoSetter.py

Fig. 5.: Translation of setup code from Python to C

Fig. 6.: Python Introspection

each task, there is a list of modules that, despite being written
in C, now appear as Python objects; therefore the modules now
have all these Python built-in properties like module , type(
), name , dir() and so on, which are the key to introspection.
This idea is graphically illustrated in Fig. 6.

Listing 3 shows a snipped of code automatically generated
by the AutoSetter.py. Note that this C setup code (output of the
AutoSetter.py) corresponds to Python code shown previously in
Listing 2 (input of the AutoSetter.py). Let us take a closer look,
for instance, to the inertia variable (ISCPntB T). In Python,
the inertia is initialized as a list of 9 floats, with only 3 of
them being actually non-zero values; for the AutoSetter.py this
unambiguously translates into a C array of 9 doubles, with the
same indices filled with-non zero values as in the Python list.

Listing 3: AutoGenerated C Setup Code

// Struct containing all FSW modules in a process

typedef struct{

VehicleConfig veh_config;

// [...] More modules below

} AllConfig;

// Initialization of all FSW modules

void AllConfig_DataInit(AllConfig *data){

memset(data, 0x0, sizeof(AllConfig));

// VehicleConfig module init

data->veh_config.ISCPntB_B[0] = 600.0;

data->veh_config.ISCPntB_B[4] = 600.0;

data->veh_config.ISCPntB_B[8] = 600.0;

strcpy(data->veh_config.outputMsgName,

"adcs_config_data");

// [...] More modules below

}

5.2. Embedded FSW Testing
Figure 7 illustrates that the unmodified FSW algorithms plus

the auto-generated C setup code constitute a CFS application
that is embeddable. For the aforementioned interplanetary mis-
sion, the embedded FSW application is tested in an emulated
flat-sat configuration. The flat-sat is emulated in the sense that
all the different components are actually software models repli-
cating its hardware counterparts. The concept of emulating a
flat-sat configuration for the purposes of integrated testing is
shown in Fig 8. Here, the CFS-FSW application runs within a
processor board emulator (or single-board computer, SBC, em-
ulator) and interacts with external applications like the space-

FSW Algs (C)

Controls

Guidance

Navigation

MPI
C

"Auto-Setup" code (C)
 (setup.h, setup.c)

Controls

Guidance

Navigation
FSW App=

CFS

Controls

Guidance

Navigation
FSW App

Fig. 7.: Embedded FSW Application

Ground System
Emulator

CFS

Controls

Guidance

Navigation

TCP

BSK

SC Models(C++)

Environment

Kinematics

Dynamics
FSW App

Telemetry
Database

Commands
Database

TCP

SBC Emulator

Fig. 8.: Concept of Emulated Flat-Sat

craft physical simulation and a ground system model. Figure 8
showcases the general idea of an emulated flat-sat for the pur-
poses of integrated FSW testing. However, once FSW is inte-
grated within CFS and embedded inside the SBC emulator, it
is actually not that straightforward to access the FSW states for
reading and writing. In contrast to the desktop environment,
here there is no longer a flexible Python layer that allows easy
interaction with the C flight algorithm code. In fact, in order
to communicate with the embedded FSW application running
within the SBC emulator, it has been necessary to emulate the
FPGA registers as well. These registers have been simply mod-
eled as a memory map for input and output of raw binary data.
The layout of the combined CFS-FSW and modeled registers,
within the SBC emulator, is showcased in Fig. 9.

In the very end, for the aforementioned interplanetary mis-
sion, the general concept of an emulated flat-sat represented in
Fig. 8 has materialized in the configuration displayed in Fig. 10.
Note that, within the flight processor emulator in Fig. 10, there
are several registers emulated. Through these registers, FSW
receives commands and returns telemetry (using CCSDS pack-
ets from and to the ground system GS emulator). Also through
them, FSW commands the actuators (which are modeled within
the spacecraft physical simulation in Basilisk) and receives sen-
sor data from the Basilisk sensor models. The emulated flat-
sat configuration in Fig. 10 is used in the aforementioned in-
terplanetary mission for the first phase of integrated testing.
While pure software flat-testing (i.e. emulated) does not re-
place hardware flat-sat tests, it can reduce bottlenecks by pro-
viding pure software substitutions for hardware components of
limited quantity that might be needed simultaneously for testing

CFS

Controls

Guidance

Navigation
FSW App

SBC Emulator (Qemu)

FPGA
Registers

CFS

FSW
App

Fig. 9.: FPGA Register Emulation

Flight Processor Emulator (QEMU) C/C++
 Leon board + RTEMS Spacecraft Models

(Basilisk) C++

IOB 1 Register

SSR Register

SBC Register

IOB 2 Register Environment

GS Emulator C++

Commands Database

Telemetry Database

Scenarios (BSK) Python

FPGA Registers Dynamics

Kinematics

PCU Interface

Sensors

Actuators

CCSDS packet

raw bin data

CFS

Controls

Guidance

Navigation
FSW App

Fig. 10.: Actual Emulated Flat-Sat Configuration

by different mission groups.
5.3. Requirements and Limitations

As a brief summary of this section, the presented approach
for embedded FSW testing uses CFS, the FSW application
is written purely in C and, for emulated flat-sat testing as in
Fig. 10, the FPGA registers need to be emulated. This ap-
proach has allowed for flexible development of the flight al-
gorithms that can quickly be tested in the embedded system;
the migration back and forth desktop and embedded environ-
ments is very rapid thanks to the AutoSetter.py and integrated
testing within the emulated flat-sat has already revealed several
problems within the flight application. Having said that, this
approach presents three clear cons: migration effort, difficult
interaction with FSW and replicated CFS functionality.

Migration effort: even if the migration is pretty transparent,
there still is a migration effort involved. The AutoSetter.py pro-
duces specific code for every single FSW configuration defined
in Python. Therefore, the AutoSetter.py needs to run for every
Python scenario to be tested in the embedded environment.

Difficult interaction with FSW: the modeling of FPGA reg-
isters, necessary for interacting with FSW in the emulated em-
bedded environment of Fig. 10, is still work in progress. The
connections between FSW states and their corresponding mem-
ory addresses within the registers are unique, involving addi-
tional complex code to work. Further, in the embedded environ-
ment of Fig. 10, it is not possible to fully capture all the CFS-
FSW states; only the raw binary data that is actually mapped to
the register addresses can be accessed and, only some of it, is
converted into telemetry for the ground system model to parse.
This is specially problematic when corner cases are found dur-
ing integrated testing in emulated flat-sat configuration: if FSW
states cannot be fully captured, then it is not possible to repli-
cate the configuration 100% exactly again.

Replicated CFS functionalities: Last but not least, CFS
has revealed some inflexibilities in its design. Recalling Fig. 3,
the cFE executive layer provides five core services, which can-
not be removed or customized –hence, yielding to the presence
of replicated functionality within the embedded flight appli-

cation. For instance, the mission flight algorithms shown in
Fig. 7 already come with their own message passing interface
(MPI); therefore, the software bus services within cFE are not
used. Similarly, the processor board emulator and RTOS shown
in Fig. 10already handle timing; hence the cFE time services
become redundant. Finally, the event services within cFE are
meant to be used for asynchronous messaging but, in the con-
figuration of Fig. 10, this role is done by the ground system
model.

6. Embedded FSW Development: MicroPython

After seeing both the feasibility and the drawbacks of the
CFS embedded development approach, there is a question that
lingers into the air: Is there a way to minimize the gap further,
between desktop and embedded environments, and to reduce
the migration effort involved?

Since the desktop development proposal (i.e. using Python as
a user-interface language with underlying C/C++ flight source
code) has proven, in the authors’ experience, to work extremely
well, it makes good sense to consider MicroPython for embed-
ded FSW development.

MicroPython is a lean and efficient implementation of the
Python 3 programming language that includes a small subset
of the Python standard library and that is optimized to run in
microcontrollers. MicroPython is packed full of advanced fea-
tures such as an interactive prompt, list comprehension, gen-
erators, exception handling and more. All these advanced fea-
tures make the MicroPython environment more alike desktop,
while still being an embedded system: it is compact enough to
fit and run within just 256k of code space and 16k of RAM.
Furthermore, MicroPython aims to be as compatible with nor-
mal Python as possible, enhancing the transfer of Python 3 code
from the desktop to the embedded environment.

As in the desktop development proposal, the idea here is to
maintain the unmodified flight algorithm code written in C –
which in the future will hopefully be C++– and use MicroPy-
thon for embedded setup only. With this purpose in mind, an
open-source C++ wrapper tool for MicroPython is presented
next.

6.1. MicroPython C++ Wrap
The MicroPython C++ Wrap†† is a header-only C++ library

that provides some interoperability between C/C++ and the Mi-
croPython programming language. The standard way of ex-
tending MicroPython with custom C or C++ modules involves
a lot of boilerplate code. Using the MicroPython C++ Wrap,
the process of integration with MicroPython is drastically re-
duced.
6.2. Proof of Concept

The goal is to prove that the combination of MicroPython and
its C++ wrap can successfully be used for: setting up the un-
modified C/C++ flight algorithms as developed in the Basilisk
desktop environment, and executing the simulation within em-
bedded system.

Recall that, in the desktop environment, both setup and desk-
top execution as well as post-processing are handled by the

†† https://github.com/stinos/micropython-wrap

https://github.com/stinos/micropython-wrap

Python layer. Because MicroPython is only a light version of
the Python3 programming language, and most data-analysis li-
braries for post-processing are not supported, MicroPython will
only be used for archiving flight data from an embedded sim-
ulation run –rather than fully post-processing it. Thanks to the
interoperability between MicroPython and regular Python, the
archived results can be straightly loaded into desktop Python
for regular post-processing. The key aspect of this idea is that,
because the same flight data can be logged in a MicroPython
run and a regular Python run, the post-processing scripts of the
desktop environment still apply either way.

The technical work required in order to prove the presented
concept involves three development items, which could be con-
sidered as migration effort. These three items are: 1) Creating
a C++ class for every C FSW module, 2) Generating MicroPy-
thon integration code for every C++ class that needs to be avail-
able to the MicroPython layer, and 3) Adapting existing desktop
Python scenario scripts into MicroPython. Before describing
each of these three items in detail, let us recall the Python in-
trospection capabilities that have been introduced through the
AutoSetter.py. This independent script that allows the genera-
tion of specific C setup code (for integration within CFS) has
been modified to automatically handle items 1) and 2) of the
MicroPython embedding approach. This new introspection file
will be referred to as the AutoWrapper.py.

1. Create a C++ class (.hpp file) for every C FSW module:
the FSW algorithms in Basilisk have been written in C in-
stead of C++ because many space missions still have –or
impose– a C code requirement. The space industry tends
to be generally conservative and it takes time to adopt new
development approaches or coding languages. However,
C++, which is an object-oriented evolution of C, is a pow-
erful, efficient and fast language that dovetails perfectly
with space FSW if missions are willing to embrace it. The
Basilisk desktop testbed totally supports the development
of C++ modules. Indeed, as shown in Fig. 1, the space-
craft physical models within Basilisk are already written
in C++.
Since the MicroPython C++ wrapper is specially designed
to wrap C++ code, the suggested approach for wrapping
the unmodified C FSW algorithms, as they currently ex-
ist in Basilisk, is to a create a C++ class (new .hpp file)
for every module (.h and .c file) there is. This C++ class,
which is automatically generated by the AutoWrapper.py,
contains:
(a) The C config struct instantiated as a private member

of the C++ class.
(b) For every variable within the C struct, setters and get-

ters are created in the C++ class. Setter and getter
functions are necessary because MicroPython cannot
access C++ variables directly, but it can operate on
them through function calls.

(c) Finally, the C++ class also contains public function
callbacks to the C module algorithms for self-init,
cross-init, update and reset. These callbacks will be
externally called from MicroPython for embedded ex-
ecution.

2. Generate integration code for every C++ function/type

that needs to be available to MicroPython: For every
Basilisk FSW C++ module, its corresponding header .h,
source .c and recently created .hpp, need to be copied over
inside the MicroPython C++ Wrapper directory. Further,
it is necessary to declare/register the C++ classes/function
/types of the flight application that need to be available to
MicroPython. This integration code, which is generated
by the AutoWrapper.py consists, more precisely, of the fol-
lowing:
(a) Registration of each FSW C++ class as a MicroPy-

thon object
(b) Mapping of function names between the C++ class

and the MicroPython object.
(c) Linking of setters and getters (in the C++ class) to

properties (in MicroPython).
At this point, the Basilisk FSW application and the C++

Wrapper are ready to be compiled as a static library and
linked to the MicroPython built.

3. Adapt existing desktop Python scenario scripts into Mi-
croPython: The desktop setup scripts written in Python do
not work seamlessly on MicroPython because not all the
Python libraries used for setup are supported in MicroPy-
thon. Further, currently, all the Basilisk FSW modules are
still written in C. Upcoming work encompasses creating
scenario scripts that can run both in desktop Python and
embedded MicroPython, and which use the newly created
C++ FSW modules. This would allow an apple-to-apple
comparison of the results between the desktop and embed-
ded runs, which should match identically.

6.3. Advantages of the MicroPython Approach
How the MicroPython embedded approach compares to the

CFS development approach is illustrated in Fig. 11 and briefly
summarized as follows. The migration effort is reduced be-
cause the automatically generated code is no longer specific, but
reconfigurable: the C setup-code generated by the AutoSetter.py
for CFS integration was specific to every single FSW configu-
ration as defined in a given Python scenario script; in contrast,
the FSW C++ classes and MicroPython integration code gener-
ated by AutoWrapper.py are only written once. At this point, all
the FSW states become fully reconfigurable from MicroPython
without recompilation. Because MicroPython has full access to
the message passing interface of the FSW application, it is no
longer necessary to replicate the FPGA registers. Another
key advantage of the MicroPython approach is that now it is
possible to fully capture all the FSW states at any point in a
simulation run. Last but not least, MicroPython guarantees the
portability of a middleware layer without the replicated func-
tionality imposed by CFS.

7. Conclusions and Future Work

This paper has presented two different strategies for end-to-
end FSW development. Both strategies use the Basilisk testbed
as a desktop development environment but they differ on the
targeted embedded environment: the Core Flight System (CFS)
in one case and the novel MicroPython in the other.

The feasibility of the CFS approach –more conventional than
the MicroPython one– is discussed through the experience of its

User Scripts (Python)

AutoWrapper.py

MicroPy integration code

User Scripts (MicroPython)

MicroPython

Controls

Guidance

Navigation
FSW App

(a) MicroPython approach

FPGA Registers

User Scripts (Python)

AutoSetter.py

C setup code

IOB 1 Register

SSR Register

SBC Register

IOB 2 Register

CFS

Controls

Guidance

Navigation
FSW App

(b) CFS approach

Fig. 11.: Embedded FSW Development Approaches

application into an interplanetary spacecraft mission. Of partic-
ular interest is the method for integrating the Basilisk-developed
flight algorithms into an embeddable CFS application. This in-
tegration is achieved by automatically generating a minimal set
of C integration code through Python’s introspection capabili-
ties. Having said that, the overall challenges in the use of CFS
motivate the search for a different strategy that smoothes the
migration of the flight application between environments.

On these lines, the feasibility of combining a light-weight
version of the Basilisk flight architecture with a MicroPython
interpreter is also investigated, with the objective of yielding
a flexible flight operating system that can directly run in con-
strained environments (hardware flight processor or its virtual
counterpart). While the MicroPython investigation is still on-
going research, the current results are promising. A complete
implementation of this strategy would enhance the testing capa-
bilities of FSW within constrained flight processor testbeds, and
would therefore minimize the gap between desktop and flight
environments. Furthermore, such flight architecture would of-
fer the same portability as a middleware layer while minimizing
migration and integration costs.

References

1) Busch, S., Bangert, P., Dombrovski, S., and Schilling, K., “UWE-3,
in-orbit performance and lessons learned of a modular and flexible
satellite bus for future pico-satellite formations,” Acta Astronautica,
Vol. 117, December 2015, pp. 73–89.

2) Cols Margenet, M., Schaub, H., and Piggott, S., “Modular Plat-
form for Hardware-in-the-Loop Testing of Autonomous Flight Al-
gorithms,” International Symposium on Space Flight Dynamics,
Matsuyama-Ehime, Japan, June 3–9 2017.

3) Briggs, M., Benz, N., and Forman, D., “Simulation-Centric Model-
Based Development for Spacecraft and Small Launch Vehicles,” 32nd
Space Symposium, Colorado Springs, Colorado, April 11–12 2016.

4) Smith, J., Taber, W., Drain, T., Evans, S., Evans, J., Guevara, M.,
Schulze, W., Sunseri, R., and Wu, H.-C., “MONTE Python for Deep
Space Navigation,” Proceedings of the 15th Python in Science Con-
ference (SCIPY), 2016.

5) George, D., Sanchez de la Llana, D., and Jorge, T., “Porting of Mi-
croPython to Leon Platforms,” Tech. rep., George Robotics Ltd. and
ESA ESTEC, 2016.

6) Cols Margenet, M., Kenneally, P. W., Schaub, H., and Piggott, S.,
“Simulation Of Heterogeneous Spacecraft And Mission Components
Through The Black Lion Framework,” John L. Junkins Dynamical
Systems Symposium, No. 7, College Station, TX, May 20–21 2018.

7) Lauretta, D., OSIRIS-REx Asteroid Sample-Return Mission, Vol.
Handbook of Cosmic Hazards and Planetary Defense, Springer, 2015.

8) Mangieri, M. and Vice, J., “Kedalion: NASA’s Adaptable and Agile
Hardware/Software Integration and Test Lab,” AIAA SPACE, 2011.

9) Keys, A., Watson, M., Frazier, D., Adams, J., Johnson, M., and
Kolawa, E., “High Performance, Radiation-Hardened Electronics for
Space Environments,” 5th International Planetary Probes Workshop,
Bordeaux, France, June 28 2007.

10) McComas, D., “NASA/GSFC’ Flight Software Core Flight System,”
Flight Software Workshop, San Antonio, TX, Nov. 7–9 2012.

11) Cudmore, A., “NASA/GSFC’s Flight Software Architecture: Core
Flight Executive and Core Flight System,” Flight Software Workshop,
2011.

12) Laroche, T., Denis, P., Parisis, P., George, D., Sanchez de la Llana,
D., and Tsiodras, T., “MicroPython Virtual Machine for On Board
Control Procedures,” Dasia, 2018.

13) Cols-Margenet, M., Schaub, H., and Piggott, S., “Sequentially Dis-
tributed Attitude Guidance Across A Spacecraft Formation,” Inter-
national Workshop on Satellite Constellations and Formation Flying,
University of Strathclyde, Glasgow, Scotland, July 2019.

	Introduction
	Desktop Development Environment
	Model-based development
	Python interface with underlying C/C++ code

	Embedded environment
	Desktop FSW Development: The Basilisk Testbed
	Embedded FSW Development: The CFS
	Flight Algorithm Migration into a CFS Application
	Embedded FSW Testing
	Requirements and Limitations

	Embedded FSW Development: MicroPython
	MicroPython C++ Wrap
	Proof of Concept
	Advantages of the MicroPython Approach

	Conclusions and Future Work

