
AVS
Laboratory

Ann and H. J. Smead Aerospace
Engineering Sciences Department
University of Colorado, Boulder

An End-to-End FSW Development Approach
Using MicroPython and the Basilisk Software Testbed

Mar Cols Margenet*, Hanspeter Schaub† and Scott Piggott‡

*Graduate Researcher, University of Colorado

†Professor, Glenn L. Murphy Chair, University of Colorado

‡ADCS Integrated Simulation Software Lead, Laboratory for Atmospheric and Space Physics

�1

Motivation

�2

AVS
Laboratory

• FSW testing in different environments…

‣ Desktop testbed environment

‣ Embedded testbed environment: hardware flight processor or emulated

• Gap between environments implies there’s a migration effort.

• Desired FSW Development approach:

‣ Keep both testbeds while minimizing migration effort

‣ Algorithm source code remains unchanged: “Test what fly, fly what you test”.

‣ Desktop dev proposal: Python user-interface and C/C++ algorithm source code

‣ Embedded dev proposal 1: CFS middleware and C/C++ algorithm source code

‣ Embedded dev proposal 2: MicroPython user-interface and C/C++ source code

Desktop Development Proposal

• Proposal: Python user-interface with underlying C/C++ flight source code

• Python pro’s: high-level language with powerful features and large community

• Python con’s: runtime insufficiently well-controlled for FSW time-critical applications

• Python: let’s take a closer look…

• Built-in modules for speed written in C/C++ (e.g. numpy)

• Several ways to create C/C++ extensions: CPython, SWIG…

• Python for FSW(C/C++) setup, desktop execution & post-processing:

• Data analysis: numpy, matplotlib…

• Automated regression tests: py-test

• Monte-Carlo handling

�3

AVS
Laboratory

Basilisk Desktop Testbed: Overview

• Basilisk: open-source, cross-platform, desktop testbed for
designing flight algorithms and test them in closed-loop
dynamics simulations.

• Language: C and C++ code wrapped in Python via SWIG

• AVS & LASP: interplanetary spacecraft mission support

• Nominal (but not required) Setup:

• Dynamics Process: simulation of spacecraft physical
behavior (C++)

• FSW Process: mission-specific GN&C algorithms (C)

• Core Elements:

• Hierarchy: Process -> Task -> Module

• Communication: pub-sub Message Passing Interface

�4

AVS
Laboratory

BSK

FSW Algs (C)

Controls

Guidance

Navigation

SC Models(C++)

Environment

Kinematics

Dynamics

MPI

User Scripts (Python)

Migration of the Basilisk Flight Application

�5

AVS
Laboratory

• Single processor environment: • Multi processor environment: realistic testing

BSK

FSW Algs (C)

Controls

Guidance

Navigation

SC Models(C++)

Environment

Kinematics

Dynamics

MPI

User Scripts (Python)

BSK

FSW Algs (C)

Controls

Guidance

Navigation

TCP

BSK

SC Models(C++)

Environment

Kinematics

Dynamics

CFS

Controls

Guidance

Navigation

TCP

BSK

SC Models(C++)

Environment

Kinematics

Dynamics

SBC Emulator

FSW App

Raspberry Pi
(ARM + Linux)

Qemu emulator
(Leon + RTEMS)

The Core Flight System

�6

AVS
Laboratory

• Middleware layer (“glue code”) to ensure portability among different RTOS and processors.

• Open-source product developed by NASA Goddard.

• Architecture:

RTOS/Boot Layer

OS Abstraction Layer

cFE Executive Layer

Library Layer Executive Services
Event Services

Software Bus Services
Table Services
Time Services

Application Layer
Controls

Guidance

Navigation
FSW App

Basilisk flight algorithms into a CFS application

�7

AVS
Laboratory

• Basilisk C Algorithms + “Auto-Setup” Code: integrated as a CFS application.

BSK

FSW Algs (C)

Controls

Guidance

Navigation

MPI
C

User Scripts (Python)

BSK

SC Models(C++)

Environment

Kinematics

Dynamics

MPI
C++

User Scripts (Python)

TCP

FSW Algs (C)

Controls

Guidance

Navigation

MPI
C

"Auto-Setup" code (C)

Controls

Guidance

Navigation
FSW App=

AutoSetter.py

CFS

Controls

Guidance

Navigation
FSW App

TCP

• Recall desktop dev:
Python for FSW(C/C++)
setup, desktop execution
and post-processing

• Python setup:

‣ Initialization of C/C++
modules

‣ Grouping of modules in
tasks & rates

Python setup: C module initialization

�8

AVS
Laboratory

• Basilisk C module: a stand-
alone model or self-contained
logic.

‣Config struct

‣Generic algorithm calls:
self-init, cross-init, update
& reset. [called from
Python in desktop exec]

• Python module initialization

Vehicle Config Data
module

Python setup: task groups & rates

�9

AVS
Laboratory

• Define tasks at certain rates

• Add modules to tasks and define priorities within the task.

• Examples:

‣Config Init Task at 0 Hz: all modules in the task only called
once (at init time)

‣Sensor Read Task at 1 Hz: the Update() algorithm of each
module is called every 1sec, in the priority stablished.

FSW Process

 0 HzConfiguration Init Task

Vehicle Config Data

RW Config Data

 1 HzSensor Read Task

Coarse Sun Sensor Decode

IMU Decode

Star Tracker Aquire

 2 HzAttitude Nav Task

Attitude UKF Filter

Sun Line Filter

Nav Aggregate

Basilisk hierarchy:
Process —> Tasks —>Modules

• Setup code: needs to be translated from Python to C.

• FSW algorithm source code: remains unchanged!!

Embeddable FSW Application

�10

AVS
Laboratory

BSK

FSW Algs (C)

Controls

Guidance

Navigation

MPI
C

User Scripts (Python)

FSW Algs (C)

Controls

Guidance

Navigation

MPI
C

"Auto-Setup" code (C)

Controls

Guidance

Navigation
FSW App=

AutoSetter.py

User Scripts
module init & tasks def

AutoSetter.py

Setup Code
 (setup.h, setup.c)

C setup code: one header + one source file

Python Introspection

�11

AVS
Laboratory

FSW Process

 0 HzConfiguration Init Task

Vehicle Config Data

RW Config Data

 1 HzSensor Read Task

modelVehicle Config Data

model.__module__
type(model).__name__

sys.modules[model]
dir(model)

I am a model.
I’ve these variables

and algorithm names.

• Why is it so easy to generate concise C setup code through the “AutoSetter.py”?

• Because Python is great at introspection! C module now appears as
Python object

“AutoSetup.py”: Python input & C output

�12

AVS
Laboratory

AutoSetter.py

C algorithm calls,
arranged in tasks

(AutoSetter output)

C variables init
(AutoSetter output)

ISCPntB_B = list of 9 floats
CoM_B = list of 3 floats

outputPropNames = string

Python scenario
(AutoSetter input)

• C flight algorithms + generated C setup code —> integrated as an embeddable CFS app.

• Embedded FSW testing: closed-loop simulation with other models: s/c physical models,
ground system model…

• But interacting with FSW is not that easy when it’s embedded… Need to emulate FPGA
Registers

Emulated Flat-Sat Configuration

�13

AVS
Laboratory

Ground System
Emulator

CFS

Controls

Guidance

Navigation

TCP

BSK

SC Models(C++)

Environment

Kinematics

Dynamics
FSW App

Telemetry
Database

Commands
Database

TCP
SBC Emulator

CFS

Controls

Guidance

Navigation
FSW App

SBC Emulator (Qemu)

FPGA
Registers

CFS

FSW
App

memory map for I/O of
raw binary data

Emulated Flat-Sat Models

�14

AVS
Laboratory

Flight Processor Emulator (QEMU) C/C++
 Leon3 board + RTEMS

Spacecraft Models (BSK) C++

IOB 1 Register

SSR Register

SBC Register

IOB 2 Register
Environment

GS Emulator (Hydra) C++

Commands Database

Telemetry Database

Scenarios (BSK) Python

FPGA Registers
Dynamics

Kinematics

PCU Interface

Sensors

Actuators

CCSDS packet

raw binary data

CFS

Controls

Guidance

Navigation
FSW App

Viz Interface

Visualization (Unity) C#

raw binary data

• Flight Processor Emulation: virtual Leon3, RTEMS, CFS-FSW App, FPGA reg.

• Spacecraft Models: DKE, sensors, actuators, PCU…

• Ground System Emulation: databases for command & telemetry

• Visualization: Unity GUI

• Does it work? Yes, and migration is transparent

• Migration effort:

‣ Generate “Auto-Setup” C code

‣ Emulate FPGA registers

• Difficulties:

‣ Setting flight modes

‣ Logging FSW states

• Replicated CFS functionality:

‣ Software Bus = FSW App’s MPI

‣ Time Services = Qemu functionality

‣ Event Services = GS functionality

CFS Embedding Approach: requirements & limitations

�15

AVS
Laboratory

FSW Algs (C)

Controls

Guidance

Navigation

MPI
C

"Auto-Setup" code (C)

Controls

Guidance

Navigation
FSW App=

Flight Processor Emulator (QEMU) C/C++
 Leon3 board + RTEMS

IOB 1 Register

SSR Register

SBC Register

IOB 2 Register

GS Emulator (Hydra) C++

Commands Database

Telemetry Database

FPGA Registers

CCSDS packet

CFS

Controls

Guidance

Navigation
FSW App

RTEMS + Qemu

OS Abstraction Layer

cFE Services Layer

Library Layer

FSW App

Executive services
Event services

Software Bus services
Table services
Time services

not flexible
nor scalable

• MicroPython:

‣ Lean and efficient implementation of the Python 3 programming language, optimized to run in
microcontrollers.

‣ Full of advanced features: interactive prompt, list comprehension, exception handling…

‣ Aims to be as compatible with normal Python as possible

• MicroPython C++ Wrap:

‣ What? Header-only C++ library providing interoperability between C/C++ and MicroPython.

‣ Why? Standard way of extending MicroPython with your own C/C++ modules involves some boilerplate.

• Python introspection: for wrapper generation

‣ Automatically create a C++ class for every C FSW module

‣ Generate MPy integration code-lines for every C++ class

MicroPython for Embedded FSW Development

�16

AVS
Laboratory

more alike
desktop

ease of
translation

Same logic as in
“AutoSetter.py”

• C++ class (hpp file) for every C FSW module we have

MicroPython C++ Wrapping

�17

AVS
Laboratory

C config struct

C++ class

Setter

Getter

Ca
llb

ac
ks

• C++ class for every C FSW module

• Generate MPy integration code-lines for every C++ class: need to register the C++ function and
type names so they can be discovered by MicroPython

MicroPython C++ Wrapping

�18

AVS
Laboratory

C++ class registration

MPy property: C++ setter & getter

C++ function
names map

MPy function names def

Desktop Python vs. Embedded MicroPython

�19

AVS
Laboratory

Embedded MicroPy script
(C++ module setup)

Dektop Python script
(C module setup)

• Reduced migration effort:

‣ No more specific C setup-code

‣ MicroPython integration code is written
once (FSW states are reconfigurable)

‣ No need to emulate FPGA registers

• Advantages:

‣ Setting flight modes & logging states is easy

‣ No more replicated functionality

‣ Guaranteed portability

MicroPython Embedding Approach

�20

AVS
Laboratory

User Scripts (Python)

AutoWrapper.py

MicroPy integration code

User Scripts (MicroPython)

IOB 1 Register

SSR Register

SBC Register

IOB 2 Register

FPGA Registers
CFS

Controls

Guidance

Navigation
FSW App

User Scripts (Python)

AutoSetter.py

Setup Code (C)

MicroPython

Controls

Guidance

Navigation
FSW App

CFS approach MicroPy approach

Future Work

�21

AVS
Laboratory

• Port MicroPython to RTEMS & Leon

• Distributed closed-loop simulation

ESA Software Community
License – Type 3

SBC Emulator (QEMU) C/C++
 Leon3 board + RTEMS

MicroPython

Controls

Guidance

Navigation
FSW App

Spacecraft Models (BSK) C++

Environment

GS Emulator (Hydra) C++

Commands Database

Telemetry Database

Scenarios (BSK) Python

Dynamics

Kinematics

PCU Interface

Sensors

Actuators

CCSDS packet

raw binary data

Viz Interface

Visualization (Unity) C#

raw binary data

�22

AVS
Laboratory

Thanks for your attention!

